应用传感器设计电子称
基于单片机的实用电子秤设计

基于单片机的实用电子秤设计一、硬件设计1、传感器选择电子秤的核心部件之一是称重传感器。
常见的称重传感器有电阻应变式、电容式等。
在本设计中,我们选用电阻应变式传感器,其原理是当物体的重量作用在传感器上时,传感器内部的电阻应变片会发生形变,从而导致电阻值的变化。
通过测量电阻值的变化,就可以计算出物体的重量。
2、信号放大与调理传感器输出的信号通常比较微弱,需要经过放大和调理才能被单片机处理。
我们使用高精度的仪表放大器对传感器输出的信号进行放大,并通过滤波电路去除噪声干扰,以提高测量的准确性。
3、单片机选型单片机是整个电子秤系统的控制核心。
考虑到性能、成本和开发难度等因素,我们选用 STM32 系列单片机。
STM32 系列单片机具有丰富的外设资源、较高的运算速度和良好的稳定性,能够满足电子秤的设计需求。
4、显示模块为了直观地显示测量结果,我们选用液晶显示屏(LCD)作为显示模块。
LCD 显示屏具有功耗低、显示清晰、视角广等优点。
通过单片机的控制,可以在 LCD 显示屏上实时显示物体的重量、单位等信息。
5、按键模块为了实现电子秤的功能设置,如单位切换、去皮、清零等,我们设计了按键模块。
按键模块通过与单片机的连接,将用户的操作指令传递给单片机进行处理。
6、电源模块电源模块为整个电子秤系统提供稳定的电源。
我们使用线性稳压器将输入的电源电压转换为适合各个模块工作的电压,以确保系统的正常运行。
二、软件算法1、重量计算算法根据传感器的特性和放大调理电路的参数,我们可以建立重量与传感器输出信号之间的数学模型。
通过对传感器输出信号的采集和处理,利用数学模型计算出物体的实际重量。
2、滤波算法为了消除测量过程中的噪声干扰,提高测量的稳定性和准确性,我们采用数字滤波算法对采集到的信号进行处理。
常见的数字滤波算法有中值滤波、均值滤波等。
在本设计中,我们选用中值滤波算法,其原理是对连续采集的若干个数据进行排序,取中间值作为滤波后的结果。
用悬臂梁式称重传感器设计一个电子天平

用悬臂梁式称重传感器设计一个电子天平1.设计思路本实验采用悬臂梁式称重传感器,所称物体产生的压力由称重传感器检测,并由传感器测量电路转化为相应的模拟电信号输出。
称重传感器输出的模拟量,数值一般很小,达不到A/D转换接收的电压范围。
所以送A/D转换之前要对其进行前端放大、整形滤波等处理。
然后输出信号再经由A/D转换电路转化为相应的数字量。
由于本实验采用的ICL7107是3位半双积分型A/D转换器,能直接驱动共阳极LED数码管,故不需要使用单片机进行相应的数据处理和转换,ICL7107将模拟量转换为数字量之后直接将其转化成七段LED显示所需的字型码,输入到相应的信号电极就实现了所称物重数字量的输出。
2.设计方案将电阻丝应变片粘贴到悬臂梁上合适的位置,并接入全桥测量电路,相对的桥臂受力相同,相邻的桥臂受力相反,其中一对受拉力作用,另一对受压力作用。
由于电阻丝在外力作用下发生机械变形时,其电阻值发生变化,从而引起电压发生变化,即电桥的输出电压反映了相应的受力状态。
利用电桥传感器测应力的变化,可以间接的测量物体的质量。
传感器测出的信号经过放大电路放大处理成为符合A/D输入范围的电信号后进入A/D转换器,最后通过芯片内部电路将转换后的数字量转化为LED可识别的七段字型码送交LED显示器显示。
压力测量仪的原理在该称重系统的设计中有着极大的应用。
其大概的原理框图主要由以下五个部分组成:传感器、传感器专用电源、信号放大系统、模数转换系统及显示器等组成。
其原理框图如图1所示:图1 压力测量仪组成框图2.1称重式传感器选择合适的满足要求的传感器是实验成功的关键,本实验选择CZL-1R称重传感器,其量程为3.0Kg,而要求的量程是0 ~ 1.999Kg,可见该传感器的超载能力为:150%,在一定范围内的超载情况下具有保护作用;灵敏度:1mV/V;温度灵敏度漂移:0.002%℃;输入阻抗:405±15Ω,输出阻抗:350±15Ω;激励电压:10V;工作温度范围:-20~+60℃。
基于电阻应变片式传感器的电子秤设计

基于电阻应变片式传感器的电子秤设计摘要:给出了采用STM32F103ZET6单片机作为微控制器,结合电阻应变片式传感器、A/D转换器、开关、液晶触摸屏等部分设计的一种简易电子秤的实现方法,可以实现称重,称重后的金额计算以及多金额时金额的累加计算等功能,程序内部附带算术计算器。
本电子秤具有体积小、成本低、精确度和可靠性高等特点。
关键词:传感器;单片机;STM32F103ZET6;电子秤Abstract: STM32F103ZET6 is presented as A micro controller, combined with theresistance strain chip sensor, A/D converter, switch, LCD touch screen and other part of the design of A simple method to realize the electronic scale, can realize the weighing, after weighing more than the amount of calculation, and the amount accumulative calculation of the function, such as within the program comes with arithmetic calculator. This electronic scale is small volume, low cost, high accuracy and reliability, etc.Key words: sensor; Single chip microcomputer; STM32F103ZET6; Electronic scale1系统方案 (4)1.1内部核心论证与选择 (4)1.2 称重传感器的论证与选择 (4)1.3 输入与输出模块的选择 (4)2系统理论分析与计算 (5)2.1 系统总设计 (5)2.2 简易电子秤工作原理 (5)2.3 四臂全桥放大电路的原理分析与计算 (5)3电路与程序设计 (5)3.1电路的设计 (5)3.1.1控制部分电路 (6)3.1.2传感器模块 (6)3.1.3转化电路 (6)3.1.4降压模块 (7)3.1.5显示与输入模块 (7)3.2程序的设计 (8)3.2.1程序工作原理的简介 (8)3.2.2主程序流程图 (8)4测试方案与测试结果 (10)4.1测试方案 (10)4.2 测试条件与仪器 (10)4.3 测试结果及分析 (10)4.3.1测试结果(数据) (10)4.3.2测试分析与结论 (10)结语 (11)0 引言称重装置目前已经普遍应用到国民经济的各个领域,并且对称重仪表的要求也越来越高,例如仪表要求具有更高的抗干扰能力和更高的精度[1],早期电子秤一般是通过模拟电路来实现的,随着电子技术的发展和数字芯片价格的逐渐降低,模拟控制已经慢慢被数字控制替代,而电子秤设计的模式也大多转变为以处理器为核心的模式,其精度与可靠性也都有明显的提高[2]。
基于单片机和传感器的电子秤系统教学设计与实现

0 引言单片机MCU是将计算机的中央处理器CPU、数据存储器RAM、指令存储器ROM、定时计数器和输入输出I/O接口、中断控制器、模数转化器、数模转换器、调制解调器等部件集成在一片芯片上,内部硬件结构和指令系统是针对自动控制应用而设计的,所以单片机又称为单片微型计算机SCM。
单片机从系统角度发展方面经历了三个阶段,第一阶段为SMC、第二阶段为MCU、第三阶段为片上系统SOC,从数据处理角度经历了四位机、八位机、十六位机、三十二位机、六十四位机,目前市面上主流机型位八位和十六位的微控制器MCU,在本设计中采用八位的单片机STC89C51。
传感器是一种转换装置,将感受到的被测量按照一定规律转换成可用输出信号,即把非电信号转换成电信号,便于传输和控制,一般由敏感元件、转换元件、测量电路和辅助电源等部分组成,是自动控制系统和自动检测系统中不可缺少的元件,在本设计中使用双孔悬壁梁式电阻应变传感器实现重量测量。
1 任务描述利用电阻应变片称重传感器和电子秤专用HX711A/D转换器芯片,结合单片机STC89C51应用,制作性价比高的电子台秤,主要适用于居民小区菜市场的小商贩。
通过将敏感元件(弹性体)、转换元件(电阻应变片)、信号调理电路集于一体,实现称重数据显示,并进行标定,本设计的电子台称指标要求达到国家计量标准计量III级,称重范围0—25Kg,分辨力为1g。
2 任务分析2.1 电阻应变片传感器的选择采用分辨力高、灵敏度高、频率响应好的双孔悬壁梁式电阻应变传感器实现重量测量。
使用过程中考虑秤台本身重量、工作过程摆放物体冲击、振动、超重等因素,所以实际使用的传感器量程必须大于额定称重量25Kg。
为了满足设计需求,同时具有一定的冗余量,该设计选择HL-B1-30Kg悬臂梁称重传感器,精度为0.01%。
2.2 电子秤专用A/D转换器芯片的选择要求传感器最大量程达30Kg和分辨力为1g,这就要求模块输出位数至少为13位,8位精度的PCF8591无法满足as 1 g, and has the function of pricing, trading information for vendors and customers provide the most direct and convenient for buyers and sellers trade, reduce fraud on both sides.To achieve this goal, this design USES the microcontroller STC89C51 control and choose 24 precision HX711 electronic scale special A/D module, LCD display screen choose JLX12864G - 085 - P LCD module. The choice of simple circuit complete, the design of components is cost-effective, stable performance, convenient operation, parameters conform to the requirements of the measurement, has the characteristics of ultra range audible and visual alarm automatically, has a strong market application value.Key words: resistance strain gage;MCU;HX711;audible and visual alarm项目基金:全国农业职业教育“十三五”规划课题(2016-135-Y-200)。
电子称的设计传感器

燕山大学课程设计说明书题目:电子秤的设计学院(系):电气工程学院年级专业: 12级学号:学生姓名:指导教师:教师职称:燕山大学《传感器原理与设计》课程设计任务书院(系):电气工程学院基层教学单位:仪器科学与工程系说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
2014年 12月 12日摘要称重技术是日常生活不可获缺的技术,随着科学技术的发展,称重技术和称重装置也获得了广泛的发展。
基于电阻应变传感器的电子称以其制作简单、成本低、量程大、精度高等优点,得到了广泛的应用和发展。
电阻应变式传感器是以电阻应变效应为基本原理的。
它由、电阻应变计、补偿电阻和外壳组成,可根据具体测量要求设计成多种结构形式。
弹性敏感元件受到所测量的力而产生变形,并使附着其上的电阻应变计一起变形。
电阻应变计再将变形转换为电阻值的变化,从而可以测量力、扭矩、位移等多种物理量。
本文介绍了一种基于电阻应变式的称重传感器的电子秤的设计,其中包括惠斯通全桥电路的设计和搭建、OP07组成的放大电路的设计、AD7705组成的模数转换电路以及转换后数字采集和显示的实现。
详细叙述了该称重传感器的参数设计,并验证其可行性。
关键字:传感器、电阻应变、差动电桥、放大电路、AD转换目录第1章概论1.1调研的意义课题背景电子称重技术是从50年代中期电子技术深入到衡器的辅助测量技术,从60年代初出现了机电结合电子衡器开始,迅速发展成为一门新兴技术,它是集传感器技术、微电子技术、计算机控制及测试技术、机械制造自动化技术为一体的综合技术,是现代称重计量和控制系统工程的重要技术基础。
应用电子称重技术开发的电子称重系统具有广阔的领域和较强的渗透性。
调研意义在我们生活中经常都需要测量物体的重量,于是就用到称。
随着计量技术和电子技术的发展,纯机械结构的杆秤、台称、磅秤等称量装置逐步被淘汰。
电子称量装置如电子称、电子天平等以其准确、快速、方便、显示直观等诸多优点而受到人们的青睐。
传感器电子秤实训报告

一、实训背景随着科技的飞速发展,传感器技术在我国得到了广泛的应用。
电子秤作为一种重要的称重设备,在工业、商业、医疗等领域发挥着至关重要的作用。
本次实训旨在通过设计和制作一个基于传感器的电子秤,深入了解传感器的工作原理,掌握电子秤的设计与制作方法,提高动手实践能力。
二、实训目的1. 熟悉传感器的工作原理和性能指标;2. 掌握电子秤的设计与制作方法;3. 培养团队合作精神和动手实践能力;4. 提高电子秤的调试和维修能力。
三、实训内容1. 传感器选型与电路设计本实训选用压力传感器作为称重元件,其主要性能指标如下:- 测量范围:0-10kg- 灵敏度:2.0mV/V- 线性度:±0.5%- 零点漂移:±0.5mg根据传感器性能指标,设计电路如图1所示。
电路主要由压力传感器、放大电路、A/D转换器、微处理器、显示屏和按键组成。
2. 电路制作与调试(1)制作电路板:按照电路图焊接电路板,注意元器件的安装位置和焊接质量。
(2)调试电路:首先检查电路连接是否正确,然后进行以下调试:- 调试放大电路:调整放大电路的增益,使输出信号满足A/D转换器的输入范围。
- 调试A/D转换器:调整A/D转换器的参考电压,确保转换精度。
- 调试微处理器:编写程序,实现数据采集、处理和显示等功能。
3. 软件设计(1)编写程序:使用C语言编写程序,实现以下功能:- 数据采集:采集传感器输出的模拟信号,并转换为数字信号。
- 数据处理:对采集到的数据进行滤波、放大等处理。
- 显示:将处理后的数据显示在LCD屏上。
- 按键控制:实现按键功能,如清零、单位切换等。
(2)功能演示:通过按键控制,实现以下功能:- 显示重量:实时显示当前重量。
- 清零:清空当前重量数据。
- 单位切换:切换重量单位,如克、千克等。
四、实训结果与分析1. 实训结果经过设计和制作,成功实现了一个基于传感器的电子秤,其性能指标如下:- 测量范围:0-10kg- 精度:±0.5%- 显示分辨率:0.1kg2. 结果分析(1)电路设计合理,元器件选型合适,电路性能稳定。
(完整版)传感器课程设计_称重传感器应用电路设计

东北石油大学课程设计2012年6 月25任务书课程传感器课程设计题目称重传感器应用电路设计专业测控技术与仪器姓名黄俊学号0906********主要内容:使用称重传感器,设计一台电子称电路,可称重5千克,精度10克。
设计开始先查阅相关资料,如元器件资料、方案选择等,可以使用单片机方案,也可以使用模拟电路方案,设计显示电路时显示**.**千克,并有相应的手动校正电路。
基本要求:1.设计以测量显示部分电路为主;2.要绘制原理框图;3.绘制原理电路;4.要有必要的计算及元件选择说明;5.提供元件清单;6.如果采用单片机,必需绘制软件流程图主要参考资料:[1]黄贤武,郑筱霞.传感器原理与应用[M].电子科技大学出版社,2004[2] 王琦.电阻应变式称重传感器的设计[J].木材加工机械.2005(3)[3] 缪少勇.浅谈称重传感器工作原理及故障排除[J].科学之友.2010(14)[4] 施昌彦.称重传感器计量规程[J].试验技术与试验机.1987(4)[5]张国维.测控电路[M].机械工业出版社,2007完成期限2012.6.25—2012.6.29指导教师专业负责人2012年6 月25 日摘要在我们生活中经常都需要测量物体的重量,于是就用到秤,但是随着社会的进步、科学的发展,我们对其要求操作方便、易于识别。
随着计量技术和电子技术的发展传统纯机械结构的杆秤、台秤、磅秤等称量装置逐步被淘汰,电子称量装置电子秤、电子天平等以其准确、快速、方便、显示直观等诸多优点而受到人们的青睐。
电阻应变式传感器具有测量范围广、精度高、误差小和线性度好等优点,且能在恶劣环境下工作,在力、压力和重量测试中有非常广泛的应用,力传感器具有结构简单、体积小、重量轻、使用寿命长等优异的特点。
所以电阻应变式力传感器制作的数显电子秤具有准确度高易于制作,简单实用、成本低廉、体积小巧、携带方便等特点。
关键词:称重传感器、电阻应变计、精度、显示目录一、设计要求 (1)二、方案设计 (1)1、方案说明 (1)2、方案论证 (2)三、传感器工作原理 (2)四、电路的工作原理 (4)五、单元电路设计、参数计算和器件选择 (6)1、测量电路 (6)2、差动放大电路 (7)3、A/D转换 (8)4、显示电路设计 (9)5、系统需要的元器件清单 (10)六、总结 (11)称重传感器应用电路设计一 、设计要求使用称重传感器,设计一台电子称电路,可称重5千克,精度10克。
传感器课程设计报告---数显电子秤

传感器课程设计报告---数显电子秤摘要本实验采用称重传感器(Scale Sensor)以及其他电学元件,经过程序控制,建立数显电子秤系统。
实验主要完成以下工作: 建立系统原理模型,确定系统工作实际要求,设计系统结构;确定芯片及元件;编写程序,完成计量显示功能;实现自动量程运算功能;实现外设接口总线功能,完成计量控制;测试并调试系统。
实验在51单片机应用基础上,运用C语言和Assembly语言,结合多特性器件的结构特点,实现文字、按键、秤台的控制功能,实现了从量程设定到精确测量、计算的全功能数显电子秤系统。
关键词:称重传感器、51单片机、C语言、Assembly1、系统原理本项目属于单片机控制技术在电子秤系统中的应用。
根据需要,本系统由单片机51原件,LCD显示屏,称重传感器及按键,等成分组成。
该系统采用无极性常量电流技术,穿过称重传感器的电阻,当物品放在传感器上时,常量电流会变化,而51 单片机通过AD转换,将这种变化转化为数字量,将该电压输入51单片机,得到实时重量指示。
单片机利用程序,还可以完成计量的功能,以及校准的功能,以及精确的数显计量结果。
2、工作要求根据系统原理,本实验的工作要求有:(1) 确定系统电路结构,并进行原理设计;(2)为实现测量功能,确定称重传感器,设计确定AD转换电路,与AD转换模块实现量程设定;(3)编程51单片机实现从空载重量测量,量程设定,重量计量,及数显等功能;(4)完成系统的调整与调试等工作。
3、系统仿真分析本文采用keil仿真器,仿真数显电子秤系统。
采用51芯片,将称重传感器、LCD显示屏等外设连接在51单片机上,在keil软件中,建立对应文件,完成数显电子秤程序的编写、修改、运行。
仿真中根据程序,绘制数显电子秤系统工作流程图,结合系统原理,完成系统中称重传感器、51单片机、LCD等设备及功能模块之间控制同步操作,即从空载重量测量,量程设定,重量计量,及数显等功能,最后经过合理的设计,得到精确的数显结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用传感器设计电子秤
环境工程12-1 1230000122 刘绍博
摘要:
本实验的主要内容是通过对霍尔氏传感器的应用,设计出一款电子秤,并通过本实验得到该电子秤与标准电子秤之间的误差度。
关键词:
霍尔氏传感器、电子秤、传感器应用、设计、误差度
引言:
传感器的定义是能感受规定的被测量,并按照一定的规律转化成可用输出信号的器件或装置。
传感器起到信息收集、信息数据的转化作用。
本实验采用的是霍尔氏传感器,利用霍尔传感器将被测物体的质量转化成电信号,由电信号与质量间的线性关系从而得出被测物体的质量。
实验原理:
设计电子秤的基本原理是:不同质量的被测物,会引起传感器不同的反应,把这种反应通过特定的方法或电路转换为电压。
一般情况下是利用它们的线性变化关系,在被测物的质量与电压之间建立起对应关系,测出电流电压值,从而就可以得到被测物的质量。
霍尔传感器是有两个产生梯度磁场的环形磁钢和位于梯度磁场中的霍尔元件组成。
霍尔元件通过恒定电流时,霍尔电势的大小正比于磁场强度,当霍尔元件在梯度磁场中上、下移动时,输出的霍尔电压U取决于其在磁场中的位移量,所以测得霍尔电压的大小便可获知霍尔元件的静位移。
若将一个圆盘(即称重平台)和霍尔元件相连,就把霍尔元件的静位移和圆盘上的物体的质量对应起来,也就是说把霍尔电压的大小和圆盘上的物体的质量对应起来,据此就可以设计一种电子秤。
由公式可以看出电压U也是关于位移x的函数,不同质量的物体放在传感器的托盘上所引起的位移是不同的,因而可以通过不同位移的所显示的电压值来确定这个位移所代表的质量。
实验内容与步骤:
1)首先将差动放大器调零,用连线将差动放大器在正(+)负(—)、地短接。
将差动放大器的输出端与F/V表的输入插口相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮式F/V表显示为零,关闭主、副电源。
调好后,增益旋钮可以动,但调零旋钮不可再动。
2)根据图1连线,W1、r为电桥单位的直流电桥平衡网络的一部分。
装好测微头与振动台吸合,并使霍尔片置于半圆磁钢上下正中位置。
3)经指导老师检查无误后,开启主、副电源,调整W1使电压表指示为零。
4)上下旋动测微头各3mm左右,每变化0.5mm读取相应的电压值,并记录到表1中,指出线性范围,求出霍尔片的位移与显示电压之间的线性关系。
5)卸掉测微头,调节W1使电压表指示为零,将一个砝码放到托盘上,读出显示电压,并填入表2中。
6)继续放一个砝码放到托盘上,读出显示电压,填入表2中。
共累计放
5个砝码到托盘上,将显示电压填入表2中。
7) 根据表2内的数据,求出砝码质量与显示电压读数之间的函数关系。
8)并根据步骤4中所得出的霍尔片位移与电压之间的线性关系结合步骤7中所得出的砝码质量与电压之间的关系求得质量与电压之间的转换关系。
9)将待测物体放到托盘上,读出电压表显示数据。
10)根据步骤8中所得到的质量与电压之间的转换关系,由待测物体得到的电压求出待测物体的质量。
11) 将待测物体放到标准电子秤上称取物体质量,从而得到实验所设计的电子秤的误差度。
数据处理与实验结果:
将数据填入以下表格。
表一:
表二:
g=29.91
r=7.97
根据表1可以得到下面的坐标图。
根据表2可以得出质量和电压之间的关系式:W=U/x(三)
结束语:
经过本次试验让我更好地理解传感器的实际应用;通过本次设计实验使我更加了解实践联系实际的正确性;通过本次设计使我在动手能力得到锻炼的同时充分发挥自己的创新潜能,充分调动我的学习主动性,培养了我的创新能力。
参考文献:
张彦纯《大学物理实验》
北京:机械工业出版社2009年
河南科技大学有关实验。
网站:
/link?url=TsCj2ybtJ1AUdy4W_kuKFtfH39sWM1ZAk8sIxy0McvuZJcQ IO3MC3gwslS9fuM8-YDWvZgzh82On6jLBz3aBkZjE40xFcrIbrZXGXN_y2YChttp://www.docin.co m/p-406676592.html
/p-406676592.html。