IO口结构详解
单片机IO口结构及工作原理

单片机IO口结构及工作原理单片机(Microcontroller Unit,MCU)的IO口是指可用来输入输出数据的引脚,在单片机系统中具有重要的作用。
本文将详细介绍单片机IO口的结构和工作原理。
一、单片机IO口的结构单片机的所有IO口都可以看作是一个通用的数字引脚。
常用的单片机IO口主要包括输入端和输出端两个部分。
1.输入端:单片机IO口的输入端包含一个输入缓冲区,用于对输入信号进行缓冲和驱动。
输入缓冲区通常由一个高阻抗的MOSFET器件构成,可以对输入信号进行放大和处理。
输入端能够接收来自外界的高电平和低电平信号,通过输入缓冲区将信号传递给单片机的内部电路。
2.输出端:单片机IO口的输出端是由一个输出缓冲器和驱动电路构成的。
输出缓冲器一般由一个强驱动能力的MOSFET器件构成,可以对输出信号进行放大和驱动。
输出端能够将单片机内部的数据通过输出缓冲器传递给外部电路,形成相应的高电平或低电平电压信号。
3. 接口电路:为了提高单片机IO口的抗干扰能力和适应外部电路的需求,通常在IO口的输入和输出端之间设置了一些接口电路,如上拉电阻(Pull-Up Resistor)和下拉电阻(Pull-Down Resistor)。
上拉电阻和下拉电阻可以对输入或输出信号进行稳定的电平处理和电流限制,使得单片机的IO口在复杂的电路环境中能够正常工作。
二、单片机IO口的工作原理单片机的IO口工作原理主要包括输入和输出两种模式。
1.输入模式:当IO口被设定为输入模式时,输入信号可以通过外部电路或者内部电路输入到IO口,并经过输入缓冲器进行电平放大和处理。
在输入模式下,可以通过软件对IO口进行设置,使其能够读取外部电路的电平状态。
通过输入模式,单片机可以读取外部的开关状态、传感器的输出以及其他的输入信号,实现数据的采集和处理。
2.输出模式:当IO口被设定为输出模式时,单片机可以将内部处理的数据通过输出缓冲器驱动外部电路。
io口的结构

io口的结构
IO口的结构通常包括以下几个部分:
1. 输入缓冲区(Input Buffer):用于存储从外部设备读取的数据。
当外部设备向IO口发送数据时,数据首先被存储在输入缓冲区中,然后由CPU或其他处理器从缓冲区中读取。
2. 输出缓冲区(Output Buffer):用于存储要发送到外部设备的数据。
当CPU或其他处理器向IO口写入数据时,数据首先被存储在输出缓冲区中,然后由IO口将数据发送到外部设备。
3. 数据寄存器(Data Register):用于暂时存储从输入缓冲区读取的数据或将要写入输出缓冲区的数据。
数据寄存器通常位于IO控制器的内部,与CPU 或其他处理器直接通信。
4. 控制寄存器(Control Register):用于存储IO口的配置信息,如输入/输出模式、数据传输速率等。
CPU或其他处理器可以通过修改控制寄存器的值来配置IO口的工作方式。
5. 状态寄存器(Status Register):用于存储IO口的状态信息,如输入缓冲区是否为空、输出缓冲区是否已满等。
CPU或其他处理器可以通过读取状态寄存器的值来了解IO口的当前工作状态。
6. 中断请求线(Interrupt Request Line, IRQ):当IO口完成数据传输或发生错误时,可以通过中断请求线向CPU或其他处理器发出中断信号,以便及时处理相关事件。
单片机IO口结构及工作原理

、Po端口的结构及工作原理Po端口8位中的一位结构图见下图:地址∕ttiκI i O i XWwfr⅛⅛内部总线i⅛引脚PO 口工作康理图由上图可见,P0端口由锁存器、输入缓冲器、切换开关、一个与非门、一个与门及场效应管驱动电路构成下面,先分析组成P0 口的各个部分:先看输入缓冲器:在P0 口中,有两个三态的缓冲器,在其的输出端可以是高电平、低电平,同时还有一种就是高阻状态(或称为禁止状态),上面一个是读锁存器的缓冲器,下面一个是读引脚的缓冲器,读取P0.X引脚上的数据,要使这个三态缓冲器有效,引脚上的数据才会传输到内部数据总线上。
D锁存器:在51单片机的32根I/O 口线中都是用一个D触发器来构成锁存器的。
D 端是数据输入端,CP是控制端(也就是时序控制信号输入端),Q是输出端,Q非是反向输出端。
多路开关:在51单片机中,不需要外扩展存储器时,P0 口可以作为通用的输入输出端口(即I/O)使用,对于8031 (内部没有ROM )的单片机或者编写的程序超过了单片机内部的存储器容量,需要外扩存储器时,P0 口就作为,地址/数据? 总线使用。
这个多路选择开关就是用于选择是做为普通I/O 口使用还是作为,数据/地址?总线使用的选择开关了。
当多路开关与下面接通时,P0 口是作为普通的I/O 口使用的,当多路开关是与上面接通时,P0 口是作为,地址/数据?总线使用的。
输出驱动部份:P0 口的输出是由两个MOS管组成的推拉式结构,也就是说,这两个MOS管一次只能导通一个,当V1导通时,V2就截止,当V2导通时,V1截止。
Po 口作为I/O端口使用时,多路开关的控制信号为0 (低电平),V1管截止, 多路开关是与锁存器的Q非端相接的(即P0 口作为I/O 口线使用)。
作为地址/数据线使用时,多路开关的控制信号为1,V1管由地址/数据线决定,多路开关与地址/数据线连接。
输出过程:1、I/O输出工作过程:当写锁存器信号CP有效,数据总线的信号→锁存器的输入端D→锁存器的反向输出Q非端→多路开关→V2管的栅极→V2的漏极到输出端P0.X。
io口推挽输出的内部结构

io口推挽输出的内部结构引言:io口推挽输出是一种常见的电路结构,用于控制外部设备的工作。
本文将以人类的视角,通过描述其内部结构和工作原理,使读者更好地理解和体会io口推挽输出的功能和应用。
1. 什么是io口推挽输出io口推挽输出是一种数字电路结构,用于控制外部设备的工作状态。
它可以将高电平和低电平的信号通过io口输出,从而控制外部设备的开关状态。
2. 内部结构io口推挽输出的内部结构主要由三个部分组成:输入/输出端口、推挽输出电路和控制电路。
2.1 输入/输出端口输入/输出端口是io口推挽输出与外部设备进行通信的接口。
它可以接收来自外部设备的信号,并将输出信号传递给外部设备。
2.2 推挽输出电路推挽输出电路是io口推挽输出的核心部分,它负责将输入信号转换为输出信号。
推挽输出电路由一对互补的三极管组成,可以实现高电平和低电平的输出。
2.3 控制电路控制电路是io口推挽输出的控制中心,它接收来自微处理器或控制器的指令,并根据指令控制推挽输出电路的工作状态。
控制电路可以实现单向或双向控制,以满足不同应用场景的需求。
3. 工作原理io口推挽输出的工作原理是通过控制推挽输出电路的开关状态,将输入信号转换为输出信号。
当控制电路接收到指令时,它会根据指令的要求,控制推挽输出电路的开关状态。
当推挽输出电路处于导通状态时,输出信号为高电平;当推挽输出电路处于截止状态时,输出信号为低电平。
4. 应用场景io口推挽输出广泛应用于各种电子设备中。
例如,它可以用于控制LED灯的亮灭,控制电机的正反转,以及控制继电器的开关等。
在工业自动化领域,io口推挽输出也被广泛应用于控制系统中,实现对各种设备和工艺的精确控制。
总结:io口推挽输出是一种常见且重要的电路结构,用于控制外部设备的工作状态。
本文通过描述其内部结构和工作原理,使读者对io口推挽输出有了更深入的了解。
它的应用场景广泛,对于各种电子设备和工业自动化系统的控制具有重要意义。
单片机IO口内部结构

一、P0端口的结构和工作原理
结构图如下:
1、图解:
(1)输入缓冲器:在P0端口中有两个三态缓冲器,上图中的上面一个是读锁
存器的缓冲器,也就是说,要读取D 锁存器输出端Q 的数据,那就得使读锁存器的这个缓冲器的三态控制端(图中的“读锁存器”端)有效。
下面的是读引脚的缓冲器,要读取P0.x 引脚上的数据,也要使标号为“读引脚”的这个三态缓冲器的控制端有效,引脚上的数据才会传输到单片机的内部数据总线上。
(2)D 锁存器:
结构如图:
它有两个输入端,数据输入端D 和使能输入端CP 。
当CP=0时,G3、G4输出均为0,使G1、G2构成的基本SR 锁存器处于保持状态,无论D 信号怎么变化,输出Q 和Q 非均保持不变。
当需要更新状态时,可将门控信号CP 置1,此时,根据送到D 端新的二值信息将锁存器置为新的状态。
2、当控制信号为低电平“0”,P0口作为通用IO 接口使用时,控制信号为0,转换开关把输出级与锁存器__
Q 端接通,在CPU 向端口输出数据时,因与门输出为0,是
V1
24G
截止,此时,输出级是漏极开路电路,类似于OD门,当驱动上接电流负载时,需要外接上拉电阻,否则输出电平就没有高低之分了。
下图为内部数据总线向P0口输出数据的流程图:
二、P1、P2、P3口作IO口使用时原理与P0口类似,他们的内部结构分别为:。
很全的51单片机IO端口详解(带图)

80C51的I/O端口结构及应用特性一,I/O端口的结构1,锁存器加引脚的典型结构80C51的I/O端口都有内部总线实现操作控制。
P0-P3四个I/O 口都可以做普通I/O口,因此,要求具有输出锁存功能。
内部总线有事分时操作,因此每个I/O端口都有相应的锁存器。
然而I/O端口又是外部的输入/输出通道,必须有相应的引脚,故形成了I/O端口的锁存器加引脚的典型结构。
2,I/O口的复用功能(1)I/O口的总线复用。
80C51在使用并行总线扩展时,P0口可作为数据总线口和低8位地址总线口,这是,P0为三态双向口。
P0口输出总线的地址数据信号,P2口输出高8位地址信号。
(2)I/O口的功能复用。
I/O口的P3为功能复用的I/O端口。
端口有复用输出的控制端;引脚也有复用输入的控制端。
3,准双向结构P0,P1,P2,P3口做普通I/O口使用时,都是准双向口结构。
准双向口的典型结构见P1口位结构图。
准双向口的输入操作和输出操作本质不同,输入操作时读引脚状态;输出操作时对口锁存器的写入操作。
有口锁存器和引脚电路可知:当有内部总线对只1或只0时,锁存器的0、1状态立即反应到引脚上。
但是输入操作(读引脚)时,如果口锁存器的状态为0,引脚被嵌位在0状态,导致无法读出引脚的高电平输入。
二,I/O端口的应用特性1,引脚的自动识别。
无论P0,P2口的总线复用,还是P3口的功能复用,内部资源会自动选择,不需要通过指令的状态选择。
2,口锁存器的读、该、写操作。
许多涉及到I/O端口的操作,只是涉及口锁存器的读出、修改、写入的操作。
这些指令都是一些逻辑运算指令、置位/清除指令、条件转移指令以及将I/O口作为目的地址的操作指令。
3,读引脚的操作指令。
如果某个I/O口被指定为源操作数,则为读引脚的操作指令。
例如,执行MOV A,P1时,P1口的引脚状态传送到累加器中,执行MOV P1,A是,指令则将累加器的内容传送到P1口锁存器中。
4,准双向口的使用。
MCS-51单片机IO口详解

单片机IO口结构及上拉电阻MCS-51有4组8位I/O口:P0、P1、P2和P3口,P1、P2和P3为准双向口,P0口则为双向三态输入输出口,下面我们分别介绍这几个口线。
一、P0口和P2口图1和图2为P0口和P2口其中一位的电路图。
由图可见,电路中包含一个数据输出锁存器(D触发器)和两个三态数据输入缓冲器,另外还有一个数据输出的驱动(T1和T2)和控制电路。
这两组口线用来作为CPU与外部数据存储器、外部程序存储器和I/O扩展口,而不能象P1、P3直接用作输出口。
它们一起可以作为外部地址总线,P0口身兼两职,既可作为地址总线,也可作为数据总线。
图1 单片机P0口内部一位结构图图2 单片机P0口内部一位结构图P2口作为外部数据存储器或程序存储器的地址总线的高8位输出口AB8-AB15,P0口由ALE选通作为地址总线的低8位输出口AB0-AB7。
外部的程序存储器由PSEN信号选通,数据存储器则由WR和RD读写信号选通,因为2^16=64k,所以MCS-51最大可外接64kB的程序存储器和数据存储器。
二、P1口图3为P1口其中一位的电路图,P1口为8位准双向口,每一位均可单独定义为输入或输出口,当作为输入口时,1写入锁存器,Q(非)=0,T2截止,内上拉电阻将电位拉至"1",此时该口输出为1,当0写入锁存器,Q(非)=1,T2导通,输出则为0。
图3 单片机P2口内部一位结构图作为输入口时,锁存器置1,Q(非)=0,T2截止,此时该位既可以把外部电路拉成低电平,也可由内部上拉电阻拉成高电平,正因为这个原因,所以P1口常称为准双向口。
需要说明的是,作为输入口使用时,有两种情况:1.首先是读锁存器的内容,进行处理后再写到锁存器中,这种操作即读—修改—写操作,象JBC(逻辑判断)、CPL(取反)、INC(递增)、DEC(递减)、ANL(与逻辑)和ORL(逻辑或)指令均属于这类操作。
2.读P1口线状态时,打开三态门G2,将外部状态读入CPU。
IO结构和工作原理

单片机IO口结构及上拉电阻MCS-51有4组8位I/O口:P0、P1、P2和P3口,P1、P2和P3为准双向口,P0口则为双向三态输入输出口,下面我们分别介绍这几个口线。
一、P0口和P2口图1和图2为P0口和P2口其中一位的电路图。
由图可见,电路中包含一个数据输出锁存器(D触发器)和两个三态数据输入缓冲器,另外还有一个数据输出的驱动(T1和T2)和控制电路。
这两组口线用来作为CPU与外部数据存储器、外部程序存储器和I/O扩展口,而不能象P1、P3直接用作输出口。
它们一起可以作为外部地址总线,P0口身兼两职,既可作为地址总线,也可作为数据总线。
图1 单片机P0口内部一位结构图图2 单片机P0口内部一位结构图P1口作为外部数据存储器或程序存储器的地址总线的高8位输出口AB8-AB15,P0口由ALE选通作为地址总线的低8位输出口AB0-AB7。
外部的程序存储器由PSEN信号选通,数据存储器则由WR和RD读写信号选通,因为2^16=64k,所以MCS-51最大可外接64kB的程序存储器和数据存储器。
二、P1口图3为P2口其中一位的电路图,P1口为8位准双向口,每一位均可单独定义为输入或输出口,当作为输出口时,1写入锁存器,Q(非)=0,T2截止,内上拉电阻将电位拉至"1",此时该口输出为1,当0写入锁存器,Q(非)=1,T2导通,输出则为0。
图3 单片机P2口内部一位结构图作为输入口时,锁存器置1,Q(非)=0,T2截止,此时该位既可以把外部电路拉成低电平,也可由内部上拉电阻拉成高电平,正因为这个原因,所以P1口常称为准双向口。
需要说明的是,作为输入口使用时,有两种情况:1.首先是读锁存器的内容,进行处理后再写到锁存器中,这种操作即读—修改—写操作,象JBC(逻辑判断)、CPL(取反)、INC(递增)、DEC(递减)、ANL(与逻辑)和ORL(逻辑或)指令均属于这类操作。
2.读P1口线状态时,打开三态门G2,将外部状态读入CPU。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.什么是源型、漏型?什么是上拉电阻?下拉电阻?什么是线驱动输出、集电极开路输出、推挽式输出?我们先来说说集电极开路输出的结构。
集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为“0”时,输出也为“0”)。
对于图1,当左端的输入为“0”时,前面的三极管截止(即集电极c跟发射极e之间相当于断开),所以5v电源通过1k电阻加到右边的三极管上,右边的三极管导通(即相当于一个开关闭合);当左端的输入为“1”时,前面的三极管导通,而后面的三极管截止(相当于开关断开)。
我们将图1简化成图2的样子。
图2中的开关受软件控制,“1”时断开,“0”时闭合。
很明显可以看出,当开关闭合时,输出直接接地,所以输出电平为0。
而当开关断开时,则输出端悬空了,即高阻态。
这时电平状态未知,如果后面一个电阻负载(即使很轻的负载)到地,那么输出端的电平就被这个负载拉到低电平了,所以这个电路是不能输出高电平的。
再看图三。
图三中那个1k的电阻即是上拉电阻。
如果开关闭合,则有电流从1k电阻及开关上流过,但由于开关闭和时电阻为0(方便我们的讨论,实际情况中开关电阻不为0,另外对于三极管还存在饱和压降),所以在开关上的电压为0,即输出电平为0。
如果开关断开,则由于开关电阻为无穷大(同上,不考虑实际中的漏电流),所以流过的电流为0,因此在1k电阻上的压降也为0,所以输出端的电压就是5v了,这样就能输出高电平了。
但是这个输出的内阻是比较大的(即1kω),如果接一个电阻为r的负载,通过分压计算,就可以算得最后的输出电压为5*r/(r+1000)伏,即5/(1+1000/r)伏。
所以,如果要达到一定的电压的话,r就不能太小。
如果r真的太小,而导致输出电压不够的话,那我们只有通过减小那个1k的上拉电阻来增加驱动能力。
但是,上拉电阻又不能取得太小,因为当开关闭合时,将产生电流,由于开关能流过的电流是有限的,因此限制了上拉电阻的取值,另外还需要考虑到,当输出低电平时,负载可能还会给提供一部分电流从开关流过,因此要综合这些电流考虑来选择合适的上拉电阻。
如果我们将一个读数据用的输入端接在输出端,这样就是一个io口了(51的io口就是这样的结构,其中p0口内部不带上拉,而其它三个口带内部上拉),当我们要使用输入功能时,只要将输出口设置为1即可,这样就相当于那个开关断开,而对于p0口来说,就是高阻态了。
对于漏极开路(od)输出,跟集电极开路输出是十分类似的。
将上面的三极管换成场效应管即可。
这样集电极就变成了漏极,oc就变成了od,原理分析是一样的。
另一种输出结构是推挽输出。
推挽输出的结构就是把上面的上拉电阻也换成一个开关,当要输出高电平时,上面的开关通,下面的开关断;而要输出低电平时,则刚好相反。
比起oc 或者od来说,这样的推挽结构高、低电平驱动能力都很强。
如果两个输出不同电平的输出口接在一起的话,就会产生很大的电流,有可能将输出口烧坏。
而上面说的oc或od输出则不会有这样的情况,因为上拉电阻提供的电流比较小。
如果是推挽输出的要设置为高阻态时,则两个开关必须同时断开(或者在输出口上使用一个传输门),这样可作为输入状态,avr单片机的一些io口就是这种结构。
2.AVR单片机IO口的结构分析AVR的IO是真正双向IO结构,由于大部分网友都是从标准51转过来的,受标准51的准双向IO和布尔操作概念影响,没能掌握AVR的IO操作,所以有必要撰文说明一下,其实采用真正双向IO结构的新型MCU很多,常用的有增强型51,PIC,AVR等。
先简单的回顾一下标准51的准双向IO结构这种准双向IO结构的特点是:1、输出结构类似OC门,输出低电平时,内部NMOS导通,驱动能力较强(800uA);输出高电平靠内部上拉电阻,驱动能力弱(60uA)。
2、永远有内部电阻上拉(P0口除外),高电平输出电流能力很弱,所以即使IO口长时间短路到地也不会损坏IO口(同理,IO口低电平输出能力较强,作低电平输出时不能长时间短路到VCC)3、作输入时,因为OC门有"线与"特性,必须把IO口设为高电平(所以按键多为共地接法)4、作输出时,输出低电平可以推动LED(也是很弱的),输出高电平通常需要外接缓冲电路(所以LED多为共阳接法)5、软件模拟OC结构的总线反而比较方便-----例如IIC总线*P0口比较特殊,做外部总线时,是推挽输出,做普通IO时没有内部上拉电阻,所以P0口做按键输入需要外接上拉电阻。
*OC门:三极管的叫集电极开路,场效应管的叫漏极开路,简称开漏输出。
具备"线与"能力,有0得0。
*为什么设计成输出时高电平弱,低电平强----是考虑了当年流行的TTL器件输入特性相信我们大多数人都接触过51单片机,51单片机的I/O口是准双向I/O口。
其实这种说法是不严谨的,我们知道,51单片机有4个I/O口,分别是P0、P1、P2、P3,这4个I/O口的结构并不完全一致,其中P0口是标准的双向I/O口,而P1、P2、P3则是准双向I/O口。
关于准双向I/O口和双向I/O口的区别请看另一篇文章“准双向I/O口和标准双向I/O 口的区别”AVR单片机的I/O口是标准的双向I/O口,它的IO结构就就比51的I/O口复杂多了,单是控制端口的寄存器就有3个 PORTx(数据寄存器)、DDRx(数据方向寄存器)、PINx (端口输入引脚);另外还有一个SFIOR(特殊功能I/O寄存器),这个寄存器中的PUD位控制全部I/O口的上拉电阻是允许还是被禁止。
下图是AVR单片机通用I/O口结构示意图:从图中可以看出,每组I/O口配备三个8位寄存器,它们分别是数据方向寄存器DDRx,数据寄存器PORTx,和输入引脚寄存器PINx(x表示端口序号)。
I/O口的工作方式和表现特征由这3个I/O口寄存器控制。
数据方向寄存器DDRx用于控制I/O口的输入输出方向,即控制I/O口的工作方式为输出方式还是输入方式。
当DDRx=1时,I/O口处于输出工作方式。
此时数据寄存器PORTx中的数据通过一个推挽电路输出到外部引脚,如下图。
AVR的输出采用推挽电路提高了I/O口的输出能力,当PORTx=1时,I/O引脚呈现高电平,同时可提供输出20mA的电流;而当PORTx=0时,I/O 引脚呈现低电平,同时可吸纳20mA电流。
因此,AVR的I/O在输出方式下提供了比较大的驱动能力,可以直接驱动LED等小功率外围器件。
当DDRx=0时,I/O处于输入工作方式。
此时引脚寄存器PINx中的数据就是外部引脚的实际电平,通过读I/O指令可将物理引脚的真实数据读入MCU。
此外,当I/O口定义为输入时(DDRx=0),通过PORTx的控制,可使用或不使用内部的上拉电阻,如下图:AVR单片机通用I/O端口的主要特点为:双向可独立位控的I/O口ATmega16的PA、PB、PC、PD四个端口都是8位双向I/O口,每一位引脚都可以单独的进行定义,相互不受影响。
如用户可以在定义PA口第0、2、3、4、5、6位用于输入的同时定义第1、7位用于输出,互不影响。
Push-Pull大电流驱动(最大40mA)可控制的引脚内部上拉电阻每一位引脚内部都有独立的,可通过编程设置的,设定为上拉有效或无效的内部上拉电阻。
当I/O口被用于输入状态,且内部上拉电阻被激活(有效)时,如果外部引脚被拉低,则构成电流源输出电流(uA量级)。
DDRx可控的方向寄存器。
AVR的I/O端口结构同其它类型单片机的明显区别是,AVR采用3个寄存器来控制I/O 端口。
一般单片机的I/O仅有数据寄存器和控制寄存器,而AVR还多了一个方向控制器,用于控制I/O的输入输出方向。
由于输入寄存器PINx实际不是一个寄存器,而是一个可选通的三态缓冲器,外部引脚通过该三态缓冲器与MCU的内部总线连接,因此,读PINx时是读取外部引脚上的真实和实际逻辑值,实现了外部信号的同步输入。
这种结构的I/O端口,具备了真正的读-修改-写(Read-Modify-Write)特性。
AVR单片机通用I/O口设计注意事项:数据寄存器PORTx和数据方向寄存器DDRx为读/写寄存器,而端口输入引脚PINx为只读寄存器。
但是需要特别注意的是,对PINx寄存器某一位写入逻辑"1“将造成数据寄存器相应位的数据发生"0“与“1“的交替变化。
当寄存器MCUCR 的上拉电阻禁止位PUD置位时所有端口引脚的上拉电阻都被禁止。
在高阻态和输出高电平两种状态之间进行切换时,上拉电阻使能或输出低电平这两种模式必然会有一个发生。
编写程序时要注意两者的顺序。
通常,上拉电阻使能是完全可以接受的,因为高阻状态下强高电平输出还是上拉输出都是可以接受的。
如果使用情况不是这样,可以通过置位SFIOR寄存器的PUD来禁止所有端口的上拉电阻。
在上拉输入和输出低电平之间切换也有同样的问题。
用户必须选择高阻态或输出高电平作为中间步骤。
不论如何配置DDxn,都可以通过读取PINxn 寄存器来获得引脚电平PINxn寄存器的各个位与其前面的锁存器组成了一个同步器。
这样就可以避免在内部时钟状态发生改变的短时间范围内由于引脚电平变化而造成的信号不稳定。
其缺点是引入了延迟。
AVR IO具备多种IO模式:1、高阻态,多用于高阻模拟信号输入,例如ADC数模转换器输入,模拟比较器输入2、弱上拉状态(Rup=20K~50K),输入用。
为低电平信号输入作了优化,省去外部上拉电阻,例如按键输入,低电平中断触发信号输入3、推挽强输出状态,驱动能力特强(>20mA),可直接推动LED,而且高低驱动能力对称.使用注意事项:写用PORTx,读取用PINx实验时,尽量不要把管脚直接接到GND/VCC,当设定不当,IO口将会输出/灌入80mA(Vcc=5V)的大电流,导致器件损坏。
作输入时:1、通常要使能内部上拉电阻,悬空(高阻态)将会很容易受干扰。
(表面看好像是51的抗干扰能力强,是因为51永远有内部电阻上拉,)2、尽量不要让输入悬空或模拟输入电平接近VCC/2,将会消耗太多的电流,特别是低功耗应用场合------CMOS电路的特点3、如果先前I/O口为输出状态,设置为输入状态后,必须等待1个时钟周期后才能正确的读到外部引脚PINx的值。
4、功能模块(中断,定时器)的输入可以是低电平触发,也可以是上升沿触发或下降沿触发。
5、用于高阻模拟信号输入,切记不要使能内部上拉电阻,影响精确度。
例如ADC数模转换器输入,模拟比较器输入作输出时:采用必要的限流措施,例如驱动LED要串入限流电阻复位时:复位时内部上拉电阻将被禁用。
如果应用中(例如电机控制)需要严格的电平控制,请使用外接电阻固定电平休眠时:作输出的,依然维持状态不变作输入的,一般无效,但如果使能了第二功能(中断使能),其输入功能有效。