【期末试卷】-2019学年四川省成都市温江区七年级(上)期末数学试卷
成都市七年级(上)期末数学试卷含答案

七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.7的相反数是()A. 7B. -7C. +7或-7D. 0和72.(-1)2011等于()A. -1B. 1C. 2011D. -20113.将591000000用科学记数法表示应为()A. 0.591×109B. 59.1×107C. 5.91×107D. 5.91×1084.下列运算正确的是()A. -3-2=-1B. -32=8C. 2xy+xy=3xyD. 2x+x2=3x35.一个两位数,个位上是x,十位上是y,用代数式表示这个两位数()A. xyB. yxC. 10x+yD. 10y+x6.一件标价为600元的上衣,按8折销售仍可获利20元,设这件上衣的成本价为x元,根据题意,下面所列的方程正确的是()A. 600×0.8-x=20B. 600×8-x=20C. 600×0.8=x-20D. 600×8=x-207.根据下列条形统计图,下面回答正确的是()A. 步行人数为50人B. 步行与骑自行车的人数和比坐公共汽车的人要少C. 坐公共汽车的人占总数的50%D. 步行人最少只有90人8.如图,∠AOB=180°,OD、OE分别是∠AOC和∠BOC的平分线,则与OD垂直的射线是()A. OAB. OCC. OED. OB9.右边几何体的俯视图是()A.B.C.D.10.下列方程的变形正确的个数有()(1)由3+x=5,得x=5+3;(2)由7x=-4,得x=-;(3)由y=0得y=2;(4)由3=x-2得x=-2-3.A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,共35.0分)11.在数轴上距-1.5有2个单位长度的点表示的数是______.12.在下列方程中:①x+2y=3,②,③,④,是一元一次方程的有______(只填序号).13.对正有理数a、b规定运算★如下:a★b=,则8★6=______.14.钟面显示的时间是6时30分,此时时针与分针的夹角是______.15.如图,下面是用火柴棍摆的正方形,请你仔细观察第n个图形中共有______根(用n的代数式表示)火柴棍.16.若a m-2b n+7与-3a4b4是同类项,则m+n=______.17.若把年某市初中毕业、升学考试各学业科满分值比例绘成扇形统计图,则数学学科所在的扇形的圆心角是______度.18.如图所示,a、b是有理数,则式子|a|+|b|+|a+b|+|b-a|化简的结果为______.19.已知2+=22×,3+=32×,4+=42×,…10+=102×(a,b为正整数),则b-a=______.20.有4名同学,他们得到的苹果数恰好是一个比一个多1个,而他们的苹果数的乘积是5040,那么他们得到的苹果数之和是______.三、计算题(本大题共2小题,共29.0分)21.(1)计算:-23+[18-(-3)×2]÷4;(2)化简求值.2(3x2-5y)-[-3(x2-3y)],其中x=,y=-2;(3)解方程.22.已知关于x的方程mx+2=2(m-x)的解满足|x-|-1=0,求m的值.四、解答题(本大题共6小题,共56.0分)23.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.24.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?25.甲、乙两车同时从A城去B城,甲车每小时行35千米,乙车每小时行40千米,结果乙比甲提前半小时到达B城.问A、B两城间的路程有多少千米?26.某地电话拨号入网有两种收费方式,用户可任选其一:A.记时制:3元/时;B.包月制:50元/月(限一部个人住宅电话入网).此外,每一种上网方式都得加收通讯费1.2元/时.(1)某用户某月的上网时间为x小时,请写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月的上网时间为25小时,你认为选择哪种方式较合算.27.某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有n张桌子时,两种摆放方式各能坐多少人?(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌为什么?28.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN 的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC-BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.答案和解析1.【答案】B【解析】解:7的相反数是-7.故选:B.只有符号不同的两个数叫做互为相反数.本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.2.【答案】A【解析】解:(-1)2011=-1.故选:A.所求式子表示2011个-1的乘积,计算即可得到结果.此题考查了有理数的乘方,弄清-1的偶次幂为1,奇次幂为-1是解本题的关键.3.【答案】D【解析】解:把数591000000用科学记数法表示为:5.91×108,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:(A)-3-2=-5,故A不正确,(B)-32=-9,故B不正确,(D)2x与x2不是同类项,故D不正确,故选:C.根据有理数运算法则以及合并同类项法则即可作出判断.本题考查学生的计算能力,解题的关键是熟练运用有理数运算法则以及合并同类项法则进行计算,本题属于基础题型.5.【答案】D【解析】【分析】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,即两位数的表示方法为:十位数字×10+个位数字.两位数的表示方法为:十位数字×10+个位数字,直接根据此公式表示即可.【解答】解:个位上是x,十位上是y,则这个两位数是10y+x.故选D.6.【答案】A【解析】解:设上衣的成本价为x元,由已知得上衣的实际售价为600×0.8元,然后根据利润=售价-成本价,可列方程:600×0.8-x=20故选:A.要列方程,首先根据题意找出题中存在的等量关系:售价-成本价=利润20元.此时再根据列方程就不难了.此题应重点弄清两点:(1)利润、售价、成本价三者之间的关系;(2)打8折的含义.7.【答案】C【解析】解:A、从图中可以发现:步行人数最少,但人数是60人,不是50人;B、步行与骑自行车的人数和与坐公共汽车的人相等,都是150人;C、坐公共汽车的人数占总数的150÷(60+90+150)=50%;D、从图中可以发现:步行人数是60人;故选:C.从图中可获取步行人数、骑自行车的人数、做公共汽车的人数,进而求得学生的总人数,以及步行人数、坐公共汽车的人数占总数的比值.再进行判断.本题考查了条形统计图,条形统计图能清楚地表示各个项目的具体数目.能够读懂统计图,根据图中的数据进行正确计算.8.【答案】C【解析】解:∵∠AOC+∠BOC=∠AOB=180°,OD,OE分别是∠AOC和∠BOC的平分线,∴∠DOC+∠COE=(∠AOC+∠BOC)=90°.∴与OD垂直的射线是OE.故选:C.由图可知,∠AOC和∠BOC是邻补角,它们的角平分线OD,OE相互垂直.此题主要考查了垂线的定义即:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.9.【答案】C【解析】解:从上面看第二层是三个小正方形,第一层左边一个小正方形,故选:C.根据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上面看得到的视图是俯视图.10.【答案】A【解析】解:(1)由3+x=5;得x=5+3不正确,因为移项时,符号没有改变;(2)由7x=-4,得x=-正确;(3)由y=0得y=2不正确,系数化为1时,出现错误;(4)由3=x-2得x=-2-3不正确,因为移项时,符号没有改变.故选:A.此题主要考查解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1等,移项,系数化为1的依据是等式的性质.方程的变形包括去分母,去括号,移项,合并同类项,系数化为1等,要注意移项时符号的变化,系数化为1时,方程两端都除以未知数的系数.11.【答案】-3.5或0.5【解析】解:设在数轴上距离-1两个单位长度的点表示的数是x,则|x-(-1.5)|=2,解得x=0.5或x=-3.5.故答案为:-3.5或0.5.根据数轴的特点进行解答即可.本题考查的是数轴的特点,即在数轴上到原点的距离相等的数有两个,这两个数互为相反数.12.【答案】③④【解析】解:①是二元一次方程;②是分式方程;③符合一元一次方程的定义;④符合一元一次方程的定义.故③④是一元一次方程.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,对定义的理解是:一元一次方程首先是整式方程,即等号左右两边的式子都是整式,另外把整式方程化简后,只含有一个未知数(元),并且未知数的指数是1(次).判断一元一次方程的定义要分为两步:一:判断是否是整式方程;二:对整式方程化简,判断化简后是否只含有一个未知数(元),并且未知数的指数是1(次).13.【答案】【解析】解:∵a★b=,∴8★6==,故答案为:.由于规定运算★如下:a★b=,那么把数字代入法则计算即可求解;本题考查了代数式求值,解题的关键是熟练运用新定义,此题比较简单,易于掌握.14.【答案】15°【解析】解:∵时针每小时转30°,∴6.5小时转30°×6.5=195°,∵分针每分钟转6°,∴30分钟转6°×30=180°,∴钟面显示的时间是6时30分,此时时针与分针的夹角是195°-180°=15°,故答案为:15°.根据时针每小时转30°和分针每分钟转6°求出即可.本题考查了钟面角,知道时针每小时转30°和分针每分钟转6°是解此题的关键.15.【答案】(3n+1)【解析】【分析】通过观察图形可知,第一个图形是由四根火柴摆成,以后加三根就可加一个正方形,以此类推,得出结论.本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:从图中可知n每增加1,就要多用3根火柴棍n=1,所用火柴棍3+1=4根n=2,所用火柴棍2×3+1=7根n=3,所用火柴棍3×3+1=10根n=4,所用火柴棍4×3+1=13根…第n个图形中就该有火柴棍3n+1.故答案为(3n+1).16.【答案】3【解析】解:∵a m-2b n+7与-3a4b4是同类项,∴m-2=4,n+7=4,解得:m=6,n=-3,则m+n=6+(-3)=3.故答案为:3.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m+5=3,n=2,求出n,m的值,再代入代数式计算即可.本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是关键,①所含字母相同,②相同字母的指数相同.17.【答案】72【解析】解:数学学科所在的扇形的圆心角是360°×=72°,故答案为:72.再根据数学所在的扇形的圆心角=×360°,进行计算.本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.18.【答案】3b-a【解析】【分析】先根据a、b两点在数轴上的位置判断出其取值范围,再根据绝对值的性质进行解答即可.本题考查的是绝对值的性质及数轴的特点,能根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.【解答】解:∵由数轴上a、b两点的位置可知,-1<a<0,b>1,∴a+b>0,b-a>0,∴原式=-a+b+a+b+b-a=3b-a.故答案为:3b-a.19.【答案】89【解析】解:由题意可得,a=10,b=102-1=99,∴b-a=99-10=89,故答案为:89.根据题目中式子的特点,可得n+(n为正整数),从而可以得到a、b的值,进而求得b-a的值.本题考查分式的混合运算、数字的变化类,解答本题的关键是发现题目中式子的变化特点,求出a、b的值.20.【答案】34【解析】解:设第一名同学有x个苹果,依题意得:x(x+1)(x+2)(x+3)=5040解之得:x=7则他们得到的苹果数之和是7+8+9+10=34.依题意即是四个连续自然数的积是5040,求其和.设其中一个为x,易得方程求解.本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.21.【答案】解:(1)原式=-8+(18+6)÷4=-8+24÷4=-8+6=-2.(2)原式=6x2-10y+3x2-9y=9x2+y.把x=,y=-2代入上式,则原式=9×-2=1-2=-1.(3)-x=,去分母得:x-6-4x=2(x+5),去括号得:x-6-4x=2x+10,移项得:x-4x-2x=10+6,合并同类项得:-5x=16,系数化1得:x=-.【解析】(1)根据有理数的混合运算法则进行运算.(2)根据乘法分配律先去括号再合并同类项化简,然后代入求值.(3)此题先去分母,再去括号,然后移项合并同类项求解.此题考查的知识点是有理数的混合运算、解一元一次方程及整式的加减化简求值.其关键是分析题意,按要求及解题方法进行解答.22.【答案】解:由|x-|-1=0,可得:或,①当时,m=10,②当时,,故m的值为10或.【解析】先求出|x-|-1=0的解,再将它的解代入方程mx+2=2(m-x),从而求出m的值.本题考查了绝对值方程的解法,要注意分两种情况,以及要深刻理解方程解的概念.23.【答案】解:设∠AOB=x,∠BOC=2x.则∠AOC=3x.又OD平分∠AOC,∴∠AOD=x.∴∠BOD=∠AOD-∠AOB=x-x=14°∴x=28°即∠AOB=28°.【解析】此题可以设∠AOB=x,∠BOC=2x,再进一步表示∠AOC=3x,根据角平分线的概念表示∠AOD,最后根据已知角的度数列方程即可计算.本题考查了角平分线的定义.此类题设恰当的未知数,根据已知条件进一步表示出相关的角,列方程计算较为简便.24.【答案】解:(1)读图可得:A类有60人,占30%;则本次一共调查了60÷30%=200人;本次一共调查了200位学生;(2)“B”有200-60-30-10=100人,画图正确;(3)用样本估计总体,每天参加体育锻炼在0.5小时以下占5%;则3000×5%=150,学校有150人平均每天参加体育锻炼在0.5小时以下.【解析】(1)读图可得:A类有60人,占30%即可求得总人数;(2)计算可得:“B”是100人,据此补全条形图;(3)用样本估计总体,若该校有3000名学生,则学校有3000×5%=150人平均每天参加体育锻炼在0.5小时以下.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.【答案】解:设甲到达B城需x小时,根据题意得35x=40(x-0.5)解得x=4A、B两城间的路程为35×4=140(千米)答:A、B两城间的路程为140千米.【解析】根据甲车行驶的时间-乙车行驶的时间=0.5小时.可分别表示出甲、乙两车的行驶时间,列方程求解.本题主要考查了一元一次方程的应用,在解题时要能根据题意得出等量关系,列出方程是本题的关键.26.【答案】解:(1)采用记时制应付的费用为3x+1.2x=4.2x(元),采用包月制应付的费用为(50+1.2x)元;(2)若一个月内上网的时间为25小时,则计时制应付的费用为4.2×25=105(元),包月制应付的费用为50+1.2×25=80(元).∵105>80∴包月制合算.【解析】(1)根据第一种是费用=每小时的费用×时间+通讯费,第二种的费用=包月费+通讯费,列出代数式即可.(2)将25小时分别代入(1)计算出费用的大小,再进行比较就可以得出结论.本题考查了列代数式,表示费用的时候注意单位的统一.解决问题的关键是读懂题意,找到所求的量的等量关系.27.【答案】解:(1)第一种中,只有一张桌子是6人,后边多一张桌子多4人.即有n张桌子时是6+4(n-1)=4n+2.第二种中,有一张桌子是6人,后边多一张桌子多2人,即6+2(n-1)=2n+4.(2)中,分别求出两种对应的n的值,或分别求出n=25时,两种不同的摆放方式对应的人数,即可作出判断.打算用第一种摆放方式来摆放餐桌.因为,当n=25时,4×25+2=102>98当n=25时,2×25+4=54<98所以,选用第一种摆放方式.【解析】能够根据桌子的摆放发现规律,然后进行计算判断.关键是通过归纳与总结,得到其中的规律.28.【答案】解:(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM-CN=(AC-BC)=b.【解析】(1)根据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可,(2)当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)点在AB的延长线上时,根据M、N分别为AC、BC的中点,即可求出MN的长度.本题主要是线段中点的运用,分情况讨论是解题的难点,难度较大.。
四川省成都市七年级(上)期末数学试卷(含解析)

四川省成都市七年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求.答案涂在答颜卡上)1.下列选项中,比﹣3小的数是()A.﹣1B.0C.D.﹣52.如图是由5个小立方块搭建而成的几何体,它的俯视图是()A.B.C.D.3.下列运算正确的是()A.yx﹣2xy=﹣xy B.4m﹣m=3C.a2b﹣ab2=0D.2a3﹣3a3=﹣a4.2018年10月23日,港珠澳大桥正式开通,它是中国乃至当今世界规模最大、标准最高、最具挑战性的跨海桥梁工程,被誉为桥梁界的“珠穆朗玛峰”,仅主体工程的主梁钢板用量就达42000万千克,相当于60座埃菲尔铁塔的重量.这里的数据42000万可用科学记数法表示为()A.42×107B.4.2×108C.4.2×109D.0.42×1095.成都某学校团委为了解本校七年级500各学生的平均每晚的睡眠时间,随机选择了该年级100名学生进行调查.关于下列说法:①本次调查方式属于抽样调查②每个学生是个体③100名学生是总体的一个样本④总体是该校七年级500名学生的平均每晚的睡眠时间共中正确的说法有()A.1个B.2个C.3个D.4个6.已知(k﹣1)x|k|+3=0是关于x的一元一次方程.则此方程的解是()A.﹣1B.C.D.±17.如图一副三角板按不同的方式摆放得到下面四个图形,满足∠1=∠2的图形个数有()A.1个B.2个C.3个D.4个8.一个长方体礼盒的展开图如图所示(重叠部分不计)则该长方体的表面积为()A.34B.36C.42D.469.我国很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A.4(x﹣1)=2x+8B.4(x+1)=2x﹣8C.D.10.在直线l上有四个点A,B,C,D,已知AB=10,AC=6,点D是BC的中点,则线段AD的长是()A.2B.8C.4或8D.2或8二、填空题(本大题共5个小题,每小题3分,共15分.答案写在答题卡上)11.已知代数式2x﹣y的值是﹣2,则代数式1﹣2x+y的值是.12.已知a,b两数在数轴上的位置如图所示,化简|1﹣a|+|a﹣b|﹣|b+2|=.13.定义运算“※“:a※b=ab+a﹣b,如果x※(﹣4)=58,则x=.14.在长方形ABCD中,BC=17cm,现将5个相同的小长方形(阴影部分)按照如图方式放置其中,则小长方形的宽AE的长为cm.15.用棋子按照一定规律摆放图形按照这种方式继续摆放下去,若摆放一个图形用去21枚棋子,则是摆放的第个图形;摆放前n(n为正整数)个图形共需用枚棋子.三.解答题(本大题共6个题,共55分.解答过程写在答题卡上)16.(5分)计算:×(﹣8)﹣|﹣7|17.(5分)已知8x2a y与﹣3x4y2+b是同类项,且A=a2+ab﹣2b2,B=3a2﹣ab﹣6b2,求2B﹣3(B ﹣A)的值.18.(6分)解方程3x﹣7(x﹣1)=﹣2(x+3)+3.19.(6分)解方程y﹣+1.20.(7分)已知直线AB和CD相交于O点,CO⊥OE,OF平分∠AOE,∠COF=34°,求∠BOD 的度数.21.(8分)章太炎先生有一句话:“夫国学者,国家所以成立之源泉也.“为了激发学生学习国学经典的热情,弘扬文明风尚,武侯区某学校以“书香飘溢校园•国学浸润心灵“为主题,开展国学经典系列比赛项目:A读经典,B写经典,C唱经典,D演经典,为了解学生对这四个项目的报名参赛情况(每名学生选报一个项目),学校随机抽取了部分学生进行“你选择参加哪一项经典比赛活动”的调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据图中的信息解答下列问题.(1)填空:在条形统计图中,m=,n=;(2)求在扇形统计图中,“C“项目所在扇形的圆心角的度数;(3)若该学校共有学生2400名,请根据抽样调查的结果,估计学校将有多少人参加“D“项目比赛活动?22.(8分)春节逛“大庙会“已成为成都老百姓的年俗,每年成都武侯祠博物馆举办的成都大庙会都会吸引大量的游客前往参观游玩.武侯祠大街某商家抓住商机采购了一批玩具熊猫,按成本价提高50%后标价,为了增加销量,又以9折优惠进行销售,每个售价为108元.(1)这批玩具熊猫每个的成本价是多少元?(2)这批玩具熊猫按此售价卖出三分之二以后,商家清仓换新,决定将剩下的玩具熊猫以每个72元的价格出售,若销售完这批玩具熊猫该商家共盈利4800元,求这批玩具熊猫的采购数量和销售利润率.23.(10分)已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a﹣1)2+|ab+3|=0,c=﹣2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC﹣k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求.答案涂在答颜卡上)1.下列选项中,比﹣3小的数是()A.﹣1B.0C.D.﹣5【分析】先比较数的大小,再得出选项即可.【解答】解:A、﹣1>﹣3,故本选项不符合题意;B、0>﹣3,故本选项不符合题意;C、>﹣3,故本选项不符合题意;D、﹣5<﹣3,故本选项符合题意;故选:D.【点评】本题考查了有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键.2.如图是由5个小立方块搭建而成的几何体,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:该几何体的俯视图是故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.下列运算正确的是()A.yx﹣2xy=﹣xy B.4m﹣m=3C.a2b﹣ab2=0D.2a3﹣3a3=﹣a【分析】根据合并同类项的法则即可求出答案.【解答】解:(B)原式=3m,故B错误;(C)原式=a2b﹣ab2,故C错误;(D)原式=﹣a3,故D错误;故选:A.【点评】本题考查合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.4.2018年10月23日,港珠澳大桥正式开通,它是中国乃至当今世界规模最大、标准最高、最具挑战性的跨海桥梁工程,被誉为桥梁界的“珠穆朗玛峰”,仅主体工程的主梁钢板用量就达42000万千克,相当于60座埃菲尔铁塔的重量.这里的数据42000万可用科学记数法表示为()A.42×107B.4.2×108C.4.2×109D.0.42×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:这里的数据42000万可用科学记数法表示为4.2×108,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.成都某学校团委为了解本校七年级500各学生的平均每晚的睡眠时间,随机选择了该年级100名学生进行调查.关于下列说法:①本次调查方式属于抽样调查②每个学生是个体③100名学生是总体的一个样本④总体是该校七年级500名学生的平均每晚的睡眠时间共中正确的说法有()A.1个B.2个C.3个D.4个【分析】样本的容量指一个样本所含个体的数目.即抽取学生的数量是样本的容量.【解答】解:①本次调查方式属于抽样调查,正确;②每个学生的睡眠时间是个体,故错误;③100名学生的平均每晚的睡眠时间是总体的一个样本,故错误;④总体是该校七年级500名学生的平均每晚的睡眠时间,正确,正确的有2个,故选:B.【点评】此题主要考查了总体,样本,样本的容量的概念,熟练掌握相关定义是解题关键.6.已知(k﹣1)x|k|+3=0是关于x的一元一次方程.则此方程的解是()A.﹣1B.C.D.±1【分析】根据一元一次方程的定义,得到|k|=1和k﹣1≠0,解之,代入原方程,解之即可得到答案.【解答】解:根据题意得:|k|=1,即k=1或k=﹣1,k﹣1≠0,k≠1,综上可知:k=﹣1,把k=﹣1代入原方程得:﹣2x+3=0,解得:x=,故选:C.【点评】本题考查了一元一次方程的定义和绝对值,正确掌握一元一次方程的定义和绝对值的定义是解题的关键.7.如图一副三角板按不同的方式摆放得到下面四个图形,满足∠1=∠2的图形个数有()A.1个B.2个C.3个D.4个【分析】分别计算后即可确定正确的选项.【解答】解:第1个图形中,∠1=∠2=135°,符合题意;第2个图形中∠1=45°,∠2的度数不确定,不符合题意;第3个图形中∠1=∠2,符合题意;第4个图形中∠1=120°,∠2=45°,不符合题意,故选:B.【点评】本题考查了余角和补角的定义,解题的关键是能够了解图形中一副三角板的特点,难度不大.8.一个长方体礼盒的展开图如图所示(重叠部分不计)则该长方体的表面积为()A.34B.36C.42D.46【分析】根据长方体的表面积公式计算即可.【解答】解:2×[(6﹣1)×1+(7﹣6+1)×1+(6﹣1)(7﹣6+1)]=2×[5+2+10]=34,答:该长方体的表面积为34,故选:A.【点评】此题考查的是由展开图折叠成几何体,要培养学生的空间想象能力.解决本题的关键是熟记长方体的平面展开图.9.我国很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A.4(x﹣1)=2x+8B.4(x+1)=2x﹣8C.D.【分析】设有x辆车,由人数不变,可得出关于x的一元一次方程,此题得解.【解答】解:设有x辆车,依题意,得:4(x﹣1)=2x+8.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.10.在直线l上有四个点A,B,C,D,已知AB=10,AC=6,点D是BC的中点,则线段AD的长是()A.2B.8C.4或8D.2或8【分析】分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC 的长,根据线段中点的性质,可得答案.【解答】解:当C在线段AB的反向延长向上时,由线段的和差,得BC=AB+AC=10+6=16,由线段中点的性质,得BD=BC=×16=8,AD=10﹣8=2;当C在线段AB上时,由线段的和差,得BC=AB﹣AC=10﹣6=4,由线段中点的性质,得BD=BC=×4=2,AD=AC+CD=8.故选:D.【点评】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键,以防遗漏.二、填空题(本大题共5个小题,每小题3分,共15分.答案写在答题卡上)11.已知代数式2x﹣y的值是﹣2,则代数式1﹣2x+y的值是3.【分析】直接利用已知将原式变形求出答案.【解答】解:∵代数式2x﹣y的值是﹣2,∴代数式1﹣2x+y=1﹣(2x﹣y)=1﹣(﹣2)=3.故答案为:3.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.12.已知a,b两数在数轴上的位置如图所示,化简|1﹣a|+|a﹣b|﹣|b+2|=2a+1.【分析】根据图形可发现b<﹣2,1<a<2,由此可判断1﹣a<0,a﹣b>0,b+2<0,去掉绝对值符号进行化简即可.【解答】解:根据图形可有b<﹣2,∴b+2<0;1<a<2,∴1﹣a<0;a>0>b,∴a﹣b>0;∴|1﹣a|+|a﹣b|﹣|b+2|=(a﹣1)+(a﹣b)+(b+2)=2a+1故答案为2a+1.【点评】本题是根据数轴上点的位置来化简含绝对值的式子,学会看图是重点,会判断每个代数式的正负是化简的关键.13.定义运算“※“:a※b=ab+a﹣b,如果x※(﹣4)=58,则x=﹣18.【分析】根据题中的新定义a※b=ab+a﹣b,把x※(﹣4)=58转化为﹣4x+x+4=58,然后解这个方程即可.【解答】解:根据新定义可知:﹣4x+x+4=58解得:x=﹣18【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.14.在长方形ABCD中,BC=17cm,现将5个相同的小长方形(阴影部分)按照如图方式放置其中,则小长方形的宽AE的长为3cm.【分析】设AE为xcm,则小长方形的长为3xcm,根据图示可以列出一元一次方程,解方程即可.【解答】解:设AE为xcm,则小长方形的长为3xcm,根据题意,得3x+2x+2=17,解得:x=3.故答案为:3.【点评】此题主要考查了由实际问题抽象出一元一次方程,要求学生会根据图示找出数量关系,然后利用数量关系列出方程组解决问题.15.用棋子按照一定规律摆放图形按照这种方式继续摆放下去,若摆放一个图形用去21枚棋子,则是摆放的第⑥个图形;摆放前n(n为正整数)个图形共需用枚棋子.【分析】设摆第n个图形需要a n个棋子(n为正整数),根据图中棋子枚数的变化可得出“a n=3(n+1)(n为正整数)”,代入a n=21可求出用21枚棋子摆的图形的序号,再将前n个图形所用棋子数相加即可得出结论.【解答】解:设摆第n个图形需要a n个棋子(n为正整数),观察图形,可知:a1=3×3﹣3=6,a2=3×4﹣3=9,a3=3×5﹣3=12,a4=3×6﹣3=15,∴a n=3×(n+2)﹣3=3(n+1)(n为正整数).当a n=21时,3(n+1)=21,解得:n=6,∴若摆放一个图形用去21枚棋子,则是摆放的第⑥个图形.∵6+9+12+…+3(n+1)==,∴摆放前n(n为正整数)个图形共需用枚棋子.故答案为:⑥;.【点评】本题考查了规律型:图形的变化以及列代数式,根据图中棋子枚数的变化找出变化规律“a n=3(n+1)(n为正整数)”是解题的关键.三.解答题(本大题共6个题,共55分.解答过程写在答题卡上)16.(5分)计算:×(﹣8)﹣|﹣7|【分析】原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:原式=﹣9+27﹣7=11.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(5分)已知8x2a y与﹣3x4y2+b是同类项,且A=a2+ab﹣2b2,B=3a2﹣ab﹣6b2,求2B﹣3(B ﹣A)的值.【分析】直接同类项的定义得出a,b的值,进而去括号合并同类项,再把a,b的值代入求出答案.【解答】解:∵8x2a y与﹣3x4y2+b是同类项,∴,解得:,∵A=a2+ab﹣2b2,B=3a2﹣ab﹣6b2,∴2B﹣3(B﹣A)=3A﹣B=3(a2+ab﹣2b2)﹣(3a2﹣ab﹣6b2)=4ab,当a=2,b=﹣1时,原式=4×2×(﹣1)=﹣8.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.18.(6分)解方程3x﹣7(x﹣1)=﹣2(x+3)+3.【分析】去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:3x﹣7x+7=﹣2x﹣6+33x﹣7x+2x=﹣6+3﹣7﹣2x=﹣10x=5【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.19.(6分)解方程y﹣+1.【分析】依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:10y﹣5(1﹣y)=2(2y﹣3)+1010y﹣5+5y=4y﹣6+1010y+5y﹣4y=﹣6+10+511y=9y=.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.20.(7分)已知直线AB和CD相交于O点,CO⊥OE,OF平分∠AOE,∠COF=34°,求∠BOD 的度数.【分析】根据垂直的定义、角平分线线的定义以及图中的角与角间的和差关系得到∠AOF=∠EOF =∠COE﹣∠COF=90°﹣34°=56°,则对顶角∠BOD=∠AOC=22°.【解答】解:∵CO⊥OE,∴∠COE=90°,∵∠COF=34°∴∠EOF=90°﹣34°=56°又∵OF平分∠AOE∴∠AOF=∠EOF=56°∵∠COF=34°∴∠AOC=56°﹣34°=22°则∠BOD=∠AOC=22°.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.21.(8分)章太炎先生有一句话:“夫国学者,国家所以成立之源泉也.“为了激发学生学习国学经典的热情,弘扬文明风尚,武侯区某学校以“书香飘溢校园•国学浸润心灵“为主题,开展国学经典系列比赛项目:A读经典,B写经典,C唱经典,D演经典,为了解学生对这四个项目的报名参赛情况(每名学生选报一个项目),学校随机抽取了部分学生进行“你选择参加哪一项经典比赛活动”的调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据图中的信息解答下列问题.(1)填空:在条形统计图中,m=40,n=60;(2)求在扇形统计图中,“C“项目所在扇形的圆心角的度数;(3)若该学校共有学生2400名,请根据抽样调查的结果,估计学校将有多少人参加“D“项目比赛活动?【分析】(1)先由A项目人数及其所占百分比求得总人数,再用总人数乘以C项目的百分比可得n的值,继而根据各项目人数之和等于总人数可得m的值;(2)用360°乘以C项目对应百分比可得;(3)用总人数乘以样本中D项目人数占总人数的比例即可得.【解答】解:(1)∵被调查的总人数为70÷35%=200(人),∴n=200×30%=60,则m=200﹣(70+60+30)=40,故答案为:40,60;(2)扇形统计图中,“C“项目所在扇形的圆心角的度数为360°×30%=108°;(3)估计学校参加“D“项目比赛活动的人数大约为2400×=360人.【点评】本题考查了条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)春节逛“大庙会“已成为成都老百姓的年俗,每年成都武侯祠博物馆举办的成都大庙会都会吸引大量的游客前往参观游玩.武侯祠大街某商家抓住商机采购了一批玩具熊猫,按成本价提高50%后标价,为了增加销量,又以9折优惠进行销售,每个售价为108元.(1)这批玩具熊猫每个的成本价是多少元?(2)这批玩具熊猫按此售价卖出三分之二以后,商家清仓换新,决定将剩下的玩具熊猫以每个72元的价格出售,若销售完这批玩具熊猫该商家共盈利4800元,求这批玩具熊猫的采购数量和销售利润率.【分析】(1)可设玩具熊猫每个的成本价为x元,则根据价格的变化得到x(1+50%)×90%=108,解方程即可;(2)抓住等量关系:销售额﹣成本=利润,表示出总销售额即可表达;利润率=×100%即可求出本次销售的利润率.【解答】解:(1)设这批玩具熊猫每个的成本价是x元,则标价为x(1+50%),9折优惠后售价为x(1+50%)×90%,由题意得:x(1+50%)×90%=108,解得x=80答:这批玩具熊猫每个的成本价是80元.(2)设这批玩具熊猫的采购数量为y个,则根据题意可得(y×108+y×72)﹣80y=4800解得y=300利润率=×100%=20%答:这批玩具熊猫的采购数量为300个,这次销售利润率为20%.【点评】本题考查的是一元一次方程的应用,清楚进价(成本)、标价、售价的意义是基本要求,理清:销售额﹣成本=利润与利润率=×100%这两个等量关系是解题的关键.23.(10分)已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a﹣1)2+|ab+3|=0,c=﹣2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC﹣k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC﹣k•AB求得k的值即可;ii)当AC=AB时,满足条件.【解答】解:(1)∵a、b满足(a﹣1)2+|ab+3|=0,∴a﹣1=0且ab+3=0.解得a=1,b=﹣3.∴c=﹣2a+b=﹣5.故a,b,c的值分别为1,﹣3,﹣5.(2)i)假设存在常数k,使得3BC﹣k•AB不随运动时间t的改变而改变.则依题意得:A表示的数为1﹣2t,B点表示的数为﹣3+t,2BC=4+6t.当A,B两点相遇之前,也就是0时,AB=1﹣2t﹣(﹣3+t)=4﹣3t.3BC﹣k.AB=3(2+t)﹣(4﹣3t)=(3+3k)t+6﹣4k,∴当k=﹣1时,3BC﹣k.AB=10.当A,B两点相遇之后,也就是时,AB=﹣3+t﹣(1﹣2t)=﹣4+3t.3BC﹣k.AB=3(2+t)﹣k(﹣4+3t)=(3﹣3k)t+6+4k,当k=1时,3BC﹣k.AB=10.综上,当k的值为一1或1时,3BC﹣k•AB的值在一定时间范围内不随运动时间t的改变而改变.动点C表示的数为一5+3t.ii)点C为线段AB的三等分点,∴﹣5+3t=或﹣5+3t=解得t=或者综上,当运动=或者时,点C为线段AB的三等分点.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.。
【名校名卷】四川省成都市2019年数学七上期末调研试卷

四川省成都市2019年数学七上期末调研试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是( )A .的B .中C .国D .梦2.已知∠AOB =20°,∠BOC =30°,求∠AOC 的度数,下列结果正确的是( )A .50° B.10° C.50°或10° D.不确定3.如图,∠1>∠2,那么∠2的余角是( )A.12∠1B.12(∠1+∠2)C.12(∠1﹣∠2)D.不能确定4.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a-5,a 是方框①,②,③,④中的一个数,则数a 所在的方框是( )A.①B.②C.③D.④5.如果方程2x+1=3和203a x --=的解相同,则a 的值为( ) A.7 B.5 C.3 D.06.某车间有22名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母20个或螺栓12个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.20x=12(22-x)B.12x=20(22-x)C.2×12x=20(22-x)D.20x=2×12(22-x)7.多项式2x 2+3x-2与下列一个多项式的和是一个一次二项式,则这个多项式可以是:A.-2x 2-3x+2B.-x 2-3x+1C.-x 2-2x+2D.-2x 2-2x+1 8.请通过计算推测32018的个位数是( ) A .1B .3C .7D .9 9.若-2a m b 4与5a n+2b2m+n 可以合并成一项,则m n 的值是( ) A.0B.1-C.1D.2 10.12018的相反数为( ) A.2018 B.-2018 C.12018 D.12018- 11.下列计算正确的是( )A .23=6B .﹣4﹣16=﹣20C .﹣8﹣8=0D .﹣5﹣2=﹣312.用“<”连接三个数:|-3.5|,-32,0.75,正确的是( ) A.|-3.5|<-32<0.75 B.-32<|-3.5|<0.75 C.-32<0.75<|-3.5| D.0.75<|-3.5|<-32 二、填空题13.如图,在∠AOB 内部作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD ,OE .若∠AOB =120°,则∠DOE 的度数=_____.14.如图,直线AB 交CD 于点O ,OE 平分∠BOC ,OF 平分∠BOD ,∠AOC=3∠COE ,则∠AOF 等于___________.15.某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.当降至2.6元/千克出售时,每天可赢利_____元.16.已知关于x 的一元一次方程2019x +5=2019x+m 的解为x =2018,那么关于y 的一元一次方程52019y -﹣5=2019(5﹣y )﹣m 的解为_____.17.如图1是一个的圆(∠AOB=90°),芳芳第一次在图1中画了一条线,将图1等分成2份,第二次又加了两条线,将图1等分成4份,第三次由加了四条线,将图1等分成8份,第四次又加了八条线,将图1等分成16份,如图2所示,则第n(n>1)次可将图1等分成_____份,当n=5时,图1中的每份的角度是_____(用度,分,秒表示)18.将1按右侧方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,7)表示的两数之积是 .19.2-3=__________。
最新温江中学数学七年级上册期末试卷

最新温江中学数学七上册期末试卷第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1、3的相反数是( )A.-3B.3C.0D.62.﹣的倒数是( ) A . B .﹣2 C .2 D . ﹣3.数a 、b 在数轴上的位置如图所示,则下列判断中,正确的是 ---------------------------------------------------------------------------------------------------------- 【 】A .a > 1B .b > 1C .a <-1D .b < 04.据舟山市旅游局统计,2012年舟山市接待境内外游客约2771万人次.数据2771万用科学记数法表示为( )A .2771×107B .2.771×107C .2.771×104D .2.771×1055. 已知代数式x +2y 的值是3,则代数式2x +4y +1的值是…………………………( ) A .1 B .4 C .7 D .不能确定6.把图1绕虚线旋转一周形成一个几何体,与它相似的物体是 ( ).A .课桌B .灯泡C .篮球D .水桶7.如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有 …………………………( )A .1个B .2个C .3个D .4个祝 你考试 BA(第7题图)8.如图,是一个正方体的平面展开图,原正方体中“祝”的对面是………………()A.考B.试C.顺D.利9.下列表示方法正确的是( )A.①②B.②④C.③④D.①④10、下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. 某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃。
成都市温江区2018-2019学年七年级上期末考试数学试题word版

成都市温江区2018-2019学年七年级(上)期末考试数学试题一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项,其中只一项符合题目要求,答案涂在答题卡上)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作80-元表示()+元,则50 A.收人50元B.收入30元C.支出50元D.支出30元2.(3分)下列几何体中,从正面看、左面看和上面看到的图形都不是长方形的是()A.B.C.D.3.(3分)温江是成都市中心城区,生态宜居,常住人口超过850000人,连续7年位居中国综合大力百强区,素有“金温江”的美誉.850000用科学记数法表示为() A.485108.510⨯C.5⨯B.5⨯D.85010000.8510⨯4.(3分)下列调查问题中,适合采用普查的事件是()A.调查全国中学生心理健康状况B.调查某品牌电视机的使用寿命C.调查中央电视台《焦点访谈》的收视率D.调查你所在班级同学的身高情况5.(3分)如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A .0个B .1个C .2个D .3个6.(3分)下列说法正确的是( )A .最大的负整数是1-B .最小的正数是0C .绝对值等于3的数是3D .任何有理数都有倒数7.(3分)如果单项式322m x y +-与435n x y 是同类项,则n m -的值是( ) A .1 B .2 C .1- D .2-8.(3分)下列说法:(1)线段AB 是点A 与点B 之间的距离;(2)射线AB 与射线BA 表示同一条射线;(3)角平分线是一条射线;(4)过10边形的一个顶点共有5条对角线.其中正确的个数是( )A .4B .3C .2D .19.(3分)一件商品按成本价提高20%后标价,又以9折销售,售价为270元,此时这件商品的利润率为( )A .20%B .15%C .8%D .5%10.(3分)观察以下数组:(1),(3、5),(7、9、11),(13、15、17、19),2019⋯在这列数组第n 组,则n 的值为( )A .46B .45C .44D .43二、填空题(本大题共5个小题,每小题3分,共15分.答案写在答题卡上)11.(3分)单项式的324a b -次数是 .12.(3分)对有理数a 、b ,规定运算如下:a ※b a ab =+,则3-※4的值为 .13.(3分)小华要绘制一个统计图反映元月份31天日平均气温变化情况,这时适宜选择 统计图.14.(3分)已知1x =-是关于x 的方程215()3m x x --=的解,则m = .15.(3分)如图是中国古代“洛书“的一部分,则右下角代表的数是 .三、解等下列各题(共20分.解答过程写在答题卡上)16.(10分)(1)计算:20193(1)2(2)4-⨯--÷(2)计算:23213|5|(3)()24348-------⨯17.(10分)(1)解方程:42832x x -+=-(2)求代数式2223(20.5) 3.532x y x x y x y x --++--的值,其中25x =,37y =-.四、解答下列各题(共20分.解答过程写在答题卡上)18.(5分)如图所示,AOB ∠与COD ∠都是直角,OE 为BOD ∠的平分线,23BOE ∠=︒. ①求AOC ∠的度数;②如果BOEα∠.∠=,请直接用α的代数式(最简形式)表示AOC19.(5分)如图是一个正方体的平面展开图,标注了A字母的是重正方体的正面,如果正方体的左面与右面标注的式子相等.①求x的值.②如果这个正方体前后左右四个面的数字和为12-,求正面字母A所表示的数.20.(5分)如图,在一块长为a,宽为2b的长方形铁皮中,以2b为直径分别剪掉两个半圆.①求剩下铁皮的面积(用含a,b的式子表示);②如果a 、b 满足关系式|6||2|0a b -+-=时,求剩下铁皮的面积是多少?(π取3.14)21.(5分)张明在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据解答下列问题: ①写出墨迹遮盖住的所有整数;②如果墨迹遮盖住的整数中最大的是a ,最小的是b ,且10a m =,232nb b =-+.试求2222(3)[5()2]mn m m mn m mn -----+的值.五、解下列各题(20题7分,21题8分,共15分.解等过程写在答题卡上)22.(7分)学生的学业负担过重会严重影响学生对待学习的态度.为此某市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感六趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近100000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级).23.(8分)树人中学组织七年级两个班的学生从学校步行到郊外社会实践.七(1)班同学组成前队,步行速度为4/km h.前队出发30km h,七(2)班的同学组成后队,速度为6/分钟后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12/km h.(1)如果两队同时到达目的地,求学校与目的地的距离;(2)当后队的联络员第一次与后队相遇时收到了来自后队传给前队的队旗,联络员刚好把队旗传给前队时距目的地还有多远?。
成都市数学七年级上学期期末数学试题

成都市数学七年级上学期期末数学试题一、选择题1A .1B .2C .3D .42.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×107 3.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.4.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )A .10-B .10C .5-D .5 5.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .7 6.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( )A .∠AOC=∠BOCB .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB 7.点()5,3M 在第( )象限.A .第一象限B .第二象限C .第三象限D .第四象限8.下列调查中,最适合采用全面调查(普查)的是( )A .对广州市某校七(1)班同学的视力情况的调查B .对广州市市民知晓“礼让行人”交通新规情况的调查C .对广州市中学生观看电影《厉害了,我的国》情况的调查D .对广州市中学生每周课外阅读时间情况的调查9.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( ) A .14,4 B .11,1 C .9,-1 D .6,-410.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -=D .21x =,变形为2x =11.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒ B .75︒ C .115︒ D .95︒12.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元二、填空题13.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.14.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.15.已知单项式245225n m x y x y ++与是同类项,则m n =______.16.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 17.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为_________.18.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.19.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.20.若2a +1与212a +互为相反数,则a =_____. 21.-2的相反数是__. 22.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.23.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm时水位变化记作_____.24.若2a﹣b=4,则整式4a﹣2b+3的值是______.三、压轴题25.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.26.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.27.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
2019-2020学年四川省成都市温江区七年级(上)期末数学试卷解析版

2019-2020学年四川省成都市温江区七年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项,其中只一项符合题目要求,答案涂在答题卡上)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收人50元B.收入30元C.支出50元D.支出30元2.(3分)下列几何体中,从正面看、左面看和上面看到的图形都不是长方形的是()A.B.C.D.3.(3分)温江是成都市中心城区,生态宜居,常住人口超过850000人,连续7年位居中国综合大力百强区,素有“金温江”的美誉.850000用科学记数法表示为()A.85×104B.8.5×105C.0.85×105D.850×1000 4.(3分)下列调查问题中,适合采用普查的事件是()A.调查全国中学生心理健康状况B.调查某品牌电视机的使用寿命C.调查中央电视台《焦点访谈》的收视率D.调查你所在班级同学的身高情况5.(3分)如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个6.(3分)下列说法正确的是()A.最大的负整数是﹣1B.最小的正数是0C.绝对值等于3的数是3D.任何有理数都有倒数7.(3分)如果单项式﹣2x3y m+2与是同类项,则n﹣m的值是()A.1B.2C.﹣1D.﹣28.(3分)下列说法:(1)线段AB是点A与点B之间的距离;(2)射线AB与射线BA表示同一条射线;(3)角平分线是一条射线;(4)过10边形的一个顶点共有5条对角线.其中正确的个数是()A.4B.3C.2D.19.(3分)一件商品按成本价提高20%后标价,又以9折销售,售价为270元,此时这件商品的利润率为()A.20%B.15%C.8%D.5%10.(3分)观察以下数组:(1),(3、5),(7、9、11),(13、15、17、19),…2019在这列数组第n组,则n的值为()A.46B.45C.44D.43二、填空题(本大题共5个小题,每小题3分,共15分.答案写在答题卡上)11.(3分)单项式的﹣4a3b2次数是.12.(3分)对有理数a、b,规定运算如下:a※b=a+ab,则﹣3※4的值为.13.(3分)小华要绘制一个统计图反映元月份31天日平均气温变化情况,这时适宜选择统计图.14.(3分)已知x=﹣1是关于x的方程2﹣15(m﹣x)=3x的解,则m=.15.(3分)如图是中国古代“洛书“的一部分,则右下角代表的数是.三、解等下列各题(共20分.解答过程写在答题卡上)16.(10分)(1)计算:(﹣1)2019×2﹣(﹣2)3÷4(2)计算:17.(10分)(1)解方程:(2)求代数式﹣3x2y﹣(2x+0.5x2y)+3.5x2y﹣3x﹣2的值,其中,y=﹣37.四、解答下列各题(共20分.解答过程写在答题卡上)18.(5分)如图所示,∠AOB与∠COD都是直角,OE为∠BOD的平分线,∠BOE=23°.①求∠AOC的度数;②如果∠BOE=α,请直接用α的代数式(最简形式)表示∠AOC.19.(5分)如图是一个正方体的平面展开图,标注了A字母的是重正方体的正面,如果正方体的左面与右面标注的式子相等.①求x的值.②如果这个正方体前后左右四个面的数字和为﹣12,求正面字母A所表示的数.20.(5分)如图,在一块长为a,宽为2b的长方形铁皮中,以2b为直径分别剪掉两个半圆.①求剩下铁皮的面积(用含a,b的式子表示);②如果a、b满足关系式|a﹣6|+|b﹣2|=0时,求剩下铁皮的面积是多少?(π取3.14)21.(5分)张明在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据解答下列问题:①写出墨迹遮盖住的所有整数;②如果墨迹遮盖住的整数中最大的是a,最小的是b,且,n=b2﹣3b+2.试求﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]的值.五、解下列各题(20题7分,21题8分,共15分.解等过程写在答题卡上)22.(7分)学生的学业负担过重会严重影响学生对待学习的态度.为此某市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B级:对学习较感六趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近100000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级).23.(8分)树人中学组织七年级两个班的学生从学校步行到郊外社会实践.七(1)班同学组成前队,步行速度为4km/h,七(2)班的同学组成后队,速度为6km/h.前队出发30分钟后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.(1)如果两队同时到达目的地,求学校与目的地的距离;(2)当后队的联络员第一次与后队相遇时收到了来自后队传给前队的队旗,联络员刚好把队旗传给前队时距目的地还有多远?2019-2020学年四川省成都市温江区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项,其中只一项符合题目要求,答案涂在答题卡上)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收人50元B.收入30元C.支出50元D.支出30元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,若收入80元记作+80元,则﹣50元表示支出50元.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分)下列几何体中,从正面看、左面看和上面看到的图形都不是长方形的是()A.B.C.D.【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A.圆柱的主视图是长方形,不符合题意;B.长方体的三视图均为长方形,不符合题意;C.圆台的三视图中没有长方形,符合题意;D.四棱锥的俯视图是长方形,不符合题意;故选:C.【点评】本题主要考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.3.(3分)温江是成都市中心城区,生态宜居,常住人口超过850000人,连续7年位居中国综合大力百强区,素有“金温江”的美誉.850000用科学记数法表示为()A.85×104B.8.5×105C.0.85×105D.850×1000【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:850000用科学记数法表示为8.5×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列调查问题中,适合采用普查的事件是()A.调查全国中学生心理健康状况B.调查某品牌电视机的使用寿命C.调查中央电视台《焦点访谈》的收视率D.调查你所在班级同学的身高情况【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A.调查全国中学生心理健康状况适合抽样调查;B.调查某品牌电视机的使用寿命适合抽样调查;C.调查中央电视台《焦点访谈》的收视率适合抽样调查;D.调查你所在班级同学的身高情况适合全面调查;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(3分)如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个【分析】根据等式的性质,可得答案.【解答】解:由第①个天平,得一个球等于两个长方体,故③不符合题意;两个球等于四个长方体,故②不符合题意,两个球等于四个长方体,故④符合题意;故选:B.【点评】本题考查了等式的性质,利用等式的性质是解题关键.6.(3分)下列说法正确的是()A.最大的负整数是﹣1B.最小的正数是0C.绝对值等于3的数是3D.任何有理数都有倒数【分析】根据有理数的分类和绝对值的非负性进行分析即可.【解答】解:既是整数又是负数中最大的数是﹣1,故A正确.0既不是整数也不是负数,故B错误.绝对值等于3的数是3和﹣3,故C错误.0是有理数,但是0没有倒数,故D错误.故选:A.【点评】本题考查了有理数的定义及相关的基本性质7.(3分)如果单项式﹣2x3y m+2与是同类项,则n﹣m的值是()A.1B.2C.﹣1D.﹣2【分析】根据同类项的定义即可求出答案.【解答】解:由题意可知:3=n,m+2=4,∴m=2,n=3,∴n﹣m=3﹣2=1,故选:A.【点评】本题考查同类项,解题的关键是熟练运用同类项的定义,本题属于基础题型.8.(3分)下列说法:(1)线段AB是点A与点B之间的距离;(2)射线AB与射线BA表示同一条射线;(3)角平分线是一条射线;(4)过10边形的一个顶点共有5条对角线.其中正确的个数是()A.4B.3C.2D.1【分析】根据射线的概念,两点间的距离和点到直线的距离以及多边形的对角线的定义作答.【解答】解:(1)线段AB的长度是点A与点B之间的距离,原来的说法是错误的;(2)射线AB与射线BA表示不同的射线,原来的说法是错误的;(3)角平分线是一条射线是正确的;(4)过10边形的一个顶点共有10﹣3=7条对角线,原来的说法是错误的.故选:D.【点评】考查了多边形的对角线,两点间的距离,角平分线的定义,对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.9.(3分)一件商品按成本价提高20%后标价,又以9折销售,售价为270元,此时这件商品的利润率为()A.20%B.15%C.8%D.5%【分析】成本价×(1+20%)×90%=270元,根据此等量关系列方程即可.【解答】解:设这种商品的成本价为x元,依题意得:x(1+20%)×90%=270,解以上方程得:x=250.答:这种商品的成本价是250元.此时这件商品的利润率为,故选:C.【点评】此题考查一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.10.(3分)观察以下数组:(1),(3、5),(7、9、11),(13、15、17、19),…2019在这列数组第n组,则n的值为()A.46B.45C.44D.43【分析】观察不难发现,各组的数据的个数是连续的奇数,先求出奇数2019的序号,再根据求和公式进行判断.【解答】解:∵2×1010﹣1=2019,∴2019是从1开始的第1010个奇数,1+2+3+…+n=,∵n=44时=990n=45时=1035,∴第1010个奇数在第45组.故选:B.【点评】本题是对数字变化规律的考查,观察出各组的数据的个数是连续的自然数是解题的关键.二、填空题(本大题共5个小题,每小题3分,共15分.答案写在答题卡上)11.(3分)单项式的﹣4a3b2次数是5.【分析】根据单项会的次数概念即可求出答案.【解答】解:该单项式的次数为:3+2=5,故答案为:5【点评】本题考查单项式,解题的关键是熟练运用单项式的概念,本题属于基础题型.12.(3分)对有理数a、b,规定运算如下:a※b=a+ab,则﹣3※4的值为﹣15.【分析】根据题意得出有理数混合运算的式子,根据有理数混合运算的法则进行计算即可.【解答】解:∵a※b=a+ab,∴﹣3※4=(﹣3)+(﹣3)×4=﹣3﹣12=﹣15.故答案为:﹣15.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的顺序是解答此题的关键.13.(3分)小华要绘制一个统计图反映元月份31天日平均气温变化情况,这时适宜选择折线统计图.【分析】根据三种统计图的特点选择即可.【解答】解:小华要绘制一个统计图反映元月份31天日平均气温变化情况,这时适宜选择折线统计图.故答案为:折线.【点评】本题主要考查统计图的选择,用扇形的面积表示部分在总体中所占的百分比,易于显示每组数据相对于总数的大小.条形统计图能清楚地表示出每个项目中的具体数目.易于比较数据之间的差别.折线统计图能清楚地反映事物的变化情况.显示数据变化趋势.14.(3分)已知x=﹣1是关于x的方程2﹣15(m﹣x)=3x的解,则m=﹣.【分析】把x=﹣1代入方程2﹣15(m﹣x)=3x得到关于m的一元一次方程,依次去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:把x=﹣1代入方程2﹣15(m﹣x)=3x得:2﹣15(m+1)=﹣3,去括号得:2﹣15m﹣15=﹣3,移项得:﹣15m=﹣3+15﹣2,合并同类项得:﹣15m=10,系数化为1得:m=﹣,故答案为:﹣.【点评】本题考查了一元一次方程的解,正确掌握一元一次方程的解法是解题的关键.15.(3分)如图是中国古代“洛书“的一部分,则右下角代表的数是6.【分析】洛书,即九宫图、幻方,横竖斜一条线上三个数相加,和都等于15.【解答】解:15﹣4﹣5=6,故填:6,【点评】本题考查了数学常识,了解洛书中数字的排列规律是解题的关键.三、解等下列各题(共20分.解答过程写在答题卡上)16.(10分)(1)计算:(﹣1)2019×2﹣(﹣2)3÷4(2)计算:【分析】(1)先算乘方,再算乘除法,最后算减法;(2)先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算,注意根据乘法分配律简便计算.【解答】解:(1)(﹣1)2019×2﹣(﹣2)3÷4=﹣1×2﹣(﹣8)÷4=﹣2+2=0;(2)=﹣25+27﹣16+6+9=1.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.17.(10分)(1)解方程:(2)求代数式﹣3x2y﹣(2x+0.5x2y)+3.5x2y﹣3x﹣2的值,其中,y=﹣37.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解;(2)先化简代数式,再代入计算即可求解.【解答】解:(1),2(x﹣4)=48﹣3(x+2),2x﹣8=48﹣3x﹣6,2x+3x=48﹣6+8,5x=50,x=10;(2)∵,y=﹣37,∴﹣3x2y﹣(2x+0.5x2y)+3.5x2y﹣3x﹣2=﹣3x2y﹣2x﹣0.5x2y+3.5x2y﹣3x﹣2=﹣5x﹣2=﹣5×﹣2=﹣2﹣2=﹣4.【点评】考查了解一元一次方程,整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.四、解答下列各题(共20分.解答过程写在答题卡上)18.(5分)如图所示,∠AOB与∠COD都是直角,OE为∠BOD的平分线,∠BOE=23°.①求∠AOC的度数;②如果∠BOE=α,请直接用α的代数式(最简形式)表示∠AOC.【分析】易知∠AOC=360°﹣∠AOB﹣∠COD﹣∠BOD,则只需求∠BOD即可.【解答】解:①∵OE为∠BOD的平分线,∠BOE=23°∴∠BOD=2∠BOE=2×23°=46°∴∠AOC=360°﹣∠AOB﹣∠COD﹣∠BOD=360°﹣90°﹣90°﹣46°=134°故∠AOC=134°②∵∠BOE=α,OE为∠BOD的平分线∴∠AOC=360°﹣∠AOB﹣∠COD﹣∠BOD=360°﹣90°﹣90°﹣2α=180°﹣2α故用α的代数式(最简形式)表示∠AOC为:180°﹣2α【点评】本题考查的是角平分线的定义:角平分线分得的两个角相等,都等于该角的一半.19.(5分)如图是一个正方体的平面展开图,标注了A字母的是重正方体的正面,如果正方体的左面与右面标注的式子相等.①求x的值.②如果这个正方体前后左右四个面的数字和为﹣12,求正面字母A所表示的数.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定前后左右四个面上的4个数字,然后相加即可和为﹣12即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1.(2)正方体前后左右四个面的文字分别是:A、﹣2、x、3x﹣2,依题意得A﹣2+x+3x﹣2=﹣12A﹣2+1+3﹣2=﹣12A=﹣12.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.20.(5分)如图,在一块长为a,宽为2b的长方形铁皮中,以2b为直径分别剪掉两个半圆.①求剩下铁皮的面积(用含a,b的式子表示);②如果a、b满足关系式|a﹣6|+|b﹣2|=0时,求剩下铁皮的面积是多少?(π取3.14)【分析】①利用矩形面积减去两个半圆面积进而得出答案;②利用非负数的性质得出a,b的值,进而代入①中所求得出答案.【解答】解:①由题意可得,剩下铁皮的面积为:2ab﹣πb2;②∵|a﹣6|+|b﹣2|=0,∴a﹣6=0,b﹣2=0,解得:a=6,b=2,则2ab﹣πb2≈2×6×2﹣3.14×4=11.44.【点评】此题主要考查了列代数式,正确表示出阴影部分面积是解题关键.21.(5分)张明在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据解答下列问题:①写出墨迹遮盖住的所有整数;②如果墨迹遮盖住的整数中最大的是a,最小的是b,且,n=b2﹣3b+2.试求﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]的值.【分析】①根据数轴可得墨迹遮盖住的所有整数;②根据①的结果求出a,b,再代入,n=b2﹣3b+2求出m,n,再化简后代入计算即可求解.【解答】解:①墨迹遮盖住的所有整数为:﹣1,0,1;②a=1,b=﹣1,则=0.1,n=b2﹣3b+2=1+3+2=6,则﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]=﹣2mn+6m2﹣[m2﹣5mn+5m2+2mn]=﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn=mn=0.1×6=0.6.【点评】考查了数轴,整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.五、解下列各题(20题7分,21题8分,共15分.解等过程写在答题卡上)22.(7分)学生的学业负担过重会严重影响学生对待学习的态度.为此某市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B级:对学习较感六趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近100000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级).【分析】(1)由A等级人数及其所占百分比可得总人数;(2)根据各层级人数之和等于总人数求得C级的人数即可得;(3)用360°乘以C级人数所占比例即可得;(4)用总人数乘以样本中A级和B级人数和所占比例.【解答】解:(1)此次调查的总人数为50÷25%=200(人),故答案为:200;(2)C级人数:200﹣120﹣50=30(人),如图所示:(3)图②中C级所占的圆心角的度数为360°×=54°.(4)估计该市近100000名八年级学生中学习态度达标的学生约有100000×=85000(人).【点评】本题主要考查的是条形统计图与扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图可以显示出每一部分在总体中所占的百分比.23.(8分)树人中学组织七年级两个班的学生从学校步行到郊外社会实践.七(1)班同学组成前队,步行速度为4km/h,七(2)班的同学组成后队,速度为6km/h.前队出发30分钟后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.(1)如果两队同时到达目的地,求学校与目的地的距离;(2)当后队的联络员第一次与后队相遇时收到了来自后队传给前队的队旗,联络员刚好把队旗传给前队时距目的地还有多远?【分析】(1)根据两队到目的地的行使时间差为30分钟,列出方程便可解答;(2)分三次列方程求出:联络员第一次与前队相遇的用时;联络员第一次与前队相遇到与后队相遇的用时;联络员第一次与后队相遇时收到了来自后队传给前队的队旗,联络员刚好把队旗传给前队的用时.再进一步便可求得结果.【解答】解:(1)设学校与目的地的距离为xkm,根据题意得,,解得,x=6(km),答:学校与目的地的距离为6km;(2)设联络员第一次与前队相遇用了y小时,根据题意得,(12﹣4)y=4×,解得,y=(h),设联络员第一次与前队相遇到与后队相遇用了z小时,根据题意得,(12+6)z=4×﹣(6﹣4)×,解得,z=(h),设后队的联络员第一次与后队相遇时收到了来自后队传给前队的队旗,联络员刚好把队旗传给前队时用了a小时,根据题意得,(12﹣4)a=4×﹣(6﹣4)×(),解得,a=(h),此时前队离目的地的距离为:6﹣4×()=2(km).答:联络员刚好把队旗传给前队时距目的地还有2km.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,找出相等分析,列出相应的方程.。
成都市七年级(上)期末数学试卷含答案

七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.比-1小2的数是()A. 3B. 1C. -2D. -32.下列说法中错误的是()A. 0既不是正数,也不是负数B. 0是最小的整数C. 0的相反数是0D. 0的绝对值是03.下面的几何体中,主视图为圆的是()A. B. C. D.4.空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()A. 折线图B. 条形图C. 直方图D. 扇形图5.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×1056.下列调查中,适合采用全面调查(普查)方式的是()A. 了解成都电视台“教育在线”栏目的收视率B. 了解某班同学数学成绩C. 了解全国快递包裹产生包装垃圾的数量D. 了解成都市七年级学生身高情况7.如图,AM为∠BAC的平分线,下列等式错误的是()A. ∠BAC=∠BAMB. ∠BAM=∠CAMC. ∠BAM=2∠CAMD. 2∠CAM=∠BAC8.下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM等于线段BM,则点M是线段AB的中点;⑤连接两点的线段叫做这两点之间的距离.其中正确的个数为()A. 1个B. 2个C. 3个D. 4个9.元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A. 80%x-20B. 80%(x-20)C. 20%x-20D. 20%(x-20)10.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A. 亏损20元B. 盈利30元C. 亏损50元D. 不盈不亏二、填空题(本大题共10小题,共45.0分)11.点A在数轴上的位置如图所示,则点A表示的数的相反数是______.12.如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为______.13.关于x的方程2x+5a=3的解与方程2x+2=0的解相同,则a的值是______.14.已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=______.15.如图,已知A,B两点在数轴上,点A在原点O的左边,表示的数为﹣10,点B在原点的右边,且BO=3AO.点M以每秒3个单位长度的速度从点A出发向右运动.点N以每秒2个单位长度的速度从点O出发向右运动(点M,点N同时出发).(1)数轴上点B对应的数是____,点B到点A的距离是____;(2)经过几秒,原点O是线段MN的中点?(3)经过几秒,点M,N分别到点B的距离相等?16.已知a2+2a=1,则3a2+6a+2的值为______.17.如图,在∠AOB内部作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.若∠AOB=120°,则∠DOE的度数=______.18.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_______.19.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,l0x=7.7777…,所以l0x=7+x,解方程,得x=,于是得0.=.将0.1写成分数的形式是______.20.观察下列算式:31=3,32=9,33=27,34=81,…,则3+32+33+34+35+…+32019的末位数字是______.三、计算题(本大题共4小题,共36.0分)21.计算:(1)(-6)2×(-)(2)-23÷8-×(-2)222.解方程(1)-2x+9=3(x-2)(2)x-2=23.小波准备完成题目:化简:(x2+6x+8)-(6x+5x2+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)-(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几.24.若“△”表示一种新运算,规定a△b=a×b-(a+b)(1)计算:-3△5(2)计算:2△[(-4)△(-5)](3)(-2)△(1+x)=-x+6,求x的值.四、解答题(本大题共4小题,共38.0分)25.“天府之国,宜居成都”,某校数学兴趣小组就“最想去的成都市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图,请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.26.2018年9月7日,财政部和国税总局发布了《关于2018年第四季度个人所得税减除费用和税率适用问题的通知》,通知规定:我国自2018年10月1日起,个人所得税起征点从3500元提高到5000元.月收入不超过5000元的部分不收税;月收入超过5000元但不超过8000元的部分征收3%的个人所得税……,例如:某人月收入6000元,他应缴纳个人所得税为(6000-5000)×3%=30(元).按此通知精神完成下面问题:(1)某人月收入为5860元,他应缴纳个人所得税多少元?(2)当月收入超过5000元而又不超过8000元时,写出应缴纳个人所得税y(元)与月收入x(元)之间的关系式;(3)如果某人2018年1月缴纳个人所得税81元,那么此人本月收入是多少元?27.2018年某市政府投入780万元资金进行社区道路硬化和道路拓宽改造.社区道路硬化和道路拓宽的里程数共50千米,其中道路硬化里程数是道路拓宽里程数的4倍,每千米的道路硬化和道路拓宽的经费之比为1:2.(1)道路硬化的里程数是多少千米?(2)每千米道路硬化和道路拓宽各需资金多少万元?(3)为加快建设,政府决定加大投入并提高道路改造质量.经测算:如果2019年政府投入资金在2018年的基础上增加10a%,每千米道路硬化、道路拓宽的费用也在2018年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在2018年的基础上分别增加50%,80%,按此测算,2019年政府将投入资金多少万元?28.观察下列等式:第1个等式:a1==×(-);第2个等式:a2==×(-);第3个等式:a3==×(-);第4个等式:a4==×(-);…请解答下列问题:(1)按以上规律列出第5个等式:a5=______=______;第n(n为正整数)个等式:a n=______=______;(2)求a1+a2+a3+a4+…+a2019的值;(3)数学符号f(x)=f(1)+f(2)+f(3)+…+f(n),试求的值.答案和解析1.【答案】D【解析】【分析】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.关键是根据题意可得算式,再计算即可.【解答】解:-1-2=-3,故选:D.2.【答案】B【解析】解:A、0既不是正数,也不是负数正确,故本选项错误;B、∵整数包括正整数、0和负整数,∴没有最小的整数,∴0最小的整数错误,故本选项正确;C、0的相反数是0正确,故本选项错误;D、0的绝对值是0正确,故本选项错误.故选:B.根据正数、负数、相反数、绝对值的定义,对选项依次判断即可得出答案.本题主要考查了正数、负数、相反数、绝对值的定义,比较简单.3.【答案】C【解析】解:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选:C.根据常见几何体的主视图,可得答案.本题考查了常见几何体的三视图,熟记常见几何体的三视图是解题关键.4.【答案】D【解析】解:由分析可知,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:D.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.本题考查扇形统计图、折线统计图、条形统计图,理解各自的特点是解题的关键.5.【答案】A【解析】解:将数据2180000用科学记数法表示为2.18×106.故选:A.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.6.【答案】B【解析】解:了解成都电视台“教育在线”栏目的收视率,适合采用抽样调查,A不合题意;了解某班同学数学成绩,适合采用全面调查,B符合题意;了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不符合题意;了解成都市七年级学生身高情况,适合采用抽样调查,D不合题意;故选:B.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.【答案】C【解析】解:∵AM为∠BAC的平分线,∴∠BAC=∠BAM,∠BAM=∠CAM,∠BAM=∠CAM,2∠CAM=∠BAC.故选:C.根据角平分线定义即可求解.此题考查了角平分线定义,熟练掌握角平分线定义是解本题的关键.8.【答案】C【解析】解:①经过一点有无数条直线,这个说法正确;②两点之间线段最短,这个说法正确;③经过两点,有且只有一条直线,这个说法正确;④若线段AM等于线段BM,则点M不一定是线段AB的中点,因为A、M、B三点不一定在一条直线上,所以这个说法错误;所以正确的说法有三个.故选:C.分别利用直线的性质以及两点之间距离和线段的性质分别判断得出即可.本题考查了平行公理、直线的性质、两点间的距离以及垂线的性质,是基础知识要熟练掌握.9.【答案】A【解析】解:由题意可得,若某商品的原价为x元(x>100),则购买该商品实际付款的金额是:80%x-20(元),故选:A.根据题意可以用相应的代数式表示购买该商品实际付款的金额.本题考查列代数式,解答本题的关键明确题意,列出相应的代数式.10.【答案】A【解析】解:设盈利的商品的进价为x元,亏损的商品的进价为y元,根据题意得:150-x=25%x,150-y=-25%y,解得:x=120,y=200,∴150+150-120-200=-20(元).故选:A.设盈利的商品的进价为x元,亏损的商品的进价为y元,根据销售收入-进价=利润,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再由两件商品的销售收入-成本=利润,即可得出商店卖这两件商品总的亏损20元.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.11.【答案】-2【解析】【分析】此题主要考查了在数轴上表示数的方法,以及相反数的含义和求法,要熟练掌握.点A 在数轴上表示的数是2,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【解答】解:∵点A在数轴上表示的数是2,∴点A表示的数的相反数是-2.故答案为-2.12.【答案】150°42′【解析】解:∵∠BOC=29°18′,∴∠AOC的度数为:180°-29°18′=150°42′.故答案为:150°42′.直接利用度分秒计算方法得出答案.此题主要考查了角的计算,正确进行角的度分秒转化是解题关键.13.【答案】1【解析】解:解方程2x+2=0,得x=-1,由题意得,-2+5a=3,解得,a=1,故答案为:1.利用一元一次方程的解法解出方程2x+2=0,根据同解方程的定义解答.本题考查的是同解方程的定义,如果两个方程的解相同,那么这两个方程叫做同解方程.14.【答案】109【解析】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.要求a+b的值,首先应该认真仔细地观察题目给出的4个等式,找到它们的规律,即中,b=n+1,a=(n+1)2-1.解题关键是要读懂题目的意思,根据题目给出的条件,找出式子的规律.15.【答案】解:(1)30 40(2)设经过t秒,原点O是线段MN的中点.则10-3t=2t,解得t=2,综上所述,经过2秒,原点O是线段MN的中点.(3)设经过x秒,点M、点N分别到点B的距离相等①点M、点N在点B的两侧,则3x-40=30-2x,解得x=14;②点M、点N重合,则3x-10=2x,解得x=10.所以经过14秒或10秒,点M、点N分别到原点O的距离相等.【解析】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.(1)因为点A表示的数为-10,OB=3OA,所以OB=3OA=30,30-(-10)=40.故B对应的数是30,点B到点A的距离是40,故答案为:30,40;(2)利用距离原点O相等列方程即可;(3)分①点M、点N在点B两侧;②点M、点N重合两种情况讨论求解.16.【答案】5【解析】解:当a2+2a=1时,原式=3(a2+2a)+2=3+2=5,故答案为:5将a2+2a=1整体代入原式即可求出答案.本题考查代数式求值,解题的关键是将a2+2a=1作为一个整体代入原式,本题属于基础题型.17.【答案】60°【解析】解:∵OD,OE分别是∠AOC,∠BOC的角平分线∴∠COD=∠AOC,∠EOC=∠BOC,∴∠DOE=∠COD+∠EOC=∠AOC+∠BOC=(∠AOC+∠BOC)=∠AOB=×120°=60°.故答案为:60°.根据角的平分线的定义以及角的和差即可判断∠DOE的度数.本题考查了角的平分线的定义以及角的和差关系,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.18.【答案】15【解析】【分析】此题考查了解一元一次方程,根据程序正确列出方程是解本题的关键.根据题中的“数值转换机”程序列出方程即可求出所求.【解答】解:根据题意得:3x-2=127,解得:x=43,可得3x-2=43,解得:x=15,则输入的数是15,故答案为:1519.【答案】【解析】解:设0.1=x,则1000x=216.1,∴1000x-x=216,解得:x=.故答案为:设0.1=x,则1000x=216.1,二者做差后可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.【答案】9【解析】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2019÷4=504…3,∴3+32+33+34…+32019的末位数字相当于:3+7+9+1+…+3+9+7的末尾数为9,故答案为:9.根据数字规律得出3+32+33+34…+32019的末位数字相当于:3+7+9+1+…+3+9+7进而得出末尾数字.此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.21.【答案】解:(1)原式=36×(-)=18-12=6;(2)原式=-8÷8-×4=-1-1=-2.【解析】(1)原式先计算乘方运算,再利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)去括号得:-2x+9=3x-6,移项合并得:-5x=-15,解得:x=3;(2)去分母得:3x-12=9x-2,移项合并得:-6x=10,解得:x=-.【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)原式=3x2+6x+8-6x-5x2-2=-2x2+6;(2)设为a,原式=(a-5)x2+6当a=5时,此时原式的结果为常数.故为5.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.【答案】解:(1)-3△5=(-3)×5-(-3+5)=-15-2=-17;(2)2△[(-4)△(-5)]=2△[(-4)×(-5)-(-4-5)]=2△29=2×29-(2+29)=27;(3)根据题意可得-2(1+x)-(-2+1+x)=-x+6,解得:x=-.【解析】(1)根据新运算的计算公式列出算式-3△5=(-3)×5-(-3+5),计算可得;(2)先计算中括号内的(-4)△(-5),得其结果为29,再计算2△29可得;(3)根据新运算的计算公式列出方程-2(1+x)-(-2+1+x)=-x+6,解方程可得.本题主要考查有理数的混合运算、解一元一次方程,解题的关键是根据新定义的计算公式列出算式和一元一次方程.25.【答案】解:(1)总人数=8÷20%=40(人)(2)最想去D景点的人数=8(人)补全条形统计图如图所示:“最想去景点D”的扇形圆心角的度数═360°×=72°.(3)估计“最想去景点B”的学生人数=800×=280(人)【解析】(1)根据A组人数以及百分比计算即可.(2)求出D组人数,画出统计图即可,根据圆心角=360°×百分比计算即可.(3)利用样本估计总体的思想解决问题.本题考查条形统计图,扇形统计图,样本估计总体的思想等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.【答案】解:(1)(5860-5000)×3%=25.8(元).应缴纳个人所得税=25.8(元);(2)y=(x-5000)×3%=0.03x-150,即y=0.03x-150(5000≤x≤8000);(3)把y=81代入y=0.03x-150,得0.03x-150=81,解答x=7700,此人本月收入是7700元.【解析】(1)根据题意列式计算即可;(2)根据所得税的计算方法,超过5000元的部分乘以3%,即可写出函数解析式;(3)把y=81代入函数解析式即可求得x的值即可.本题考查了一次函数的应用,正确理解所得税的计算方法,写出函数解析式是关键.27.【答案】解:(1)设道路拓宽的里程数是x千米,则道路硬化的里程数是4x千米;根据题意得:x+4x=50,解得:x=10,则4x=40;答:道路硬化的里程数是40千米;(2)设每千米道路硬化和道路拓宽分别需资金y万元、2y万元;根据题意得:40y+10×2y=780,解得:y=13,则2y=26,答:每千米道路硬化和道路拓宽分别需资金13万元、26万元;(3)根据题意得:13(1+a%)×40(1+50%)+26(1+5a%)×10(1+80%)=780(1+10a%),解得:a=10,∴780(1+10a%)=1560(万元);答:2019年政府将投入资金1560万元.【解析】(1)设道路拓宽的里程数是x千米,则道路硬化的里程数是4x千米;根据题意列出方程,解方程即可;(2)设每千米道路硬化和道路拓宽分别需资金y万元、2y万元;根据题意列出方程,解方程即可;(3)根据题意列出方程,解方程即可.本题考查了一元一次方程的应用以及一元一次方程的解法,找准等量关系,正确列出一元一次方程是解题的关键.28.【答案】×(-)×(-)【解析】解:(1)按以上规律知第5个等式为a5==×(-),第n个等式a n==×(-),故答案为:,×(-),,×(-).(2)a1+a2+a3+a4+…+a2019=+++…+=×(1-)+×(-)+×(-)+…+×(-)=×(1-+-+-+…+-)=×(1-)=×=;(3)==+++…+=3×(+++…+)=3×[×(1-)+×(-)+×(-)+…+×(-)]=1-+-+-+-+-+-+-+-+…+-+-+-+-=1++---=.(1)根据已知的四个等式可得答案;(2)a1+a2+a3+a4+…+a2019=+++…+,再利用以上所得规律展开求解可得;(3))==+++…+=3×(+++…+),利用所得规律求解可得.本题主要考查数字的变化规律,解题的关键是得到a n==×(-),并灵活加以运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019 学年四川省成都市温江区七年级(上)期末数学试卷一、选择题(本大题共10 个小题,每小题 3 分,共30 分.每小题均有四个选项,其中只一项符合题目要求,答案涂在答题卡上)1.(3 分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80 元记作+80 元,则﹣50 元表示()A .收人50 元B .收入30 元C.支出50 元D.支出30 元2.(3 分)下列几何体中,从正面看、左面看和上面看到的图形都不是长方形的是()A .B.C.D.3.(3 分)温江是成都市中心城区,生态宜居,常住人口超过850000 人,连续7 年位居中国综合大力百强区,素有“金温江”的美誉.850000 用科学记数法表示为()4 5 5A .85×10B .8.5×10 C.0.85×10 D.850×10004.(3 分)下列调查问题中,适合采用普查的事件是()A .调查全国中学生心理健康状况B .调查某品牌电视机的使用寿命C.调查中央电视台《焦点访谈》的收视率D .调查你所在班级同学的身高情况5.(3 分)如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A .0 个B .1 个C.2 个D.3 个6.(3 分)下列说法正确的是()A .最大的负整数是﹣ 1 B.最小的正数是0C.绝对值等于 3 的数是3 D.任何有理数都有倒数3 m+27.(3 分)如果单项式﹣2x y 与是同类项,则n﹣m 的值是()A .1B .2 C.﹣1 D.﹣28.(3 分)下列说法:(1)线段AB 是点A 与点B 之间的距离;(2)射线AB 与射线BA 表示同一条射线;(3)角平分线是一条射线;(4)过10 边形的一个顶点共有 5 条对角线.其中正确的个数是()A .4B .3 C.2 D.19.(3 分)一件商品按成本价提高20%后标价,又以9 折销售,售价为270 元,此时这件商品的利润率为()A .20%B .15% C.8% D.5%10.(3 分)观察以下数组:(1),(3、5),(7、9、11),(13、15、17、19),2019 在这列数组第n 组,则n 的值为()A .46B .45 C.44 D.43二、填空题(本大题共 5 个小题,每小题 3 分,共15 分.答案写在答题卡上)3 211.(3 分)单项式的﹣4a b 次数是.12.(3 分)对有理数a、b,规定运算如下:a※b=a+ab,则﹣3※4 的值为.13.(3 分)小华要绘制一个统计图反映元月份31 天日平均气温变化情况,这时适宜选择统计图.14.(3 分)已知x=﹣1 是关于x 的方程2﹣15(m﹣x)=3x 的解,则m=.15.(3 分)如图是中国古代“洛书“的一部分,则右下角代表的数是.三、解等下列各题(共20 分.解答过程写在答题卡上)2019 316.(10 分)(1)计算:(﹣1)× 2﹣(﹣2)÷417.(10 分)(1)解方程:2 2 2(2)求代数式﹣3xy﹣(2x+0.5x y)+3.5x y﹣3x﹣2 的值,其中,y=﹣37.四、解答下列各题(共20 分.解答过程写在答题卡上)18.(5 分)如图所示,∠AOB 与∠COD 都是直角,OE 为∠BOD 的平分线,∠BOE=23°.①求∠AOC 的度数;②如果∠BOE=α,请直接用α的代数式(最简形式)表示∠AOC.19.(5 分)如图是一个正方体的平面展开图,标注了 A 字母的是重正方体的正面,如果正方体的左面与右面标注的式子相等.①求x 的值.②如果这个正方体前后左右四个面的数字和为﹣12,求正面字母 A 所表示的数.20.(5 分)如图,在一块长为a,宽为2b 的长方形铁皮中,以2b 为直径分别剪掉两个半圆.①求剩下铁皮的面积(用含a,b 的式子表示);②如果a、b 满足关系式|a﹣6|+|b﹣2|=0 时,求剩下铁皮的面积是多少?(π取3.14)21.(5 分)张明在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据解答下列问题:①写出墨迹遮盖住的所有整数;②如果墨迹遮盖住的整数中最大的是a,最小的是b,且,n=b2﹣3b+2 .试求﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]的值.第3 页(共17 页)五、解下列各题(20 题7 分,21 题8 分,共15 分.解等过程写在答题卡上)22.(7 分)学生的学业负担过重会严重影响学生对待学习的态度.为此某市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级, A级:对学习很感兴趣;B 级:对学习较感六趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近100000 名八年级学生中大约有多少名学生学习态度达标(达标包括 A 级和B 级).23.(8 分)树人中学组织七年级两个班的学生从学校步行到郊外社会实践.七(1)班同学组成前队,步行速度为4km/h,七(2)班的同学组成后队,速度为6km/h.前队出发30 分钟后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.(1)如果两队同时到达目的地,求学校与目的地的距离;(2)当后队的联络员第一次与后队相遇时收到了来自后队传给前队的队旗,联络员刚好把队旗传给前队时距目的地还有多远?2018-2019 学年四川省成都市温江区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10 个小题,每小题 3 分,共30 分.每小题均有四个选项,其中只一项符合题目要求,答案涂在答题卡上)1.(3 分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80 元记作+80 元,则﹣50 元表示()A .收人50 元B .收入30 元C.支出50 元D.支出30 元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,若收入80 元记作+80 元,则﹣50 元表示支出50 元.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3 分)下列几何体中,从正面看、左面看和上面看到的图形都不是长方形的是()A .B.C.D.【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A.圆柱的主视图是长方形,不符合题意;B.长方体的三视图均为长方形,不符合题意;C.圆台的三视图中没有长方形,符合题意;D.四棱锥的俯视图是长方形,不符合题意;故选:C.【点评】本题主要考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.3.(3 分)温江是成都市中心城区,生态宜居,常住人口超过850000 人,连续7 年位居中国综合大力百强区,素有“金温江”的美誉.850000 用科学记数法表示为()4 5 5A .85×10B .8.5×10 C.0.85×10 D.850×1000【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时,n 是正数;当原数的绝对值< 1 时,n 是负数.【解答】解:850000 用科学记数法表示为8.5×105,故选:B.n 的形式,其【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.4.(3 分)下列调查问题中,适合采用普查的事件是()A .调查全国中学生心理健康状况B.调查某品牌电视机的使用寿命C.调查中央电视台《焦点访谈》的收视率D.调查你所在班级同学的身高情况【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A.调查全国中学生心理健康状况适合抽样调查;B.调查某品牌电视机的使用寿命适合抽样调查;C.调查中央电视台《焦点访谈》的收视率适合抽样调查;D.调查你所在班级同学的身高情况适合全面调查;故选:D .【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(3 分)如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()第6 页(共17 页)A .0 个B .1 个C.2 个D.3 个【分析】根据等式的性质,可得答案.【解答】解:由第①个天平,得一个球等于两个长方体,故③不符合题意;两个球等于四个长方体,故②不符合题意,两个球等于四个长方体,故④符合题意;故选:B.【点评】本题考查了等式的性质,利用等式的性质是解题关键.6.(3 分)下列说法正确的是()A .最大的负整数是﹣ 1 B.最小的正数是0C.绝对值等于 3 的数是3 D.任何有理数都有倒数【分析】根据有理数的分类和绝对值的非负性进行分析即可.【解答】解:既是整数又是负数中最大的数是﹣1,故A 正确.0 既不是整数也不是负数,故 B 错误.绝对值等于 3 的数是3 和﹣3,故C 错误.0 是有理数,但是0 没有倒数,故 D 错误.故选:A.【点评】本题考查了有理数的定义及相关的基本性质3m+27.(3 分)如果单项式﹣2x y 与是同类项,则n﹣m 的值是()A .1B .2 C.﹣1 D.﹣2【分析】根据同类项的定义即可求出答案.【解答】解:由题意可知:3=n,m+2=4,∴m=2,n=3,∴n﹣m=3﹣2=1,故选:A.【点评】本题考查同类项,解题的关键是熟练运用同类项的定义,本题属于基础题型.8.(3 分)下列说法:(1)线段AB 是点A 与点B 之间的距离;(2)射线AB 与射线BA 表示同一条射线;(3)角平分线是一条射线;(4)过10 边形的一个顶点共有 5 条对角线.其中正确的个数是()A .4B .3 C.2 D.1【分析】根据射线的概念,两点间的距离和点到直线的距离以及多边形的对角线的定义作答.【解答】解:(1)线段AB 的长度是点A 与点B 之间的距离,原来的说法是错误的;(2)射线AB 与射线BA 表示不同的射线,原来的说法是错误的;(3)角平分线是一条射线是正确的;(4)过10 边形的一个顶点共有10﹣3=7 条对角线,原来的说法是错误的.故选:D .【点评】考查了多边形的对角线,两点间的距离,角平分线的定义,对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.9.(3 分)一件商品按成本价提高20%后标价,又以9 折销售,售价为270 元,此时这件商品的利润率为()A .20%B .15% C.8% D.5%【分析】成本价×(1+20%)×90%=270 元,根据此等量关系列方程即可.【解答】解:设这种商品的成本价为x 元,依题意得:x(1+20%)×90%=270,解以上方程得:x=250.答:这种商品的成本价是250 元.此时这件商品的利润率为,故选:C.【点评】此题考查一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.10.(3 分)观察以下数组:(1),(3、5),(7、9、11),(13、15、17、19),2019 在这列数组第n 组,则n 的值为()A .46B .45 C.44 D.43【分析】观察不难发现,各组的数据的个数是连续的奇数,先求出奇数2019 的序号,再根据求和公式进行判断.【解答】解:∵2×1010﹣1=2019,∴2019 是从1 开始的第1010 个奇数,1+2+3+ +n=,∵n=44 时=990n=45 时=1035,∴第1010 个奇数在第45 组.故选:B.【点评】本题是对数字变化规律的考查,观察出各组的数据的个数是连续的自然数是解题的关键.二、填空题(本大题共 5 个小题,每小题 3 分,共15 分.答案写在答题卡上)3 211.(3 分)单项式的﹣4a b 次数是 5 .【分析】根据单项会的次数概念即可求出答案.【解答】解:该单项式的次数为:3+2=5,故答案为: 5【点评】本题考查单项式,解题的关键是熟练运用单项式的概念,本题属于基础题型.12.(3 分)对有理数a、b,规定运算如下:a※b=a+ab,则﹣3※4 的值为﹣15 .【分析】根据题意得出有理数混合运算的式子,根据有理数混合运算的法则进行计算即可.【解答】解:∵a※b=a+ab,∴﹣3※4=(﹣3)+(﹣3)×4=﹣3﹣12=﹣15.故答案为:﹣15.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的顺序是解答此题的关键.13.(3 分)小华要绘制一个统计图反映元月份31 天日平均气温变化情况,这时适宜选择折线统计图.【分析】根据三种统计图的特点选择即可.【解答】解:小华要绘制一个统计图反映元月份31 天日平均气温变化情况,这时适宜选择折线统计图.故答案为:折线.【点评】本题主要考查统计图的选择,用扇形的面积表示部分在总体中所占的百分比,易于显示每组数据相对于总数的大小.条形统计图能清楚地表示出每个项目中的具体数目.易于比较数据之间的差别.折线统计图能清楚地反映事物的变化情况.显示数据变化趋势.14.(3 分)已知x=﹣1 是关于x 的方程2﹣15(m﹣x)=3x 的解,则m=﹣.【分析】把x=﹣1 代入方程2﹣15(m﹣x)=3x 得到关于m 的一元一次方程,依次去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:把x=﹣1 代入方程2﹣15(m﹣x)=3x 得:2﹣15(m+1)=﹣3,去括号得:2﹣15m﹣15=﹣3,移项得:﹣15m=﹣3+15﹣2,合并同类项得:﹣15m=10,系数化为 1 得:m=﹣,故答案为:﹣.【点评】本题考查了一元一次方程的解,正确掌握一元一次方程的解法是解题的关键.15.(3 分)如图是中国古代“洛书“的一部分,则右下角代表的数是 6 .【分析】洛书,即九宫图、幻方,横竖斜一条线上三个数相加,和都等于15.【解答】解:15﹣4﹣5=6,故填:6,【点评】本题考查了数学常识,了解洛书中数字的排列规律是解题的关键.三、解等下列各题(共20 分.解答过程写在答题卡上)2019 316.(10 分)(1)计算:(﹣1)× 2﹣(﹣2)÷4【分析】(1)先算乘方,再算乘除法,最后算减法;(2)先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算,注意根据乘法分配律简便计算.2019 3【解答】解:(1)(﹣1)×2﹣(﹣2)÷ 4=﹣2+2=0;(2)=﹣25+27﹣16+6+9=1.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.17.(10 分)(1)解方程:2 2 2(2)求代数式﹣3x y﹣(2x+0.5x y)+3.5x y﹣3x﹣2的值,其中,y=﹣37.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解;(2)先化简代数式,再代入计算即可求解.【解答】解:(1),2(x﹣4)=48﹣3(x+2),2x﹣8=48﹣3x﹣6,2x+3x=48﹣6+8 ,5x=50,x=10;(2)∵,y=﹣37,2 2 2 ∴﹣3xy﹣(2x+0.5x y)+3.5x y﹣3x﹣22 2 2 =﹣3xy﹣2x﹣0.5x y+3.5x y﹣3x﹣2=﹣5x﹣2=﹣5×﹣2=﹣2﹣2=﹣4.【点评】考查了解一元一次方程,整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.四、解答下列各题(共20 分.解答过程写在答题卡上)18.(5 分)如图所示,∠AOB 与∠COD 都是直角,OE 为∠BOD 的平分线,∠BOE=23°.①求∠AOC 的度数;②如果∠BOE=α,请直接用α的代数式(最简形式)表示∠AOC.【分析】易知∠AOC=360°﹣∠AOB﹣∠COD ﹣∠BOD ,则只需求∠BOD 即可.【解答】解:①∵OE 为∠BOD 的平分线,∠BOE=23°∴∠BOD=2∠BOE =2×23°=46°∴∠AOC=360°﹣∠AOB﹣∠COD ﹣∠BOD=360°﹣90°﹣90°﹣46°=134°故∠AOC=134°②∵∠BOE=α,OE 为∠BOD 的平分线∴∠AOC=360°﹣∠AOB﹣∠COD ﹣∠BOD=360°﹣90°﹣90°﹣2α=180°﹣2α故用α的代数式(最简形式)表示∠AOC 为:180°﹣2α【点评】本题考查的是角平分线的定义:角平分线分得的两个角相等,都等于该角的一半.19.(5 分)如图是一个正方体的平面展开图,标注了 A 字母的是重正方体的正面,如果正方体的左面与右面标注的式子相等.①求x 的值.②如果这个正方体前后左右四个面的数字和为﹣12,求正面字母 A 所表示的数.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定前后左右四个面上的 4 个数字,然后相加即可和为﹣12 即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1.(2)正方体前后左右四个面的文字分别是:A、﹣2、x、3x﹣2,依题意得A﹣2+x+3x﹣2=﹣12A﹣2+1+3﹣2=﹣12A=﹣12.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.20.(5 分)如图,在一块长为a,宽为2b 的长方形铁皮中,以2b 为直径分别剪掉两个半圆.①求剩下铁皮的面积(用含a,b 的式子表示);②如果a、b 满足关系式|a﹣6|+|b﹣2|=0 时,求剩下铁皮的面积是多少?(π取3.14)【分析】①利用矩形面积减去两个半圆面积进而得出答案;②利用非负数的性质得出a,b 的值,进而代入①中所求得出答案.【解答】解:①由题意可得,剩下铁皮的面积为:2ab﹣πb2;②∵|a﹣6|+|b﹣2|=0,∴a﹣6=0,b﹣2=0,解得:a=6,b=2,则2ab﹣πb2≈2×6×2﹣3.14×4=11.44.【点评】此题主要考查了列代数式,正确表示出阴影部分面积是解题关键.21.(5 分)张明在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据解答下列问题:①写出墨迹遮盖住的所有整数;②如果墨迹遮盖住的整数中最大的是a,最小的是b,且,n=b2﹣3b+2 .试求﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]的值.【分析】①根据数轴可得墨迹遮盖住的所有整数;2②根据①的结果求出a,b,再代入,n=b ﹣3b+2求出m,n,再化简后代入计算即可求解.【解答】解:①墨迹遮盖住的所有整数为:﹣1,0,1;②a=1,b=﹣1,则=0.1,n=b2 ﹣3b+2=1+3+2=6,则﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]=﹣2mn+6m2﹣[m2﹣5mn+5 m2+2mn]2 2 2 =﹣2mn+6m ﹣m +5mn﹣5m﹣2mn=mn=0.1×6=0.6.【点评】考查了数轴,整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.五、解下列各题(20 题7 分,21 题8 分,共15 分.解等过程写在答题卡上)第14 页(共17 页)22.(7 分)学生的学业负担过重会严重影响学生对待学习的态度.为此某市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感六趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200 名学生;(2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近100000 名八年级学生中大约有多少名学生学习态度达标(达标包括 A 级和B 级).【分析】(1)由A 等级人数及其所占百分比可得总人数;(2)根据各层级人数之和等于总人数求得 C 级的人数即可得;(3)用360°乘以 C 级人数所占比例即可得;(4)用总人数乘以样本中 A 级和B 级人数和所占比例.【解答】解:(1)此次调查的总人数为50÷25%=200(人),故答案为:200;(2)C 级人数:200﹣120﹣50=30(人),如图所示:(3)图②中C 级所占的圆心角的度数为360°×=54°.(4)估计该市近100000 名八年级学生中学习态度达标的学生约有100000×=85000(人).【点评】本题主要考查的是条形统计图与扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图可以显示出每一部分在总体中所占的百分比.23.(8 分)树人中学组织七年级两个班的学生从学校步行到郊外社会实践.七(1)班同学组成前队,步行速度为4km/h,七(2)班的同学组成后队,速度为6km/h.前队出发30 分钟后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.(1)如果两队同时到达目的地,求学校与目的地的距离;(2)当后队的联络员第一次与后队相遇时收到了来自后队传给前队的队旗,联络员刚好把队旗传给前队时距目的地还有多远?【分析】(1)根据两队到目的地的行使时间差为30 分钟,列出方程便可解答;(2)分三次列方程求出:联络员第一次与前队相遇的用时;联络员第一次与前队相遇到与后队相遇的用时;联络员第一次与后队相遇时收到了来自后队传给前队的队旗,联络员刚好把队旗传给前队的用时.再进一步便可求得结果.【解答】解:(1)设学校与目的地的距离为xkm,根据题意得,,解得,x=6(km),答:学校与目的地的距离为6km;(2)设联络员第一次与前队相遇用了y 小时,根据题意得,(12﹣4)y=4×,解得,y=(h),设联络员第一次与前队相遇到与后队相遇用了z 小时,根据题意得,(12+6)z=4×﹣(6﹣4)×,解得,z=(h),设后队的联络员第一次与后队相遇时收到了来自后队传给前队的队旗,联络员刚好把队旗传给前队时用了a 小时,根据题意得,(12﹣4)a=4×﹣(6﹣4)×(),解得,a=(h),此时前队离目的地的距离为:6﹣4×()=2(km).答:联络员刚好把队旗传给前队时距目的地还有2km.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,找出相等分析,列出相应的方程.。