传热学第四章非稳态导热例题

合集下载

非稳态导热例题

非稳态导热例题

“非稳态导热”例题例题1:一温度为20℃的圆钢,长度为0.3m ,直径为60mm ,在一温度为1250℃的加热炉内被加热。

已知圆钢的导热系数为35 W/(m ∙K),密度为7800kg/m 3,比热容为0.460J/(kg ∙K),加热炉长为6m ,圆钢在其中匀速通过,其表面和炉内烟气间的表面传热系数为100 W/(m 2∙K)。

现欲将该圆钢加热到850℃,试求该圆钢在加热炉内的通过速度。

解 特征尺寸A V /为m 0136.0)1060(14.3413.0)1060(14.33.0)1060(14.3414124133322=⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯=⨯+=---d dL L d A V πππ 则毕渥数v Bi 为05.0211.01.0039.0350136.0100)/(v =⨯=<=⨯==M A V h Bi λ 因此可以采用集总参数法求解。

θθρτ0ln hA cV= 即s548.14 1250850125020ln 100)10460.0(78003=--⨯⨯=τ则该圆钢在加热炉内的通过速度为m /s 0109.014.5486===τL v例题2:两块厚度均为30mm 的无限大平板,初始温度为20℃,分别用铜和钢制成。

平板两侧表面的温度突然上升至60℃,计算使两板中心温度均达到56℃时两板所需时间之比。

已知铜和钢的热扩散率分别为610103-⨯m 2/s 和6109.12-⨯m 2/s 。

(125.0==铜钢钢铜a a ττ)例题3:无内热源、常物性的二维导热物体在某一瞬时的温度分布为x y t cos 22=。

试说明该导热物体在x =0,y =1处的温度是随时间增加而逐渐升高,还是逐渐降低?例题4:一初始温度为20℃的钢板,厚度为10cm ,密度为为7800kg/m 3,比热容为460.5 J/(kg ∙K),导热系数为53.5W/(m ∙K),放置到温度为1200℃的加热炉中加热,钢板与烟气间的表面传热系数为407 W/(m 2∙K)。

第四章传热学

第四章传热学

4. 非稳态导热4.1 知识结构1. 非稳态导热的特点;2. (恒温介质、第三类边界条件)一维分析解求解方法(分离变量,特解叠加)及解的形式(无穷级数求和);3. 解的准则方程形式,各准则(无量纲过余温度、无量纲尺度、傅里叶准则、毕渥准则)的定义式及其物理涵义; 4. 查诺谟图求解方法;5. 多维问题的解(几个一维问题解(无量纲过余温度)的乘积);6. 集总参数法应用的条件和解的形式;7. 半无限大物体的非稳态导热。

4.2 重点内容剖析4.2.1 概述在设备启动、停车、或间歇运行等过程中,温度场随时间发生变化,热流也随时间发生变化,这样的过程称为非稳态导热。

一.过程特点分类1. 周期性非稳态导热(比较复杂,本书不做研究) 如地球表面受日照的情况 (周期为24小时)对于内燃机气缸壁受燃气冲刷的情况,周期为几分之一秒,温度波动只在很浅的表层,一般作为稳态处理。

2. 非周期性非稳态导热:(趋于稳态的过程,非稳态 稳态) 例子:如图4-1,一个无限大平板,初始温度均匀,某一时刻左壁面突然受到一恒温热源的加热,分析平壁内非稳态温度场的变化过程: (1) 存在两个阶段初始阶段:温度变化到达右壁面之前(如曲线A-C-D ),右侧不参与换热,此时物体内分为两个区间,非稳态导热规律控制区A-C 和初始温度区C-D 。

正规状况阶段:温度变化到达右壁面之后,右侧参与换热,初始温度分布的tx1t 0t ABCDEF图4-1 非稳态导热过程的温度变化影响逐渐消失。

(2) 热流方向上热流量处处不等因为物体各处温度随时间变化而引起内能的变化,在热量传递路径中,一部分热量要用于(或来源于)这些内能,所以热流方向上的热流量处处不等。

二. 研究任务1. 确定物体内部某点达到预定温度所需时间以及该期间所需供给或取走的热量,以便合理拟定加热和冷却的工艺条件,正确选择传热工质;2. 计算某一时刻物体内的温度场及温度场随时间和空间的变化率,以便校核部件所承受的热应力,并根据它制定热工设备的快速启动与安全操作规程。

传热学-第四章22

传热学-第四章22

50 × 0.02 Bi1 = = = 0.01 λ 100

400 × 0.02 Bi 2 = = =1 λ 8

第四章 热传导问题数值解法
(i ) N
式中 Fo∆ =
a∆τ 网格傅里叶数 ∆x 2
h∆τ λ ∆τ h∆x = = Fo∆ ⋅ Bi∆ 2 ρc∆x ρc ∆x λ
( ( ( ) t Ni +1) = t Ni ) (1 − 2 Fo∆ ⋅ Bi∆ − 2 Fo∆ ) + 2 Fo∆ t Ni −1 + 2 Fo∆ ⋅ Bi∆ t f
∆τ
从第二式得出
∂t ∂τ
=
n ,i
( ( t ni ) − t ni −1)
∆τ
+ O ( ∆τ ) ≈
( ( t ni ) − t ni −1)
∆τ
difference。 向后差分 back difference。
∂t 二级数相减: 二级数相减: ∂τ
( ( ( ( t ni +1) − t ni −1) t ni +1) − t ni −1) 2 = + O(∆τ ) ≈ 2∆τ 2∆τ
n ,i
( 显式格式
explicit finite difference scheme )
如扩散项用( +1)时层的值来表示 如扩散项用(i+1)时层的值来表示
( ( ( ( ( tni +1) − tni ) tni++1) − 2tni +1) + tni−+1) 1 =a 1 ∆τ ∆x 2
(隐式格式 implicit finite difference scheme) )

传热学:第四章 导热问题数值解法

传热学:第四章 导热问题数值解法

t m,n
1 t m 1,n t m 1,n t m ,n 1 t m ,n 1 4
•二维导热问题;网格线;
沿x、y方向的间距为x、 y;网格单元。
每个节点温度就代表了它 所在网格单元的温度。 p(m,n)
•此方法求得的温度场
在空间上不连续。
•网格越细密、节点越多,结果越接近分析解 •网格越细密,计算所花时间越长
2) 数值计算法,把原来在时间和空间连续的物理量的
场,用有限个离散点上的值的集合来代替,通过求解
按一定方法建立起来的关于这些值的代数方程,从而
获得离散点上被求物理量的值;并称之为数值解;
3) 实验法 就是在传热学基本理论的指导下,采用实
验对所研究对象的传热过程进行测量的方法。 3 三种方法的特点 1) 分析法 a 能获得所研究问题的精确解,可以为实验和数值 计算提供比较依据;
t m,n 1 2t m,n t m,n 1 2t 同理: 2 y y 2 m,n
将以上两式代入导热微分方程得到节点(m,n)的温 度离散方程: t tm,n1 2tm,n tm,n1 m 1, n 2t m , n t m 1, n 0 2 2 x y
x y 上式可简化
第三类边界条件: y x
qw h(t f tm,n )
2hx 2hx x 2 tm1,n tm,n1 2 tf 0 tm,n 2
(3) 内部角点
y t m 1,n t m ,n y y qw 2 x x 2 t m ,n 1 t m ,n x x t m ,n 1 t m ,n x qw 2 y 2 y 3xy 0 4

传热学第四章

传热学第四章

第四章 非稳态导热
第一节 概 述
a)温度分布;b)两侧表面上导热量随时间的变化
图4-1
第四章 非稳态导热
第一节 概 述
(1)温度场:【如图4-1a)所示】 ①首先,紧挨高温表面部分的温度很快上升, 而其余部分仍保持原来的温度t0,如图中曲线FBC所示; ②其次,随着时间的推移,温度变化波及的范围不断扩大, 以致在一定时间以后,右侧表面的温度也逐渐升高, 如图中曲线FC、FD所示; ③最后,达到一个新的稳态导热时,温度分布保持恒定, 如图中曲线FE所示。(λ为常数时,FE 为直线。)
t f ( x, y, z, )
dt (3)物体在非稳态导热过程中的温升速率: d
(4)某一时刻物体表面的热流量Φ(W) 或从某一时刻起经过一定时间后表面传递的总热量Q(J)。 要解决以上问题,必须首先求出: 物体在非稳态导热过程中的温度场。
第四章 非稳态导热
第一节 概 述
※求解非稳态导热过程中物体的温度场,通常可采用
第四章 非稳态导热
第一节 概 述 一、基本概念
非稳态导热即指温度场随时间而变化的导热过程 1、定义(P53)
t f ( x, y, z, )
※在自然界和工程中有许多非稳态导热问题。 例如,锅炉、蒸汽轮机和内燃机等动力机械在起动、停机和变 工况运行时的导热; 又如,在冶金、热处理和热加工等过程中,工件被加热或冷却 时的导热; 再有,大地和房屋等白天被太阳加热、夜晚被冷却时的导热。 ※由此可见,研究非稳态导热具有很大的实际意义。
l
—— 导热物体的某一尺寸,详见后述。
第四章 非稳态导热
第一节 概 述
1、毕渥数Bi (P55)
有时用引用尺寸l
e
l ——导热物体的某一尺寸

传热学-第4章-非稳态导热的计算与分析

传热学-第4章-非稳态导热的计算与分析

10
4.2 对流边界条件下的一维非稳态导热
❖ 对几何形状简单、边界条件不太复杂的情形,仍然可 以通过数学分析的方法获得分析解
❖ 这里以(无限大)平壁被流体对称加热的非稳态导热 过程为例,说明非稳态导热的基本特征、分析方法和 过程
❖ 定性地、定量两个方面
11
4.2.1 平壁内非稳态过程的基本特征
问题描述: ❖ 厚为2δ、无内热源的常物性平壁 ❖ 初始时刻温度分布均匀,为t0 ❖ 某时刻突然投入到温度为t∞的高
conduction):物体内任意位置的温度随时间持续升高 (加热过程)或连续下降(冷却过程) 边界条件或内热源不变时,过程将最终逐渐趋于某个 新的稳定温度场
6
4.1 概述
研究目的:
❖ ——确定非稳态过程中的温度场:在此基础上确定物体中
某个部位到达某个预定温度所需经历的时间,或者在预定时间 内可以达到的温度,或者物体的温度对时间的变化速率。
8
4.1 概述
研究方法与过程:与稳态导热的完全相同 (1)简化假设给出物理模型 (2)给出数学模型(方程+定解条件) (3)采用适当的数学方法求解 (4)分析讨论
9
4.1 概述
❖ 非稳态导热的控制方程:
τ
ρct
x
λ
t x
y
λ
t y
z
λ
t z
Φ
❖ t=f(x,y,z,t)
❖ 控制方程:偏微分方程,数学求解难度很大
❖ 随着时间的延续,壁面加热的波及区域将继续向平壁中
心推进
16
4.2.1 平壁内非稳态过程的基本特征
17
4.2.1 平壁内非稳态过程的基本特征
❖ 当温度扰动刚刚传到平壁对称 面的那个时刻,称为穿透时间, 记作τc

数值传热学作业-第四章

数值传热学作业-第四章

4-1解:采用区域离散方法A 时;内点采用中心差分123278.87769.9T T T ===22d T T=0dx - 有 i+1i 122+T 0i i T T T x---=∆ 将2点,3点带入 321222+T 0T T T x --=∆ 即321209T T -+= 432322+T 0T T T x --=∆4321322+T 0T T T x --=∆ 即4321209T T T -+-= 边界点4(1)一阶截差 由x=1 1dT dx =,得 4313T T -=(2)二阶截差 11B M M q x x xT T S δδλλ-=++V所以 434111. 1.36311T T T =++即 43122293T T -=采用区域离散方法B22d TT=0dx - 由控制容积法 0w edT dT T x dT dT ⎛⎫⎛⎫--∆= ⎪ ⎪⎝⎭⎝⎭ 所以代入2点4点有322121011336T T T T T ----= 即 239028T T -=544431011363T T T T T ----= 即3459902828T T T -+= 对3点采用中心差分有432322+T 013T T T --=⎛⎫⎪⎝⎭即2349901919T T T -+= 对于点5 由x=11dT dx =,得 5416T T -= (1)精确解求左端点的热流密度由 ()21x x eT e e e -=-+所以有 ()2220.64806911x xx x dT e e q e e dxe e λ-====-+=-=++ (2)由A 的一阶截差公式210.247730.743113x T T dT q dxλ=-=-==⨯= (3)由B 的一阶截差公式0.216400.649213x dTq dxλ=-=-== (4)由区域离散方法B 中的一阶截差公式:210.108460.6504()B BT T dT dx x δ-⎛⎫==⨯= ⎪⎝⎭ 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当!4-3解: 对平板最如下处理:1 2 3 4由左向右点分别表述为1、2、3、4点,x 的正方向为由左向右; 控制方程为λd 2tdx +S =0 (1)边界条件为X=0,T=75℃;X=0.1,λdTdx +ℎ(T −T f )=0;则2、3点采用二阶截差格式,有 则有以下两式:λT3−2T2+T1∆x+S=0(2)λT4−2T3+T2∆x2+S=0(3)一阶截差公式可由λdTdx+ℎ(T−T f)=0变形得到λ(T4−T3∆x)=h(T4−T f)再变形得到T4=[T3+h×∆xλT f]/(1+h×∆xλ)(4)二阶截差公式可以联立λT5−2T4+T3∆x2+S=0和λ(T5−T32∆x)=h(T4−T f),可得以下公式T4=[T3+∆x2S2λ+h×∆xλ]/(1+h×∆xλ)(5)分别联立2、3、4式与2、3、5式,把S=50×103W/m3,λ=10W/m∙℃,h=50 W/m∙℃,T f=25℃,T1=75℃,∆x= 1/30带入到式子中,则有联立2、3、4式的解为:T2=78.58℃,T3=76.59℃,T4=69.03℃联立3、4、5式的解为:T2=80.42℃,T3=80.28℃,T4=74.58℃对控制方程进行积分,并将边界条件带入,则有关于T的方程T=−2500x2+250x+75(6)把x2=130,x3=230,x3=0.1代入上述6式则有:T2=80.56℃,T3=80.56℃,T4=75.1℃相比之下,对右端点采用二阶截差的离散更接近真实值4-4解:对平板作如下分析:1 2 3 4 5 由左向右分别对点编号为1、2、3、4、5 控制方程与4-3相同,为λd 2tdx +S =0 (1)边界条件为X=0,T=75℃;X=0.1,λdTdx +ℎ(T −T f )=0;设1点和2点的距离为∆x ,另1点对2点进行泰勒展开,有d 2t dx =(T 1−T 2+dT dx ∆x )2∆x其中dT dx=T 3−T 22∆x,则有λ2T 1−3T 2+T 3∆x 2+S =0 (2)对3点进行离散有λT 4−2T 3+T 2∆x 2+S =0 (3)对右端点有: [a p +A 1ℎ+(δx )5λ]T 4=a w T 3+[S/∆x +AT f 1ℎ+(δx )5λ]代入数据有T 3−3T 2+155.56=0 T 4−2T 3+T 2=−5.56342.85T4-300T3=1681解得:T2=78.1℃,T3=78.7℃,T4=73.8℃由导热定律有T4−T3∆x =2T5−T4∆x则有T5=71.35℃4—12编写程序:M=rand(10,3)A=M(:,1);B=M(:,2);C=M(:,3);B(10)=0;C(1)=0;T=12:21;D(1)=A(1)*T(1)-B(1)*T(2)for i=2:9;D(i)= A(i)*T(i)-B(i)*T(i+1)-C(i)*T(i-1)endD(10)= A(10)*T(10)-C(10)*T(9);P(1)=B(1)/A(1);Q(1)= D(1)/A(1);for i=2:10;P(i)=B(i)/(A(i)-C(i)*P(i-1));Q(i)=(D(i)+C(i)*Q(i-1))/(A(i)-C(i)*P(i-1)); endfor i=10:-1:2;t(10)=Q(10);t(i-1)=P(i-1)*t(i)+Q(i-1);enddisp(D(1:10))disp(T(1:10))disp(t(1:10))运行结果:由运行结果可知:无论系数怎样变化,T与t都是一致的。

传热学思考题参考答案(陶文铨第四版)

传热学思考题参考答案(陶文铨第四版)
9、物质的变化一般分为物理变化和化学变化。化学变化伴随的现象很多,最重要的特点是产生了新物质。物质发生化学变化的过程中一定发生了物理变化。
答:放大镜的中间厚,边缘薄,光线在透过放大镜时会产生折射,因此会把物图像放大。要点: 值越大则温度变化率越小,在图上标示出来就是斜率越小(具体可参考换热器原理一书)。当相等时,顺流为对称的两曲线,而逆流时则为平行线。
答:在圆管外敷设保温层和设置肋片都使表面换热热阻降低而导热热阻增加,而一般情况下保温使导热热阻增加较多,使换热热阻降低较少,使总热阻增加,起到削弱传热的效果;设置肋片使导热热阻增加较少,而换热热阻降低较多,使总热阻下降,起到强化传热的作用。但当外径小于临界直径时,增加保温层厚度反而会强化传热。理论上只有当肋化系数与肋面总效率的乘积小于1时,肋化才会削弱传热。
答:条件:(1)材料的导热系数,表面传热系数以及沿肋高方向的横截面积均各自为常数(2)肋片温度在垂直纸面方向(即长度方向)不发生变化,因此可取一个截面(即单位长度)来分析(3)表面上的换热热阻远远大于肋片中的导热热阻,因而在任一截面上肋片温度可认为是均匀的(4)肋片顶端可视为绝热。并不是扩展表面细长就可以按一维问题处理,必须满足上述四个假设才可视为一维问题。
第八章:
1、选择太阳能集热器的表面涂层时,该涂层表面吸收率随波长的变化最佳曲线是什么?有人认为取暖用的辐射采暖片也需要涂上这种材料,你认为合适吗?
分析:太阳辐射的主要能量集中在0.2~2μm,该涂层表面吸收率随波长的变化最佳曲线是当波长小于2μm时,吸收率大,当波长大于2μm时,吸收率要小。
不合适。因为如果暖片在高温(波长小)时有很大的吸收比,那么暖片将有很大的辐射换热量,减小了对流换热量,因此不适合。
答:虽然黑体表面与重辐射面均具有J=Eb的特点,但二者具有不同的性质。黑体表面的温度不依赖于其他参与辐射的表面,相当于源热势。而重辐射面的温度则是浮动的,取决于参与辐射的其他表面。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-9-10

15
(3)管子内表面, 查图4-8得:

x
1
w 0.86 m
管子内表面温度为:
t w w t f 0.86 m t f 0.86 40.8 60 60 43.5 ( )

2013-9-10
16
Q0 cV(t f t 0)
tf=60 ℃
h=500 W/(m2· K)
平壁中心表面,管子内
表面对流换热相当于平 壁x/δ=1的位置。
2013-9-10
δ=40mm
x
13Leabharlann 500 0.04 0.313 (1) Bi 63.9
h
63.9 5 m2 /s a 1.882 10 c 7823 434
热油已传给管壁的热量:
J/m
返回
17
1.882 10 8 60 Fo 2 5.646 2 0.04
a
5
2013-9-10
14
(2) 由于Bi>0.1, 故不能采用集总参
数法,需用线算图求解。
管子外表面, 1 3.195
Bi
查图4-7得
m 0.24 0
管子外表面温度为:
t m m t f 0.24 0 t f 0.24 20 60 60 40.8 ( )
2013-9-10 6
解:本题换热系数未知,即BiV
数未知,所以无法判断是否满足集总 参数法的条件。为此,先假定可采用 集总参数法,然后验算。 a FoV (V / A) 2
2.95 10 21 60 535.25 2 (0.025 / 3)
2013-9-10 7
5
Bi 由 e 0
V FoV
1 BiV 1n FoV 0
1 90 60 ln 3.885 10 3 535.25 300 60
显然, V 3.885 10 3 0.03333 故满 Bi 足集总参数法的适用条件
2013-9-10 8
由 BiV
h BiV
h(V / A)
V 准则中的特征尺寸是用 LV 确定的, A
而不是 R/2 ,所以,是否可采用集总参 数法的判别用BiV<0.1M。
返回
2013-9-10 5
【例4-2】为了测定铜球与空气之间
的对流换热系数,把一个直径D=50mm,
导热系数λ=85 W/(m· K),热扩散率 α=2.95×10-5 m2/s,初始温度t0=300℃的 铜球移置于60℃的大气中,经过21min后, 测得铜球表面温度为90℃,试求铜球与 空气间的对流换热系数及在此时间内的 换热量。
ρ=8954kg/m3,c=383.1 J/(kg· K)。
2013-9-10 2
解: 先求出BiV准则,判别是否可采用
集总参数法。
D 2
V A 4 D 2 2 Dl 4 l

2

4
0.05 2 0.06
4 0.0088235m
2013-9-10
0.05 2 0.05 0.06
=7823×434×π ×1×0.04[60-(-20)] = 3.41×107 J/m ,Bi 2 Fo 0.553 据 Bi 0.313 查图4-11得
Q Q Q0 Q0 0.77 3.41 10 7 2.626 10 7
2013-9-10
Q Q0
=0.77
第四章 非稳态导热例题
【例4-1】 【例4-2】 【例4-3】
2013-9-10
1
【例4-1】直径50mm,高60mm的铜 柱,开始时具有均匀温度150℃。突然将 其浸入温度保持50℃的流体中,流体与 铜柱表面间的换热系数 h=20 W/(m2· K), 试计算铜柱温度降到100℃,需要多长时 间?铜柱的物性为λ=386 W/(m· K),
2013-9-10
11
试求开始流过油8min时
(1)所对应的Bi数和Fo数 。 (2) 管子外表面的温度。
(3) 管子内表面的温度。
(4) 热油已传给管壁的热量。
2013-9-10
12
解: 如图,由于管
壁厚度相对于管径小得
多,故可近似看作厚为
δ=40mm的大平壁。管
子外表面绝热,相当于
绝 热 面

(V / A)
3

85 K) 3.885 10 39.63 W/(m2· 0.025 / 3
BiV FoV 3.885 10 2.07945
3
535.25
2013-9-10
9
由式(4-6)计算换热量:
hA Q cV(t 0 t f)1 exp( ) cV


a 6
D(t 0 t f)1 e (
3
BiV FoV
)
85 3 2.07945 0.05 ( 60 (1 e 300 ) ) 5 6 2.95 10
=39.6 kJ
返回
2013-9-10 10
【例4-3】一根直径为1m,壁厚40mm 的钢管,初温为-20℃,后将温度为60℃的 热油泵入管中,油与管壁的换热系数为 500 W/(m2· K),管子外表面可近似认为是绝 热的。管壁的物性参数ρ=7823kg/m3, c=434J/(kg·K),λ=63.9 W/(m· K)。
3
Bi v
h(V / A)

20 0.0088235 386
0.000457 0.05
故可用集总参数法。
0 ln hA cV
8954 383.1 0.0088235 150 50 1n 1049s 20 100 50
2013-9-10 4
【讨论】 本题为一个短圆柱体,BiV
相关文档
最新文档