2.2 迭代法的一般形式与收敛性定理

合集下载

37第七节 迭代法及其收敛性

37第七节 迭代法及其收敛性
x(k) x q x(k) x(k1) 1q
x(k) x qk x(1) x(0) 1q
证 因 (B)||B||=q<1, 所以迭代格式收敛, 且有 设 lim x (k) =x*,由 x(k+1) = Bx(k) + f , 得 x* = Bx* + f ,则
数学学院 信息与计算科学系
又 || Bk|| ||B||k ,有 lim||Bk||=0 , 故 lim B k =0,由1)知,迭代格式收敛。
数学学院 信息与计算科学系
三、迭代法的收敛速度
考察误差向量
e(k) =x(k) -x*=Bk ·e(0)
设B有n个线性无关的特征向量及相应的特征值为
1 ,2 , ,n ,
1 , 2 , , n
数学学院 信息与计算科学系
2) 由1)知,迭代格式收敛 lim Bk=O , 即lim||Bk||=0 ,从而存在 k ,使 || B k || <1,由谱半径 的性质有
[( B )]k = (B k ) ||B k ||<1,
故得
( B )<1,
因(B)=inf{||B||}且(B)<1,存在 >0及使 || B || ( B )+ <1,
取对数得 定义3 称
k s ln10
ln (B)
R(B) ln (B)
为迭代法 x(k+1) = Bx(k) + f 的收敛速度。 由此看出,当(B)<1愈小,速度R(B)就愈大,
所需要的迭代次数也就愈少。
数学学院 信息与计算科学系
定理 2 若 ||B||=q<1,则对任意x(0) 迭代格式 x(k+1) = Bx(k) + f 收敛 ,且有误差估计式

2.2 迭代法

2.2 迭代法

= ϕ ' (ξ )( x * − x * *) ≤ L x * − x * *
又, L < 1
⇒ x* = x * *
计算方法
② ∀x0 ∈ [a, b] 则 xk +1 − x *= ϕ ( xk ) − ϕ ( x*) = ϕ ' (ξ )( xk − x*)
≤ L xk − x * ≤ L2 xk −1 − x * x k +1 − x *
计算方法
二、收敛性分析
定理2.1 (全局收敛定理) 全局收敛定理) 定理
在区间[a,b]上可导 上可导 设ϕ ( x )在[a, b] 在区间
a (1)当a ≤ x ≤ b时, ≤ ϕ ( x ) ≤ b;
( 2) ∀x ∈ [a, b], | ϕ ' ( x ) |≤ L < 1 ( L为常数) 为常数)
ϕ ′( x ) ≤ L < 1
计算方法
则对于任意的初始值 x0 ∈ S ,由迭代公式 收敛于方程的根。 产生的数列 { xn } 收敛于方程的根。 (这时称迭代法在 α 的S邻域具有局部收敛性。) 邻域具有局部收敛性。)
x n +1 = ϕ ( x n )
Remark1:全局与局部收敛定理中的条件都是充分 Remark1: 条件,条件满足则迭代法收敛,不满足则不能判定, 条件,条件满足则迭代法收敛,不满足则不能判定, 此时可以用试算来判定迭代法的是收敛性。 此时可以用试算来判定迭代法的是收敛性。
p! p!
由迭代公式 xk +1 = ϕ ( xk ) 及 x * = ϕ ( x * ) 有 ϕ ( p ) (ξ ) * * p
′( x* ) = ϕ ′′( x* ) = L = ϕ ( p−1) ( x* ) = 0, ϕ ( p ) ( x* ) ≠ 0 ϕ 邻域是p阶收敛的。 则迭代过程在 x * 邻域是p阶收敛的。

数值分析第四章 解非线性方程的迭代法

数值分析第四章  解非线性方程的迭代法


(xk+1-α)2≈(xk-α)(xk+2-α) xk+12-2xk+1α+α2≈xkxk+2-(xk+xk+2)α+α2
解得
x k x k + 2 x k2+1 α≈ x k + 2 2 x k +1 + x k
( x k +1 x k ) 2 = xk x k + 2 2 x k +1 + x k
可见,|xk-xk-1|充分小可保证|xk-α|充分小, 而且对任 一ε>0,要使|xk-α|<ε, 只要 k > ln ε (1 L) ÷ ln L x1 x 0
证 记(x)=(x)-x,则(a)=(a)-a≥0, (b)=(b)b≤0, 由(x)的连续性,必存在α∈[a,b]使(α)=(α)-α=0, 即α=(α), 又′(x)=′(x)-1<0, 所以x=(x)的根唯一. |xk+1-xk|=|(xk)-(xk-1)| =|′(ξ)(xk-xk-1)|≤L|xk-xk-1| |xk+1-α|=|(xk)-(α)|=|′(ξ)(xk-α)|≤L|xk-α| |xk-α|=|(xk-xk+1)+(xk+1-α)| ≤|xk-xk+1|+|xk+1-α|≤L|xk-xk-1|+L|xk-α| 于是有:
k 0 1 2 3 4 5 xk 0.5 0.60653 0.54524 0.57970 0.56006 0.57117 |xk-xk-1| 0.10653 0.06129 0.03446 0.01964 0.01111 k 6 7 8 9 10 xk 0.56486 0.56844 0.56641 0.56756 0.56691 |xk-xk-1| 0.00631 0.00358 0.00203 0.00115 0.00065

迭代法和收敛性

迭代法和收敛性

x1(k x2(k
1) 1)
0.2x2(k) 0.1x3(k) 0.3
0.2x1(k )
0.1x3(k) 1.5 , k
0,1, 2,
x3(k
1)
0.2x1(k )
0.4x2(k )
2
迭代计算
x(0) 0 [0, 0, 0]T
x(1) 1
0.3
x(1) 2
1.5
x1(k x2(k
其中系数矩阵非奇异,且主对角元aii≠0,(i
=1,2,…,n),由第i 个方程解出xi,有
x1
1 a11
(b1
a12 x2
a13 x3
x2
1 a22
(b2
a21x1
a23x3
xn
1 ann
(bn
an1x1
an2 x2
a1n xn ) a2n xn )
ann1xn1)
建立迭代格式
aij
x
( j
k
)
)
j i 1
加速
x ( k 1) i
( k 1)
xi
(1 ) xi(k )
i 1, 2, , n
或合起来写成迭代加速的形式
x (k 1) i
aii
(bi
i 1
a x (k 1) ij j j 1
n
aij
x
(k j
)
)
(1
)
xi( k
)
j i1
参数 称为松弛因子, 1 时迭代格式就是高斯-
x (k1) i
1 aii
(bi
n
aij x j(k ) ),
j1
(i 1,2,, n)

迭代法的收敛性

迭代法的收敛性
k
x* Mx* g 由迭代公式有 M (x
k k
x ( k ) x* Mx ( k 1) g Mx* g
( k 1)
x ) M (x
* 2 * k
( k 2) (k )
x ) M (x
* k
(0)
x )
*
于是有 lim M ( x
1 1 例:Ax b, A 2 1 2
1 2 1 1 讨论用三种迭代法求解的收敛性。 2 1 1 2 解:因A为对称且其各阶主子式皆大于零,故A为对称正定矩 1 2 阵。由判别条件3,Gauss-Seidel迭代法与松弛法(0 2) 均收敛。A不是弱对角占优阵,故不能用条件1判断。 0 1 -1 Jacobi迭代法的迭代矩阵为B I - D A 2 1 2 1 2 0 1 2 1 2 1 2 0

1,
1,由推论1无法判别收敛性。
对一些特殊的系数矩阵可给出几个常用的判 别收敛条件
设有线性方程组Ax b, 下列结论成立(收敛充分条件) 1.若A为严格对角占优阵或不可约弱对角占优阵,则 Jacobi迭代法和Gauss-Seidel迭代法均收敛。 2.若A为严格对角占优阵, 0 1, 则松弛法收敛。 3.若A为对称正定阵,则松弛法收敛的充要条件为 0 2。 10 1 2 2 1 0 B 1 2 1 上两例中: A 1 10 2 1 1 5 0 1 2 A为严格对角占优阵,故Jacobi与Gauss-Seidel迭 代均收敛。B为非严格对角占优阵,但为对称正定 阵, =1.4故松弛法收敛。
推论1 对任意初始向量x 和右端项g,若 M 1,由迭代

迭代法的收敛性

迭代法的收敛性


det[I (D L)1U ] 0
从而 det(D L)1 det[(D L) U ] 0
所以
det[(D L) U ] 0
可得
因为
|aii| |aij | ji
i1
n
|||aii||| |aij ||| |aij |
j1
j i 1
i1
n
n
|| |aij| |aij| (||1) |aij|
(1)写出解该方程组旳Jacobi迭代旳迭代
阵,并讨论迭代收敛旳条件;
(2)写出解该方程组旳G-S迭代旳迭代阵, 并讨论迭代收敛旳条件。
17
补充例题
例:AX=b为二元线性方程组, 证明:解该方程组旳Jacobi迭代与G-S迭 代同步收敛或同步发散。
18
9
特殊方程组迭代法旳收敛性
4 1 1 问题:该矩阵具有怎样旳特点?
2 5 1 1
2
3
结论:该矩阵是严格对角占优阵
定义:假如矩阵A旳元素满足
jn
| aii | | aij | i 1,2,3,, n j 1 ji
则称A为严格对角占优矩阵。
10
特殊方程组迭代法旳收敛性
定理:若线性方程组AX=b旳系数矩阵A为 严格对角占优矩阵,则解该方程组旳Jacobi 迭代法和G-S迭代法均收敛。
2
一阶定常迭代法旳收敛性
则: (k 1) B (k ) B 2 (k 1) B k 1 (0)
注意 (0) x(0) x * 为非零常数向量
所以迭代法收敛旳充要条件
lim (k1) lim( x(k1) x*) 0
k
k
可转变为
lim Bk1 0

2.2 迭代法

2.2 迭代法
* lim | x xk | 0 要证结论(1)成立,即要证 k
首先用归纳假设证明如下不等式
| x* xk | Lk | x* x1 |
38
当k=1时 x x1 L x x0 ,已证成立。
k 1 x x L x x0 成立,可得 假设 k 1
不动点迭代的几何解释 y=f(x)=x y=g(x)
38
不动点判定定理
设g是一连续函数,且 { pn } 是由不动点迭代 n 0
生成的序列。若 lim pn p ,则p是g(x)的不动点
n
pn 1 p pn p ,则 lim 证:lim n n
g ( p ) g (lim pn ) lim g( pn ) lim pn1 p
1 1 x xk x k 1 x k ( x k ) ( x k 1 ) 1 L 1 L L Lk x k x k 1 x1 x0 1 L 1 L

L越小,收敛越快
38
不动点迭代的图形解释
一般来说从 f ( x ) 0 , 构造 ( x )不止一种,有的
38
由介值定理,存在 x [a , b] 使 f ( x ) 0



x ( x ).
②设方程 x ( x ) 还有一根 , 即 a (a ). 则由微分中值定理有
x ( x ) ( ) ( )( x ) L x
x4 2x 2 x 3 0 x 2 ( x)
x 4 1
x 3 ( x) x4 2x2 3
(其中第二式 x4 2 x 2 1=x 4 )

迭代解法全章

迭代解法全章

向量-矩阵范数旳相容性,得到
|λ| || x ||=||λx|| =|| Ax|| ≤ || A || ||x||
从而,对A旳任何特征值λ均成立 |λ|≤|| A ||
(6.1)
设n阶矩阵A旳n个特征值为λ1,λ2,…λn。称
(
A)
max
1i n
i
为矩阵A旳谱半径,从(6.1)式得知,对矩阵A旳任何一
称(3)为求解(1)旳近似解旳迭代解法,称{x(k)}为(1)近
似解序列,称B为迭代矩阵。
假如 lim x (k ) x* 则有 k x*= Bx*+F
(4)
我们称迭代法(3)收敛,不然为发散。下面分析迭代格 式(3)收敛旳条件.
12/29/2023
19
x(k+1)= Bx(k)+F , k=0 ,1 , … , x*= Bx*+F
及向量
x*
( x1* ,
x2* ,,
x
* n
)T
假如
lim x(k) x* 0
k
则称向量序列 x(k) 收敛于向量 x* 。记作
lim x(k ) x* 或 x(k ) x*
k
向量序列 {x(k)} 收敛于向量 x*,当且仅当它旳每一 种分量序列收敛于x*旳相应分量,即
x(k)
x*
x(k) i
1
求解线性方程组旳数值解除了使用直接解法,迭代解 法也是经常采用旳一种措施,这种措施更有利于编程计 算,本章将简介这种措施。
§1 向量和矩阵旳范数
为了对线性方程组数值解旳精确程度,以及方程组 本身旳性态进行分析,需要对向量和矩阵旳“大小”引 进某种度量,范数就是一种度量尺度,向量和矩阵旳范 数在线性方程组数值措施旳研究中起着主要旳作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设aii0 (i=1,2,,n),并将A写成三部分
0 a11 a 21 0 a 22 A a n 1 ,1 a n 1 , 2 0 a nn a n 2 a n , n 1 a n1 0 a12 a1,n1 a1n 0 a 2 , n 1 a 2 n 0 a n 1, n 0 D LU. 0

k
B ( H )
k
两边取对数得: k ln ( H ) ln k
ln ln ( H )
定义:
ln ( H )
为迭代法(2.2.3)的渐近收敛速 度。
解线性方程组的迭代法
线性方程组
a11 x1 a12 x2 a x a x 21 1 22 2 an1 x1 an 2 x2 a1n xn b1 a2 n xn b2 ann xn bn
复习:矩阵的谱半径 设λ是矩阵A相应于特征向量x的特征值,即 Ax=λx 向量-矩阵范数的相容性,得到 |λ| || x ||=||λx|| =|| Ax|| ≤ || A || ||x|| 从而,对A的任何特征值λ均成立 |λ|≤|| A || ( 3)
设n阶矩阵A的n个特征值为λ1,λ2,…λn,称 ( A) max i
x ( k 1) x* H ( x ( k ) x* )
由此递推:x ( k 1) x* H k 1 ( x ( 0) x* ), k 0,1,2,
x 是线性方程组Ax=b的解
x* Hx* g
x
k 1
*
Hx
k
f
0 x 引理2.1:迭代法对任何初始近似 均收敛的
等价变换
迭代矩 阵
x(k+1)=Hx(k) +f
H 并不是 唯一的, 因此迭代 格式也不 是唯一的!
e. g. A I A I x I A x b
A D A D x I D 1 A x D 1b x D 1 (b Ax ) a ii 0 A L D U x D 1 L U x D 1b aii 0
H
p k
q 1 x R n , lim x x and
0 k k p
x x*
q k k 1 x x 1 q qk 1 0 x x 1 q
p
p
后验估计 Posterior error – estimated 先验估计 Prior error— estimated
0 a12 0 U
a1n a2 n 0
k
0.1 0.5 f , 其中 H , 0.8 0.1
讨论该迭代法的收敛性。
例2 设 x
k 1
Hx
k
0.9 0 f , 其中 H , 0.3 0.8
讨论该迭代法的收敛性。
2.2.3 迭代法的收敛速度
定理2.5 当 H 1 时,由迭代法式所定义的 序列 {x( k ) } 满足如下估计式:
x
(k )
x
*
H 1 H
k
x( k ) x( k 1)
x
(k )
H x x (1) x (0) 1 H
*
现在讨论使误差减少初始误差的 倍所需的最 少迭代次数
x
(k )
x H x (0) x *
*
k
(k ) * (0) * x x x x 若要求
kk 1 , , k
lim k lim
k k k
k

k
lim
k
1 k
k 1
0.
x 是线性方程组Ax=b的解
x* Hx* g
x
k 1
*
Hx
k
f
0 引理2.1:迭代法对任何初始近似 x 均收敛的 充分必要条件是 H k 0 k
k
2.2.2 迭代法的收敛性
定义 利用迭代公式构造序列 x ( k ) , 以求 得方程组 的近似解的算法称为解式的简单迭代法。 若迭代序列 x ( k ) 收敛,则称此迭代法是收敛的。
x
k 1
Hx
k
f,
x Hx f
* *
k * x x 两式相减,知误差向量 满足下列迭代关系:
充分必要条件是
H k 0k
k H 引理2.2: 0 k 的充要条件是 ( H ) 1
定理2.4:迭代法对任何初始近似均收敛的充分 必要条件是迭代矩阵H的谱半径
( H ) 1
(k ) 定义 设矩阵序列A k (a ij ) R nn , A (a ij ) R nn,若 (k ) lim a a ij ij k
1 i n
为矩阵A的谱半径。
2.2 迭代法的一般形式 与收敛性定理
2.2.1 迭代法的一般形式
已知线性代数方程组
Ax b
首先将方程组改写成等价的形式
x Hx g
从而建立迭代式:

x
xபைடு நூலகம்
k 1
为迭代序列,并称H为迭代矩阵。
Hx g k 0,1,2
H k 0 k 的充要条件是 ( H ) 1 引理2.2:
定理2.4:迭代法对任何初始近似均收敛的充分 必要条件是迭代矩阵H的谱半径 ( H ) 1
推论:若 H 1 ( 允许为任何一种相容的矩阵范 数) ,则迭代法收敛。
例1 设 x
k 1
Hx
迭代法思想: 第一步 第二步
将Ax b转化为等价方程组: x Hx f 设x * 为精确解,x* Hx * f
构造迭代格式,任取初 始向量x ( 0 ) , 按逐次代
H 与k无关,称为 入方法构造 { x(k ) } 一阶定常迭代法
x
( k 1 )
Hx
(k )
f
收敛?发散?
( i , j 1,2, , n)
k
则称{ A k }收敛于A,记为lim A k A .
例 设矩阵序列 1 2 2 A 0 , A 0 且 | | 1,考查其极限 .
k 2 k , , A 2 0
若 lim x ( k ) x*,则称迭代法收敛,且 x * 为方程的解。
k
否则此迭代法发散。
判断收敛的方法:
(k ) (k ) 若 lim || x x * || = lim || || 0, 则此迭代法收敛。 k k
( k 1 )=x ( k 1 ) x* Hx ( k ) f Hx * f H ( x ( k ) x*) H ( k ) H k 1 ( 0 ) 即有 ( k ) 0, H k 0

A=D-L-U
a11 a 21 A a n1 0 a L 21 a n1
a12 a22 an 2
a1n a2 n ann 0
a11 D
a22
ann
0 an 2
计算中判断迭代终止条件的方法:
|| x ( k 1) x ( k ) || , x* x ( k 1)
如何判断迭代法是收敛 的??
收敛条件
1. lim x k x* lim H k 0
k k
2.
lim H k 0 H 1
x
3.
a11 a12 a a 21 22 an1 an 2
a1n x1 b1 x b a2 n 2 2 ann xn bn
Ax=b
怎样设计迭代格 式? Ax=b x=Hx+f
相关文档
最新文档