PWM单端反激式变换器电路原理分析

合集下载

单端反激式变换器总结

单端反激式变换器总结

单端反激式变换器总结一、引言单端反激式变换器是一种常见的电源电路,广泛应用于家用电器、通信设备、计算机等领域。

本文将对单端反激式变换器进行详细的总结。

二、单端反激式变换器原理1. 变换器结构单端反激式变换器由输入滤波电容、开关管、变压器和输出滤波电容等组成。

2. 工作原理当开关管导通时,输入电压施加在变压器的一侧,输出电压为零;当开关管截止时,变压器另一侧的磁场崩塌,产生高电压并输出到负载上。

通过控制开关管的导通和截止时间,可以实现输出稳定的直流电压。

三、单端反激式变换器特点1. 简单可靠单端反激式变换器结构简单,易于实现,并且具有较高的可靠性。

2. 输出稳定性好通过控制开关管的导通和截止时间,可以实现输出稳定的直流电压。

3. 效率高由于没有二次侧谐振环节,在工作频率较低时具有较高的效率。

4. 适用范围广单端反激式变换器适用于各种负载类型,具有广泛的应用领域。

四、单端反激式变换器设计要点1. 选取合适的变压器变压器是单端反激式变换器中最重要的元件之一,需要根据输入电压、输出电压和负载等参数来选择合适的变压器。

2. 控制开关管的导通和截止时间通过控制开关管的导通和截止时间,可以实现输出稳定的直流电压。

需要根据具体情况来确定导通和截止时间。

3. 合理设计滤波电容滤波电容对输出稳定性有很大影响,需要根据负载情况来合理设计滤波电容。

五、单端反激式变换器应用案例1. 家用电器单端反激式变换器广泛应用于家用电器中,如空调、冰箱、洗衣机等。

2. 通信设备单端反激式变换器在通信设备中也有应用,如交换机、路由器等。

3. 计算机单端反激式变换器还被广泛应用于计算机领域,如电源模块、显示器等。

六、总结单端反激式变换器是一种简单可靠、输出稳定性好、效率高、适用范围广的电源电路。

在家用电器、通信设备、计算机等领域有着广泛的应用。

在设计单端反激式变换器时需要注意选择合适的变压器、控制开关管的导通和截止时间以及合理设计滤波电容等要点。

单端反激式变换器总结

单端反激式变换器总结

单端反激式变换器总结一、什么是单端反激式变换器单端反激式变换器是一种常见的功率电子转换器,用于将直流电源转换为交流电源。

它由一个开关管、一个变压器和一个输出滤波电容组成。

单端反激式变换器的特点是具有简单的电路结构、低成本、高效率等优势。

二、单端反激式变换器原理单端反激式变换器的工作原理如下:1.开关管导通:当开关管导通时,直流电源通过变压器的一段输入,储存在变压器中。

2.开关管关断:当开关管关断时,变压器中储存的电能通过互感作用传递给输出负载。

3.输出滤波:通过输出滤波电容对输出信号进行滤波,得到所需的交流电源。

三、单端反激式变换器的优势和应用单端反激式变换器具有以下优势:1.低成本:由于电路结构简单,所需元器件较少,降低了制造成本。

2.高效率:在正常工作情况下,能量的传输效率较高,能够有效地转换电源。

3.功率密度高:相比其他转换器,单端反激式变换器具有更高的功率密度。

单端反激式变换器在电子设备中有广泛的应用,如电源适配器、电子变压器等。

四、单端反激式变换器的设计要点设计一个稳定工作的单端反激式变换器需要考虑以下要点:1.开关管的选取:选择合适的开关管能够提高整个电路的效率和可靠性。

2.变压器的设计:合理选择变压器的参数,以满足输出电压和电流的需求。

3.输出滤波电容的选取:根据负载的需求选择合适的输出滤波电容。

4.控制电路的设计:设计一个合适的控制电路,以确保开关管的正常工作。

五、单端反激式变换器的工作稳定性问题单端反激式变换器在工作过程中可能面临以下问题:1.开关管损坏:如果开关管不能正常导通或关断,会导致整个电路停止工作。

2.变压器失谐:如果变压器参数设计不合理,可能会导致变压器失谐,进而影响电路的工作稳定性。

3.输出电压波动:由于负载变化或其他因素,可能会导致输出电压出现波动,影响设备的正常工作。

为了解决这些问题,需要结合实际情况进行合理的电路设计和参数选择。

六、常见的单端反激式变换器故障及排除方法在实际应用中,常见的故障包括开关管损坏、变压器短路等。

单端反激式开关电源(毕业设计)

单端反激式开关电源(毕业设计)

目录摘要 (2)第一章开关电源概述 (1)1.1 开关电源的定义与分类 (1)1.2 开关电源的基本工作原理与应用 (1)1.2.1 开关电源的基本工作原理 (1)1.2.2 开关电源的应用 (2)1.3 开关电源待解决的问题及发展趋势 (5)1.3.1 开关电源待解决的问题 (5)1.3.2 开关电源的发展趋势 (5)第二章设计方案比较与选择 (7)2.1 本课题选题意义 (7)2.2 方案的设计要求 (7)2.3 选取的设计方案 (8)第三章反激式高频开关电源系统的设计 (9)3.1 高频开关电源系统参数及主电路原理图 (9)3.2 单端反激式高频变压器的设计 (10)3.2.1 高频变压器设计考虑的问题 (10)3.2.2 单端反激式变压器设计 (11)3.3 高频开关电源控制电路的设计 (15)3.3.1 PWM 集成控制器的工作原理与比较 (15)3.3.2 UC3842工作原理 (17)3.3.3 UC3842的使用特点 (18)3.4 反馈电路及保护电路的设计 (19)3.4.1 过压、欠压保护电路及反馈 (19)3.4.2 过流保护电路及反馈 (19)3.5变压器设计中注意事项 (20)第四章总结 (21)参考文献 (23)致谢 ............................................................................................................................... 错误!未定义书签。

摘要开关电源的高频化电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前地小型化,并使开关电源进入更广泛的领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。

另外开关电源的发展与应用在节约资源及保护环境方面都具有深远的意义。

为此本论文以反激式高频开关电源为设计方向而展开,对高频变压器的认知及所注意的问题,其中包括磁芯损耗、绕组损耗、温升以及磁芯要求。

反激变换器工作原理

反激变换器工作原理

反激变换器
28

V in (min) D max (1 D max )
(V out V D )
NP NS
(10)
V in (max) D min V in (min) D max
(11)
i P (max)
NS
I out
N P 1 D min

1 V in (max) D min 2 f s LP
2 2
C
f

D max I out V out f s
(16)
反激变换器
14
此页之后的内容在讲完变压器电抗器设计之后才细讲。 Iin Vin IP UP IS D US Iout Cf 八. 元器件的选择 Vout 4.变压器的设计
A.选定磁芯材料和型式--- 根据工作频率,磁化形式,传输功率,线圈绕组的绕制等要求, 以及磁芯的磁化曲线,供货情况等来确定磁芯材料. B.确定磁芯型材的大小---Ae,AW,lm 由电流密度参数法,有
Iout Cf 八. 元器件的选择 Vout 4.变压器的设计 根据(20),确定磁芯的大小. 于是得到Ae,AW,lm
C.确定原副边匝数---NP,NS
由(6),(6‘)和(11) 确定
NP
V in (max) D min f s Ae B
(23)
NS
(V out (max) V D ) 1 D min f s Ae B

2 N P I in DB
(34)
B
S
反激变换器
24
Iin Vin
IP UP
IS D US
Iout Cf 八. 元器件的选择 Vout 4.变压器的设计 E.变压器磁芯气隙lg的确定 加气隙后的B - H曲线

(完整word版)反激电路

(完整word版)反激电路

一、 单端反激变换器1、单端反激变换器的原理图如下:i 1i 2V o+-2、工作原理单端反激变换器主要用在250W 以下的电路中,其中的变压器既有变压器的作用,也有电感的作用其有两种工作方式:一是完全能量转换方式,即电感电流断续工作模式;二是不完全能量转换方式,即电感电流连续工作模式。

工作过程:当Tr 导通时,电源电流流过变压器原边,i1增加,其变化为11//L V dt di s =,而副边由于二极管D 的作用,i2为0,变压器磁心磁感应强度增加,变压器储能;当Tr 关断时,原边电流迅速降为0,副边电流i2在反激作用下迅速增大到最大值,然后开始线性减小,其变化为22//L V dt di o =,此时原边由于开关管的关断,电流为0,变压器磁心磁感应强度减小,变压器放能。

3、工作波形工作波形如下:连续工作模式: 断续工作模式:V g -V 2i 1i 2V Trt4、电压增益(1) 连续工作模式下的电压增益:理想状态下,由副副边绕组在一个周期中的伏秒值为0可得:s o s s T D V T nD V )1(11-= (1-1)故可得电压增益为:111D D nV V M s o -==(1-2) 而在实际中,由于变压器存在一次绕组内阻r1,二次绕组内阻r2,故可得:s o s s T D r I V T nD r I V )1)(()(122111--=- (1-3)而 o I I =2 (1-4)221/n r r = (1-5)o o s o o D nI D V I V I //11==(为计算方便,设Do=(1-D1)) (1-6)故将(1-4)(1-5)(1-6)代入(1-3)可得)1)((2121--==os o o s o D D nV r I D DnV V M (1-7) (2)断续工作模式下的电压增益:由面积相等可得式:2/2s p s o T D I T I ∆= (1-8)由s p o s s T D V T D nV =1可得V g-V 2i 1i 2V Trto s p V D nV D /1= (1-9)而 112/nL T D V I s s =∆ (1-10) 将(1-9)(1-10)代入(1-8)可得:1112L V D V T D V I o s s s o =(1-11)临界连续时,即可以看作连续又可以看作断续,此时:111D D nV V s o -=,所以临界连续电流为:112)1(nL D T D V I s s oc -=(1-12)当D=1/2时取最大值,为:18nL T V I ss ocm =(1-13) 将(1-13)代入(1-11),可得断续工作模式下的电压增益为:oocm s o I DI nV V M 214== (1-14)二、 双管反激变换器1、双管反激变换器原理图如下:V o+-2、工作原理当功率大于200W 的时候,不宜采用单端反激电路,可采用双管反激电路。

反激式变换器原理设计与实用

反激式变换器原理设计与实用

反激式变换器原理设计与实用1、引言反激式转换器又称单端反激式或“BUCK-BOOST”转换器,因其输出端在原边绕组关断时获得能量故而得名。

在反激变换器拓扑中,开关管导时,变压器储存能量,负载电流由输出滤波电容提供;开关管关断时,变压器将储存的能量传送到负载和输出滤波电容,以补偿电容单独提供负载电流时消耗的能量。

其优点如下:a、电路简单,能高效提供多路直流输出,因此适合多组输出要求;b、输入电压在很大的范围内波动时,仍可有较稳定的输出,目前己可实理交流输入85-265V间,无需切换而达到稳定输出的要求;c、转换效率高,损失小;d、变压器匝数比值小。

2、反激变换器工作原理以隔离反激式转换器为例(如右图),简要说明其工作原理:当开关管VT 导通时,变压器T初级Np有电流Ip,并将能量储存于其中(E=Lp*Ip²/2)。

由于初级Np与次级Ns极性相反,此时次级输出整流二极管D反向偏压而止,无能量传送到负载。

当开关管VT关断时,由楞次定律:(感应电动势E=—N Δ∮/ΔT)可知,变压器原边绕组将产生一反向电动势,此时输出整流二极管D正向导通,负载有电流Il流通。

由图可知,开关管Q导通时间Ton的大小将决定IP、Vds的幅值为Vds(max)=Vin/1-Dmax。

(其中Vin:输入直流电压;Dmax:最大占空比Dmax=Ton/T)。

由此可知,想要得到低的漏极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应有中通常取Dmax=0.45,以限制Vds(max)≦2Vin。

开关管VT导通时的漏极工作电流Id,也就是原边峰值电流Ip,根据能量守恒原则即原副边安匝数相等NpIp=NsIs可导出等式:Id=Ip=Il/n。

因Il=Io,故当Io一定时,匝比N的大小即决定了Id的大小。

原边峰值电流Ip也可用下面公式表示:Ip=2Po/(n*Vin*Dmax)(n转换器的效率)。

推导过程如下:∵一个工作周期内T输出功率可表示为:Po=Lp* Ip²*n/2T。

PWM单端反激式变换器电路原理分析

PWM单端反激式变换器电路原理分析
Vin
L2 01 SD R050 4-22 0 D2 02
1 +
KB L08
AC 2
输 入 交 流电 压
3
C2 01 68 6/45 0V
4
-
AC
C2 92 22 2/2K V
T2
203/2W R201
9 4N
D2 01 R2 33 10 03 C2 24 10 4 C2 25 D2 36 1N 4746 R2 38 20 R
R2 03 20 4/2W
UC2845D8和开关电源设计资料及电源维修方法
③ 作用:1:降低没用的反冲电压。 2:消除高频振荡(可以有效地保护开关功率管不受损)。 ④ 反冲电压:是指在断开有电流的电感电路时,产生的自感电压,吸 收回路是消耗能量的。 ⑤ 高电压常用的几种吸收回路分析
高电压常用的几种吸收回路
R1
T1
+ _
C2
V 0
V dc
Q1 FQPF4N90
V in
Np
_
Ns
+
D1 MUR1100E
C1
G nd
Ip To n
Is To f
单 端 反 激 式 变 换 器 工 作 原 理 1
一、调制 1.定义: 利用某一种电压或波形的改变,去控制另一种电压或波形 发生某种形式的改变。 2.调制方式:利用电压的改变,去控制另一种波形的改变,最后达到能 控制输出电压的改变,同时能控制输出电压稳定的一种技术措施。 3.脉冲宽度调制方式(PWM:(Pulse Width Modulation):
3 00 V
高 压 在 初 级 绕 组 的 几 种 吸 收 回 路
T
C1 R1 C1 初级 D1

单端反激式开关电源原理与设计

单端反激式开关电源原理与设计

单端反激式开关电源原理与设计2008-11-7 10:45:00 来源:中国自动化网网友评论0条点击查看0 引言近年来随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、继承化的方向发展,高效率的开关电源已经得到越来越广泛的应用。

单端反激式变换器以其电路简单、可以高效提供直流输出等许多优点,特别适合设计小功率的开关电源。

本文简要介绍了Unitorde公司生产的电流型脉宽调制器UC3842,介绍了该芯片在单端反激式开关电源中的应用,对电源电路进行了具体分析。

利用本文所述的方法设计的小功率开关电源已经应用在国电南瑞科技股份有限公司工业控制分公司自主研发的分散控制系统GKS-9000中,运行状况良好,各项指标均符合实际工程的要求。

1 反激式开关电源基本原理单端反激开关电源采用了稳定性很好的双环路反馈(输出直流电压隔离取样反馈外回路和初级线圈充磁峰值电流取样反馈内回路)控制系统,就可以通过开关电源的PWM(脉冲宽度调制器)迅速调整脉冲占空比,从而在每一个周期内对前一个周期的输出电压和初级线圈充磁峰值电流进行有效调节,达到稳定输出电压的目的。

这种反馈控制电路的最大特点是:在输入电压和负载电流变化较大时,具有更快的动态响应速度,自动限制负载电流,补偿电路简单。

反激电路适应于小功率开关电源,其原理图如图1所示。

下面分析在理想空载的情况下电流型PWM的工作情况。

与电压型的PWM比较,电流型PWM又增加了一个电感电流反馈环节。

图中:A1为误差放大器;A2为电流检测比较器;U2为RS触发器;Uf为输出电压Uo的反馈取样,该反馈取样与基准电压Uref 通过误差放大器A1产生误差信号Ue(该信号也是A2的比较箝位电压)。

设场效应管Q1导通,则电感电流iL以斜率Ui/L线性增长,L为T1的原边电感,电感电流在无感电阻R1上采样u1=R1iL,该采样电压被送入电流检测比较器A2与来自误差放大器的Ue进行比较,当u1>Ue时,A2输出高电平,送到RS触发器U2的复位端,则两输入或非门U1输出低电平并关断Q1;当时钟输出高电平时,或非门U1始终输出低电平,封锁PWM,在振荡器输出时钟下降的同时,或非门U1的两输入均为低电平,则Q1被打开。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

To f Ip Is 单端反激式变换器工作原理1 单端反激式变换器电路原理分析l 单端反激式变换器的特点单端反激式变换器又称电感储能式变换器,工作原理如图所示,当开关管Q1被PWM 脉冲激励而导通时,直流输入电压施加到高频变压器T 的初级绕组上,此时NP 相当于一个纯电感,流过NP的电流线性上升,电源能量以磁能形式存储在电感中,次级整流二极管D1截止,输出电容C 给负载供电。

(电能转换为磁能)当开关管Q1截止时,由于电感电流不能突变,初级绕组两端电压极性反向, 次级绕组上的电压极性颠倒使D1导通, 初级储存的能量传送到次极,提供负载电流,同时给输出电容充电。

(磁能换为电能)单端反激式变换器通常采用加气隙来增大可工作的磁场强度H ,减少剩余磁感应强度;当反激式变换器处于连续工作模式时,气隙可有效防止磁芯饱和,因而可增大电源的输出功率,减少变压器磁芯损耗,进一步提高开关频率。

一、调制1.定义: 利用某一种电压或波形的改变,去控制另一种电压或波形发生某种形式的改变。

2.调制方式:利用电压的改变,去控制另一种波形的改变,最后达到能控制输出电压的改变,同时能控制输出电压稳定的一种技术措施。

3.脉冲宽度调制方式(PWM:(Pulse Width Modulation):①是输入电压的变化,使输出脉冲宽度发生变化的一种方式。

②开关管工作周期T是固定不变的。

③输出电压的改变和稳定,就是控制开关管调整饱和导通的时间来实现的。

④脉宽式开关电源都是降压式的变换器,但采用变压器隔离的开关电源,可以改变初级与次级绕组匝数比,来决定输出电压是升压还是降压。

⑤占空比的比值就是电压比的比值,占空比的变化范围:0∽1。

2.交流共模滤波电感的结构和工作原理①定义:是在一个磁心上的两个匝数相等的绕组中再电流方向上的不同,就能起到共模滤波电感的作用。

②模式:1.差模输入:就是在共模滤波器的两个输入端口,所输入电压是有差别的一种输入模式。

在某一瞬间,两个输入端的电压一个为+,一个为-,两个绕组产生的磁通是大小相等方向相反,磁芯中就没有变化的磁通,也没电感量,也没感抗,对50HZ的交流电压没有阻力,只有绕组的直流电阻存在,直流电阻值为0.1-0.5Ω实际有0.1-0.2W能量损失,可忽略。

2.共模输入:就是在共模滤波器的两个输入端口,所输入电压是没有差别的一种输入模式。

假设共模高频干扰电压输入为+或-,两个绕组产生的是同一方向变化的磁通,磁芯中就有变化的磁通,就有感抗,电感对共模高频干扰会有较大的衰减。

三、电路原理分析1.交流输入部分③NTC201是热敏电阻,在开关电源中起过温保护和软启动的作用。

④低通滤波器定义:低频能通过而高频干扰信号通不过的滤波器,就是能滤掉高频电压,又可叫高频滤波器。

b.组成:一般由电容器和电感组成c.作用: 1.防止电网上的高频干扰信号、抑制浪涌电压、尖蜂电压进入开关电源中。

2.阻止、限制开关电源所产生的噪声,高频电磁干扰信号串入电网上。

d.电感e.电容作用:1.电容器的基本作用既是充电和放电。

2.储能:以电压形式存储能量:Ec=1/2V2C,具有隔直流通交流的作用,它两端的电压不能突变,电容的容抗是与频率成反比,频率越高,它呈现的容抗越。

小,容抗:Xc=12∏FC3.滤波作用:整流电路将交流变成脉动的直流,在整流电路之后接入一个较大容量的电解电容,在滤波电路中,电容的耐压值不要小于交流有效值的1.42倍。

利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。

在实际中,为了防止电路各部分供电电压因负载变化而变化,所以在电源的输出端及负载的电源输入端接电解电容,由于大容量的电解电容一般具有一定的电感,对高频及脉冲干扰信号不能有效地滤除,故在其两端并联了一只容量为0.001--0.lpF的电容,以滤除高频及脉冲干扰。

4.去耦作用:滤除高频器件在PCB电源或芯片电源脚上引起的辐射电流,为器件提供一个局部的直流通路,能减低电路中的电流冲击峰值。

它在减小电源和地平面上纹波、噪声和毛刺很有效果。

减少开关噪声在板上的传播并抑制噪声对其它芯片的干扰。

0.1uF以下的陶瓷电容常被用来做去耦电容。

5.旁路作用: (Bypass)是指给信号中的某些有害部分提供一条低阻抗的通路。

电源中高频干扰是典型的无用成分,需要将其在进入目标芯片之前提前滤掉,旁路电容主要针对高频干扰(高是相对的,认为20MHz以上为高频干扰,20MHz以下为低频纹波),选用涤纶薄膜电容。

注: 电阻主要是用做限流和确定固定电平,即所谓的上拉或下拉。

揩振回路可以选用云母、高频陶瓷电容。

谐振分串联谐振和并联谐振。

串联谐振产生过电压,并联谐振产生大电流。

f.图1分析,C205,L1,C203组成∏型低通滤波电路,C205,C203为抗串模干扰元件,用于抑制正态噪声,电容选漏电流小的。

所以,CLC型滤波电路中电容的容量和电感的感量越大,他们的滤波效果就越好。

g.常用高压和低压低通滤波电路二、桥式整流0-265VAC经桥式整流后,直流电压=265*1.414=374.71V,此电压分三路:1路:经R203降压以及C224,C225滤波后为UC2845提供启动电压2路:经高频变压器初级为开关功率管的漏极提供驱动电压, D201,C202,R201是变压器缓冲网络吸收回路,用于吸收对变压器初级的漏电流,次级反馈到初级的尖峰电流进行吸收或二次将漏感反向耦合到次级,吸收开关管关断时,变压器漏感产生的过电压。

3路: R203和R233组成泄放回路,电压经R203和R233对地放电。

M U R 1100E 当断电后不要立即焊取电阻和电容,由于电阻较大放电需要一定时间,故要用万用表量电容两端的电压,放电完后才能操作;由于电压经电阻分压,故在选滤波电容C224,C225时,注意耐压值>375*(R233/R203+R233),否则,当电源出现故障时,375V 电压没电流输出,C224和C225有可能被击穿。

三、启动电路要使开关电源工作,首先是振荡器必须的振荡,振荡器要振荡必须要有一个较小的的启动电流,较小的的启动电流又来自较小的的启动电压,可是开关电源开机后,马上建立起来的唯一的一种电压,就是375V 左右的直流电压,该电压经启动电阻R203(200K Ω)直接给UC2845D8的⑦脚供电(正常工作约需15mA 电流),此时自馈电没建立起来,只有靠C225的放电来继续启动,此电容又叫维持启动电容;开关变压器的初级绕组感应给自馈电绕组的脉冲电压,输出+13V 自馈电压,自馈电建立后,经维持启动电容C224,C225滤波后,给UC2845D8的⑦脚供电,启动电阻R203也完成任务,R203还接在电路中,两端有362V 电压(362/200K=1.85mA 电流),此时没有R203,电路工作可正常工作。

四、吸收回路①定义:消反冲电路或称阻尼电路。

② 组成:由电阻、电容和阻塞二极管组成的钳位电路。

③作用:1:降低没用的反冲电压。

2:消除高频振荡(可以有效地保护开关功率管不受损)。

④反冲电压:是指在断开有电流的电感电路时,产生的自感电压,吸收回路是消耗能量的。

⑤高电压常用的几种吸收回路分析a.在电路工作稳定后,当开关管Q1截止时,初级绕组的反冲电压为:上“-”下“+”,并通过二极管D1给电容器C1充电,由于电路中没有电阻,所以电容器C1充电电流比较大, 电容器C1两端电压一下就能上升到150V,电容器C1吸收的能量就比较多。

(瞬间充电完成,马上又放电)电容器C1的电压为下“+”上“-”,电阻R1也有电流泄漏,它不可能通过二极管D1反向由初级绕组T放电,它就无法振荡下去,电容器C1上的电压,只有通过R1放电,将反冲电压转换成热能散发掉。

当开关管Q1导通时,电阻R1仍给电容器C1放电,最后C1两端电压下降到约125V。

总之:电容器C2的充电时间,在Q1截止;C2的放电时间在导通和截止整各个过程。

b. 当开关管Q1截止时,初级绕组的反冲电压为:上“-”下“+”,并通过电阻R1给电容器C1充电,C1充电脉冲电流比较大(0.3A),在R1上的瞬时电压降可达200V至多,瞬时功率达60W,平均功率1-2W。

(瞬间充电完成,马上又放电)电容器C1的电压为下“+”上“-”,C1通过阻尼电阻R1放电(使高频自由振荡成低频自由振荡,由于R1消耗使振荡很快衰减)。

当开关管Q1导通时,由电源电压(300V)给C1充电,在阻尼电阻R1上也要消耗能量。

c. 当开关管Q1截止时,MOS的D(漏极)反冲电压最高达600-800V,通过电阻R1给电容器C1充电,因反冲电压较高,所以充电电流很大, 反冲电压消耗大,从而达到保护Q1的目的。

当开关管Q1导通时,C1所充的电压就经过Q1放电,为了防止瞬间放电电流过大而加重管子负担,所以串联电阻R1加以限流,C1的两端电压不可能全部放掉,还会乘100V左右电压。

d. 当开关管Q1截止时, 反冲电压通过二极管D1给电容器C1充电,因反冲电压较高(600-800V),没有电阻限流,所以充电电流很大,反冲电压消耗大,从而达到保护Q1的目的(有反冲电压这一瞬间是充电,其它时间通过R4放电)。

当开关管Q1导通时,C1所充的电压就经过R1放电, C1的两端电压不可能全部放掉,还会乘100V左右电压。

e.当开关管Q1截止时,初级绕组的反冲电压为:上“-”下“+”,直接给电容器C1充电,由于电路中没有电阻,所以电容器C1充电电流比较大,电容器C1两端电压一下就能上升到很高电压,电容器C1吸收的能量就比较多,电容器C1的电压为下“-”上“+”。

当开关管Q1导通时,C1所充的电压就经过MOS管,R1,R2放电转换成热能散发掉,C1的两端电压不可能全部放掉,还会乘100V左右电压。

⑥对图原理介绍a.吸收回路1:由C202(103/2KV),R201(27K/3W),D201(MUR110R)组成变压器缓冲网络吸收回路。

并与初级绕组两端并联,它主要是消除MOS管截止时,产生的高频振荡。

当MOS管导通时,初级绕组中的电流,使变压器储存磁能,当MOS管截止时,变压器中的磁能就要转化为电能,在初级绕组的两端, 产生下正上负的300多伏的脉冲电压。

由于有较小的寄生电容的存在,变压器的初级绕组与寄生电容要产生高频振荡,向外发射干扰电磁波。

有了该组吸收后路后,自感电压通过D201给C202充电,把能量储存在C202电场中,因C202上的电压不可能通过D201向初级绕组N1放电(截止),所以它就无法振荡下去,C202上的电压,只有通过R201放电,将反冲电压转换成热能散发掉,R201温度比较高。

总之:C202的冲电时间,只是在MOS管截止的一瞬间,C202的放电时间,是在MOS管截止和导通的整个过程中。

相关文档
最新文档