重庆大学博士入学考试数理统计真题
重庆大学学年(秋)数理统计试题及答案

重庆大学全日制学术型硕士研究生 《数理统计》(A )课程试卷2013-2014学年第一学期(秋)请保留四位小数,部分下侧分位数为:0.95 1.65u =,0.99 2.33u =,20.95(1) 3.841χ=,0.95(3,6)9.78f =一、(18分)设1X ,2X ,…,64X 是来自总体N (0,2σ)的样本,X ,2S 分别是样本均值和样本方差:(1)求参数c 满足{}0.1P X S c >⋅=;(2)求概率22122234{1}X X P X X +>+;(3)求322321(2)i i i D X X X +=⎡⎤+-⎢⎥⎣⎦∑。
(请写出计算过程)解:(1)~(1)t n-{}}0.1P X S c P c ∴>⋅=>=得0.95(63)c t = 故 1.650.20638c ==(2)2~(0,)X N σ22212(/)(/)~(2)X X σσχ∴+ 同理22234(/)(/)~(2)X X σσχ+2222223412122234(/)(/)(/)(/)/~(2,2)22X X X X X X F X X σσσσ+++∴=+ 22122234{1}{(2,2)1}X X P P F X X +>=>+ 且0.50.50.51(2,2)(2,2)1(2,2)F F F =⇒= 得2222121222223434{1}1{1}0.5X X X X P P X X X X ++>=-≤=++ (3)令2~(2,2)i i n i Y X X N μσ+=+,112n i i Y Y X n ===∑ 221()(1)ni Y i T Y Y n S =∴=-=-∑3232223211(2)[()]i i i i i D X X X DT D Y Y +==⎡⎤+-==-⎢⎥⎣⎦∑∑2~(0,2(11/))i Y YN n σ-+~(0,1)YN=3222422421[2(11/)4(11/)((32))256(11/32)i Y D n n D σσχσ=+=+=+∑二、(26分)设1X ,2X ,…,n X 是来自总体2~(2,)(0)X N σσ>的样本,{}0.95P X A <=。
重庆大学研究生数理统计习题答案

()(){}{}()22222111221121221164~,~(8),89111,01(1)11~(0,1)1.28 1.280.281(2)0.261 1.8360.2619818ni i n X N S S X S n X X X X E X X n n n n n D X X DX DX DX X X N n n n P X X P U X P X S P μχσμ=-=--=--=---⎛⎫-=+==⇒- ⎪⎝⎭->=>=⎛ -⎧⎫ <-+<=<⎨⎬ ⎩⎭⎝∑解:由题可知(,)且与相互独立(){}22222222241164. 1.836896464 = 2.08814.688=~(9)991188= 2.08814.688=0.90.01=0.89423948i i i S X X P S S P X X χχχμ=⎧⎫⎫⎪⎪⎪⎪⎪⎪+<⎨⎬⎪⎪⎪⎪⎪⎪⎭⎩⎭⎧⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪--⎪⎪⎪ ⎪<+<+⎨⎬ ⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎩⎭<<-⎛⎫- ⎪⎝⎭=⋅∑,其中原式()()()()(){}24882255448822554821584~(0,1)=~4998244~(4)8944 2.132= 2.132=0.1i ii i i i i i i i i ii i N X X X t t X XP X XP t μμχμμμμμμ======⎛⎫ ⎪⎛⎫⎛⎫ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭⎛⎫⎛⎫⎛⎫-- ⎪⎪⎪⎝⎭⎝⎭==--⎧⎫⎛⎫⎪⎪-≤-≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭∑∑∑∑∑∑∑∑∑()则,()()()(){}222222222891(4)=8~1~(1,8)6498911=(1,8)58.82(8,1)10.90.158.8258.82XXX F FSSXP P F P FSμμμχμ-⎛⎫⎪--==⎧⎫-⎪⎪⎧⎫<<=<=-=⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭(),则也可以用T分布与F分布的关系.0020001111()()1ln(1)11,,ˆˆˆ1ln(1),,ln(1)ln(1)2(;,...,)(;)ln (;,...,)=01ˆ=()()似然方程:得到参数的极大似然估计,再由i A nnx n n xn i i i n P X A F A e p p A EX DX A EX p EX X A EX p X p L x x f x e e d L x x nnx d Xλλλλλλλλλλλλλλλ---==<==-=-=-===--=∴=--=--====-∏∏ 0000010000ln(1)ˆln(1)ˆln(1)ˆ(3)=ln(1)=ln(1)==ˆln (;,...,)ln(1){[ln(1)][]}ln(1)ˆ()ln(1)ˆˆ极大似然估计的不变性,推出的极大似然估计为是的无偏估计且是的无偏估计是有效n A p A X p p EA E X p p EX A AA d L x x p n n nx X p d p n AA p AA A λλλλλλ-=-=----⎡⎤----⎣⎦∴-=-=-----=--∴ ()202ˆlim ln(1)ˆlim lim 0ˆ估计又是相合估计量n n n EA A p DA n Aλ→∞→∞→∞⎧=⎪⎨-⎪==⎩∴221212121222122222222221222121.422,2~222(1)(1)~01~(2) (1)(1)(1)(1)2=222X YX Y X YX X X X Nn mX X n S m SU N n mn S m S n S m S X X Sn mX Xtωσσμμμμμμχχσσσσ+++++-+--==++----+-+++-+-+==的无偏估计为且(,+)(,)又且与独立,记则()()()()()()()121212212121211221212122222=22=22222=12122t n mP t t n mX XP t n m t n mP X X t n m S X X t n m SX X t n m Sαααααωαμμμμαμμα-----+-⎧⎫≤+-⎨⎬⎩⎭⎧⎫⎪⎪+-+⎪⎪+-≤≤+-⎨⎬⎪⎪⎪⎪⎩⎭⎧⎪+-+-≤+≤+++-⎨⎪⎩-+-+±+-因此构造的置信区间为{}{}121201212120121212121212.222=022,22=02=02=0=的无偏估计为,在:成立的条件下,大于某个常数应该是小概率事件,因此构造拒绝域:以下确定常数由X X H X X c K X X c cP X X c P P t t μμμμμμμμμμα+++++>+>+⎧⎫⎪⎪⎪=>+⎬⎪⎪⎭⎧⎫⎪⎪⎪⎪=>+=⎨⎬⎪⎪⎪⎪⎩⎭()()122n m c t n m S ααω--+-⇒=+-拒绝域为:3133011331122333333111~(1,).~(3)220.220.230.20.20.80.20.104220.4因为所以,类错误(弃真):为真类错误(纳伪):为真i i i i i i i i i i i i i i X B p X B p P X H P X p P X p P X p C C P X H P X p αβ=======I ⎧⎫⎧⎫=≥=≥=⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫===+==⎨⎬⎨⎬⎩⎭⎩⎭=+=II ⎧⎫⎧=<=<=⎨⎬⎨⎩⎭⎩∑∑∑∑∑∑∑313311223333120.4120.430.410.40.60.40.648i i i i i i P X p P X p P X p C C ===⎫⎬⎭⎧⎫=-≥=⎨⎬⎩⎭⎧⎫⎧⎫=-==-==⎨⎬⎨⎬⎩⎭⎩⎭=--=∑∑∑()()221221111211=200ˆnE i i i n n nEi i i i i i i i i ni ii nii S y x dS y x x y x x d x yxββββββ======-=--=⇒-==∑∑∑∑∑∑解:()利用最小二乘估计使残差平方和最小参数的最小二乘估计量为2211222111111221111ˆ2=~(,)ˆˆˆ~(,)111ˆ===11ˆ(),由正态分布的性质推知服从正态分布ni ii i i i ni ii nnni i iiiinnni i i i i ii i i ni i nn i i i i i x YY x N x xN E D E E x Y x EY x x x x xD D x Y x x ββεβσβββββββ============+⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭⎛⎫⎛ ⎪ ⎪ == ⎪ ⎪⎝⎭⎝∑∑∑∑∑∑∑∑∑∑∑()()()()()222211221222111112211ˆ~(,)ˆˆˆ3=ˆˆˆ2(,)ˆ(,)(,)因此,()nii ni ii n i i nnE i iiiiii i nni i i i i ii i ni ii ii i i i nniii i xDY xN x ES E Y x D Y x E Y x D Y x DY D x Cov Y x x Yx Cov Y x Cov Y x C xxσσβββββββββ==========⎫⎪⎪=⎪ ⎪⎭⎡⎤-=-+-⎣⎦⎡⎤=-=+-⎣⎦==∑∑∑∑∑∑∑∑∑∑()222221112222222222221111(,)(,)221则ni i i i i i i nni iii i nni i Enni i iii i x x ov Y x Y Cov Y Y xxx x ESn n n xxσσσσσσσσ==========+-=+-=-∑∑∑∑∑∑∑因素:车型水平:3种不同的车型A,B,C方差分析前提假设:正态性,方差齐次性,独立性对比分位数:0.95(2,9) 4.26F F >=,拒绝原假设0123:H μμμ==,认为这三种车型耗油量有显著差异。
重庆大学数理统计试题3

n Xi
i 1 m n m
( 1 ) Y1
m
2
i m 1
X
; ( 2 ) Y2
2 i
n X i 2 m Xi
i m 1 i 1 mn 2
n n 2 i 1 2 1 e 2 ) ( 2 2 ) 2 e 2 2 n xi2
xi2
n
L( 2 , X 1 , X 2 ,
Xn) (
i 1
ln( L( 2 , X 1 , X 2 , ln( L( 2 , X 1 , X 2 , d 2
xi2 n X n )) ln( 2 ) ln 2 i 1 2 2 2 X n )) n 1 n 1 n 2 i 1 ( xi 2 ) 2 2 2 4 2 2( ) 2 n i 1
s
2
c1
1 1 2 (n 1), c2 2 (n 1) n 1 2 n 1 1 2 s2
k0 :{
2
c2或
s2
2
c1}
(2) H0 : 2 1, H1 : 2 2
2 拒绝域 k0 : (n 1)s 2 12 (n 1);22s 2 0.95 (22) 33.92; :
m
2 i m1
X
n X i 2 m Xi
i m 1 i 1 mn 2
Y2 ~ F (m, n)
2 i
n
Xi
(3)
i 1
m
m n
m
~ N (0,1),
重庆大学研究生数理统计总复习

* 故任意样本(X1,…,Xn)的概率分布统一为:
n
f (x1, x2,, xn ) f (xi )
i 1
7、统计量
1)定义:设X1,…,Xn为总体X 的一个样本,
f (x1,, xn ) 为关于n维变量 x1,, xn 的连续函 数,且该函数中不含任何未知参数 ( x1,, xn 取定值时),则称 f (X1,, X n ) 为统 计量,很明显,统计量是一个随机变量。
3 . X ~ P ()E XD X
4 . X ~ U ( a ,b )E X a bD X 1 ( b a ) 2
2
1 2
1
1
5 . X ~ () E X D X 2
6 . X ~ N ( a , 2 )E X a D X 2
4、二维随机变量的数学期望:(EX,EY)
2)Poisson分布X~P(λ): P X k k e , k 0,1,2,( 0)
k!
4)均匀分布X~U[a,b]:
f
( x;
a,
b)
b
1
a
,
a xb
F(x)
x
f(t)dt
10bxaa,abxxxab
0
,其它
5)指数分布X~Γ(λ):
f
(
x;
)
e
x
,
x0
0 , x 0
分 布 函 数 F (x ) x f( t) d t 1 0 , e x ,0 x 0 0
D(aX bY ) a2DX b2DY 2ab cov(X ,Y )
4)若X与Y独立,则:
E( XY ) EXEY
D(aX bY ) a 2 DX b2 DY
(专硕)数理统计201305-试卷-

校训:耐劳苦、尚俭朴、勤学业、爱国家
重庆大学研究生试卷(2011 版)
第 3 页 共 3 页
五(14 分)近年来,国内灾害频发。每次大的自然灾害来临,都牵动着亿万 人民的心,人们通过各种方式送出援助,给受灾者带去温暖、带去希望。社 会的富裕程度与人们的慈善是否直接相关呢?2008 年“5.12”汶川地震后, 中国联通公司开通了短信捐赠平台,从 5 月 15 日 20 点开始,短短 4 个小时 内接受捐赠达二百多万元。 如果用随机变量 X 表示 2008 年全国 31 个省市的 GDP(单位:亿元) ,Y 表示全国 31 个省市在该时间段内的捐赠金额(单位: 元) ,根据联通公司网上公布的该时间段内 31 个省市的捐款数据和 2009 年 《中国统计年鉴》 , 计算得到: lxx 2380973569 , x 10551.57 ,y 86281.16 ,
一 ( 10 分 ) 设 某 地 区 初 三 年 级 学 生 的 体 重 为 X ( 单 位 : kg ) , 已 知 。现从中随机抽取学生 21 名学生,构成样本 X1 , X 2 , X ~ N ( 4 2, 3 6 )
封
值;3)讨论估计量 T2 ( X1 , X 2 ,
, X n ) 的有效性和相合性。
为了对该问题进行方差分析: 1) 指出该问题中的指标、因素、水平,进行方差分析应满足的前提条件; 2) 给出方差分析中的统计假设; 3) 完 成 方 差 分 析 表 , 检 验 不 同 化 肥 下 农 产 品 产 量 有 无 显 著 性 差 异 ( 0.05 )?
方差来源 DF (自由度) S2(平方和) S 2 (均方差) 因素 A 随机误差 总和 337.167 84.678 F值
lxy 15691922961, l yy 142047135134.19 。分析:1)假设 X 与 Y 有线性相
重庆大学概率论与数理统计期末考试模拟题及答案

模拟试题一一、 填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。
P( A ∪B) = 。
2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ;4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ; 5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ; 6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , COV(2X-3Y , X)= ; 7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k = 时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11ni i X X n ==∑为样本均值,则θ的矩估计量为: 。
9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ;二、 计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ; 2) 问X 与Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。
最新重庆大学数理统计试题2

一、假设129,,X X X …,是来自总体2~,X N的简单随机样本,X 是样本均值,2S 是样本方差,求下列常数a 的值。
(1)0.78P Xa ;(2)922113.49()15.51ii P X X a ;(3)0.05X P aS。
解:(1)22~(,),~(0,1)xx N N Nn220.78{}xp ann即2{ 2.34},(2.34),0.99xp a a a n。
(2)222(1)~(1)n sn 992222119221221:()(1)()11{3.49()15.51}(1){3.4915.51}(15.51)(3.49)10.950.10.85ii i i ii s x x n s x x n p x x an sp aaaa(3)2222(1)~(0,1),~(1)Xn sN n n222()/~(1),(1)/(1)X n t n n sn即()~(1)3(){}0.053()1{}0.053(){}0.951.86n X t n s Xp a s Xp a s Xp a s a 二、设总体X 的密度函数2,0()00,0xxex f x x 其一个样本为12,,nX X X …,(1)求1g的最大似然估计量T ;(2)验证T是否为1g的有效估计量,若是,写出信息量I;(3)验证T 是否为1g的相合估计量。
解:(1)122111()(,)()()niii nnnx x ni i i I I i L f x x ex e1111ln ()2lnln 2ln ()01112212nniii i nii nii L n x x dn L x d x xn T X(2)由(1)121220211ln (,,,)2()21,()221111()()222nn ii xdnL X X X X n Xd TX c nE T E X EX x edxT 是1得无偏估计量因而T 是1的有偏估计量。
重庆大学概率统计试题(A上期解答)

2002级重大概率论和数理统计试题(A )一、 填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 0.8286 。
P( A ∪B) = 0.988 。
2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B发生且A 不发生的概率相等,则A 发生的概率为: 2/3 ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率:14212661112C C ⨯ ,没有任何人的生日在同一个月份的概率61266!12C ;4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= 1/2 , 分布函数F (x )= 1,021,02241,2xe x xx x ⎧≤⎪⎪⎪+<≤⎨⎪>⎪⎪⎩, 概率{0.51}P X -<<= 0.53142e --;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = 1/3 ,若X与Y 独立,则Z=max(X,Y)的分布律: Z 0 1 2P 8/27 16/27 3/27;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= 43.92 , COV(2X-3Y , X)= 3.96 ;7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k =~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11ni i X X n==∑为样本均值,则θ的矩估计量为: 2X 。
9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: [9.216,10.784] ;二、 计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -; 1) 9{|21|2}{0.5 1.5}16P X P X -<=-<<=2)(0()0,01,0440,X X Y y y y y ϕϕϕ+>=≤⎩⎧≤≤⎪=⎨⎪⎩其它3)45(21)212133E X E X -=-=⨯-=2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ; 2) 问X 与Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;解:1)1,02,02()(,)420,0,x X x x dy x x x x y dy ϕϕ+∞--∞⎧⎧<<<<⎪⎪===⎨⎨⎪⎪⎩⎩⎰⎰其它其它2||1,||22||,||24()(,)0,0,y Y dx y y y y x y dx ϕϕ+∞-∞⎧<-<⎧⎪===⎨⎨⎩⎪⎩⎰⎰其它其它2)显然,(,)()()X Y x y x y ϕϕϕ≠,所以X 与Y 不独立。