(新课标)2014届中考数学查漏补缺第一轮基础复习 第16讲 二次函数的应用课件 华东师大版
二次函数复习ppt课件

3.求下列二次函数的开口方向,对称轴,顶点坐标.
y=x2 - 2x + 3 y= -2x2 - 4x - 6
解:y=x2-2x+1+2 =(x-1)2+2
y
o
x
a <0,b 0<,c 0. =
y
5.抛物线y=ax2+bx+c(a≠0)的图象经过原点,
且它的顶点在第三象限,则a、b、c满足
的条件是:a >0,b 0>,c 0. =
o
x
6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,
那么这个二次函数图象的顶点必在第 四象限
y 先根据题目的要求画出函数的草图,再根据 图象以及性质确定结果(数形结合的思想)
二次函数复习
6.二次函数的应用
1. 如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有 二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少?
解:(1) ∵ AB为x米、篱笆长为24米
x
7.已知二次函数的图像如图所示,下列结论: ⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷ b=2a 其中正确的结论的个数是( D) A 1个 B 2个 C 3个 D 4个
y
-1 0 1
x
要点:寻求思路时,要着重观察抛物线的开口方 向,对称轴,顶点的位置,抛物线与x轴、y轴的 交点的位置,注意运用数形结合的思想。
(中考数学复习)第16讲 二次函数的图象与性质(一) 课件 解析

坐标为(-2,0),则抛物线y=ax2+bx的对称轴为直线
( C )
A.x=1
B.x=-2
C.x=-1
D.x=-4
4.(2013·陕西)已知两点A(-5,y1),B(3,y2)均在抛物线y=
ax2+bc+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若
y1>y2≥y0,则x0的取值范围是
( B )
而增大 减小
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
1.(2013·河南)在二次函数y=-x2+2x+1的图象中,若y随的x
增大而增大,则x的取值范围是
( A )
A.x<1
B.x>1
C.x<-1
D.x>-1
2.(2013·内江)若抛物线y=x2-2x+c与y轴的交点为(0,-3),
基础知识 · 自主学习 题组分类 · 深度剖
图16-2
课堂回顾 · 巩固提升
∴B(10,0),而A、B关于对称轴对称,
浙派名师中考
要使y1随着x的增大而减小,则a<0, ∴x>2; (2)n=-8时,易得A(6,0),如图16-3所示, ∵抛物线过A、C两点,且与x轴交点A,B在原点两侧, ∴抛物线开口向上,则a>0, ∵AB=16,且A(6,0), ∴B(-10,0),而A、B关于对称轴对称,
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 ·0,a(x-m)2-a(x-m)=0, Δ=(-a)2-4a×0=a2, ∵a≠0, ∴a2>0, ∴不论a与m为何值,该函数的图象与x轴总有两个公共点; (2)解:①y=0,则a(x-m)2-a(x-m)=a(x-m)(x-m-1)=0, 解得x1=m,x2=m+1, ∴AB=(m+1)-m=1,
数学中考一轮复习专题16二次函数的应用课件

知识点2 :二次函数的实际应用
典型例题
【考点】二次函数的应用;分式方程的应用
【 分 析 】 ( 1 ) 设 猪 肉 粽 每 盒 进 价 a 元 , 则 豆 沙 粽 每 盒 进 价 (a-10) 元 , 根 据 商 家 用
8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同列出方程,解方程即可;
x 1
y
3Байду номын сангаас
(不合题意的值已舍去),
即点B的坐标为(-1,3),
从图象看,不等式x2+mx>-x+b的解集为x<-1或x>2;
知识点1 :二次函数与方程、不等式的关系
典型例题
(3)当点M在线段AB上时,线段MN与抛物线只有一个公共点, ∵MN的距离为3,而AB的距离为3,故此时只有一个交点,即-1≤xM<2; 当点M在点B的左侧时,线段MN与抛物线没有公共点; 当点M在点A的右侧时,当xM =3时,抛物线和MN交于 抛物线的顶点(1,-1),即xM =3时,线段MN与抛物线 只有一个公共点, 综上,-1≤xM<2或xM =3.
知识点1 :二次函数与方程、不等式的关系
典型例题
【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4+2m,解得:m=-2, 将点A的坐标代入直线表达式得:0=-2+b,解得b =2; 故m=-2,b =2;
(2)由(1)得,直线和抛物线的表达式为:y=-x+2,y=x2-2x,
联立上述两个函数表达式并解得:
知识点1 :二次函数与方程、不等式的关系
知识点梳理
知识点1 :二次函数与方程、不等式的关系
知识点梳理
2. 二次函数与不等式的关系:
(1)ax2+bx+c>0的解集:函数y=ax2+bx+c的图象位于x轴上方对应的点的横坐标的 取值范围; (2)ax2+bx+c<0的解集:函数y=ax2+bx+c的图象位于x轴下方对应的点的横坐标的 取值范围.
2014中考数学第一轮复习学案+对应练习----二次函数-1.doc

2014年中考数学第一轮复习—— 二次函数班级_________ 姓名________考点1:二次函数的概念1、下列关系式中,属于二次函数的是(x 为自变量) ( A )A 218y x =B y =21y x= D 22y a x = 2、当m 为何值时,函数2(2)45y m x x =-+-(m 是常数)是二次函数( B ) A -2 B 2 C 3 D -3 3、如果函数是二次函数,那么k 的值一定是 .0知识小结:_______________________________________________________________________________________________________________________________________ 考点2:二次函数的图象与性质1、二次函数的图象的顶点坐标是( A )A.(1,3)B.(1,3)C.(1,3)D.(1,3) 2、在二次函数的图象上,若随的增大而增大,则的取值范围是( A )A. 1B. 1C.-1 D.-1 3、把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是( D )A.B.C.D.4、对于二次函数y=2(x+1)(x-3),下列说法正确的是( C )A .图象的开口向下B .当x >1时,y 随x 的增大而减小C .当x <1时,y 随x 的增大而减小D .图象的对称轴是直线x=-15、已知二次函数y=a (x-2)2+c (a >0),当自变量x 3、0时,对应的函数值分别:y 1,y 2,y 3,,则y 1,y 2,y 3的大小关系正确的是( B )A .y 3<y 2<y 1B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 3<y 1<y 2知识小结:_______________________________________________________________________________________________________________________________________考点3:函数解析式:1、二次函数2y=x +bx+c 的图象经过点(4,3),(3,0),它的解析式为2、已知抛物线的顶点为,与y 轴的交点为求它的解析式.解:∵ 抛物线的顶点为∴ 设其解析式为①将代入①得∴故所求抛物线的解析式为即3、已知抛物线经过A (1,0),B (0,3)两点,对称轴是x=﹣1. 求抛物线对应的函数关系式 解:(1)根据题意,设抛物线的解析式为:y=a (x+1)2+k , ∵点A (1,0),B (0,3)在抛物线上, ∴,解得:a=﹣1,k=4,∴抛物线的解析式为:y=﹣(x+1)2+4.4、将抛物线y =2x 2-12x +16绕它的顶点旋转180°,所得的解析式是( D ) A. y =-2x 2-12x +16 B. y =-2x 2+12x -16 C. y =-2x 2+12x -19 D. y =-2x 2+12x -20知识小结:_______________________________________________________________________________________________________________________________________考点4:抛物线c bx ax y ++=2与坐标轴的交点问题1、二次函数错误!未找到引用源。
中考数学第一轮复习 二次函数的应用 教案 人教新课标版

《二次函数》的应用教学目标:1.使学生掌握二次函数模型的建立,并能运用二次函数的知识解决实际问题。
2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,获得用数学方法解决实际问题的经验,感受数学模型、思想在实际问题中的应用价值。
重点难点:重点:利用二次函数的知识解决实际问题,并对解决问题的策略进行反思。
难点:将实际问题转化为函数问题,并利用函数的性质进行决策。
教学过程:一、例题精析,引导学法,指导建模1.何时获得最大利润问题。
例:重庆市某区地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,区政府对该花木产品每投资x 万元,所获利润为P=-150(x -30)2+10万元,为了响应我国西部大开发的宏伟决策,区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元,若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通,公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x 万元可获利润Q=-4950(50-x)2+1945(50-x)+308万元。
(1)若不进行开发,求10年所获利润最大值是多少?(2)若按此规划开发,求10年所获利润的最大值是多少?(3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法。
学生活动:投影给出题目后,让学生先自主分析,小组进行讨论。
教师活动:在学生分析、讨论过程中,对学生进行学法引导,引导学生先了解二次函数的基本性质,并学会从实际问题中抽象出二次函数的模型,借助二次函数的性质来解决这类实际应用题。
教师精析:(1)若不开发此产品,按原来的投资方式,由P=-150(x -30)2+10知道,只需从50万元专款中拿出30万元投资,每年即可获最大利润10万元,则10年的最大利润为M 1=10×10=100万元。
(2)若对该产品开发,在前5年中,当x=25时,每年最大利润是:P =-150(25-30)2+10=9.5(万元) 则前5年的最大利润为M 2=9.5×5=47.5万元设后5年中x 万元就是用于本地销售的投资。
初三数学复习《二次函数》(专题复习)PPT课件

面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上
人教版初中数学中考考点系统复习 第16讲 二次函数的几何应用

考点精讲精练贵州真题实战
自主解答: 解:(1)令y=x2-2x=0,则x1=0,x2=2,∴点B的坐标为( ∵抛物线C1,C2开口大小相同、方向相反,∴a=-1.∵OA=2OB 的坐标为(4,0),将点A的坐标代入C2的解析式,得0=-16+ 解得b=4,故抛物线C2的解析式为y=-x2+4x.
考点精讲精练贵州真题实战
考点精讲精练贵州真题实战
考点精讲精练贵州真题实战
4.(2020·黔东南州)已知抛物线y=ax2+bx+c(a≠0)与x轴 交于A,B两点(点A在点B的左边),与y轴交于点C(0, -(31),求顶抛点物D线的的坐解标析为式(;1,-4). (2)在y轴上找一点E,使得△EAC为等腰三 角形,请直接写出点E的坐标; (3)P是x轴上的动点,Q是抛物线上的动 点,是否存在点P,Q,使得以P,Q,B,D 为顶点,BD为一边的四边形是平行四边 形?若存在,请求出点P,Q的坐标;若不 存在,请说明理由.
考点精讲精练贵州真题实战
考点精讲精练贵州真题实战
考点精讲精练贵州真题实战
考点3 平行四边形问题 考点精讲 3.(2019·铜仁)如图,已知抛物线y=ax2+bx-1与x轴的交
点为A(-1,0),B(2,0),且与y轴交于点C.
考点精讲精练贵州真题实战
(1)求该抛物线的解析式; (2)点C关于x轴的对称点为C1,M是线段BC1上的一个动 点(不与点B,C1重合),ME⊥x轴,MF⊥y轴,垂足分别 为E,F,当点M在什么位置时,矩形MFOE的面积最大? 请说明理由;
考点精讲精练贵州真题实战
考点精讲精练贵州真题实战
对点训练
考点精讲精练贵州真题实战
(1)求这条抛物线的函数解析式; (2)已知直线l是过点C(0,-3)且垂直于y轴的定直 线,若抛物线上的任意一点P(m,n)到直线l的距离为 d(,3求)已证:知P坐F标=平d;面内的点D(4,3),请在抛物线上找一 点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值 及点Q的坐标.
2014年武汉市中考数学复习专题:二次函数应用

武汉中考数学专题-二次函数应用1.(2014•武汉四月调考)某工厂生产一种矩形材料板,其长宽之比为3:2.每张材料板的成本c(单位:元)与它的面积(单位:cm2)成正比例,每张材料板的销售价格y(单位:元)与其宽x之间满足我们学习过的三种函数(即一次函数、反比例函数和二次函数)关系中的一种.下表记录了该工厂生产、销售该材料板一些数据.(1)求一张材料板的销售价格y与其宽x之间的函数关系式,不要求写出自变量的取值范围;(2)若一张材料板的利润w为销售价格y与成本c的差.①请直接写出一张材料板的利润w与其宽x之间的函数关系,不要求写出自变量的取值范围;②当材料板的宽为多少时,一张材料板的利润最大?最大利润是多少.2.(2001•安徽)某工厂生产的A种产品,它的成本是2元,售价是3元,年销量为100万件,为了获得更好的效益,厂家准备拿出一定的资金做广告;根据统计,每年投入的广告费是x(十万元),产品的年销量将是原销售量的y倍,且y是x的二次函数,它们的关系如表:(1)求y与x的函数关系式;(2)如果把利润看成销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元的函数关系式);(3)如果投入的年广告费为10万元~30万元,问广告费在什么范围内,工厂获得的利润最大?最大利润是多少?3.(2014•合肥模拟)某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.每台机器产生的次品数p(千件)与每台机器的日产量x(千件)(生产条件要求4≤x≤12)之间变化关系如表:已知每生产1千件合格的元件可以盈利1.6千元,但没生产1千件次品将亏损0.4千元.(利润=盈利﹣亏损)(1)观察并分析表中p与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识求出p(千件)与x(千件)的函数解析式;(2)设该工厂每天生产这种元件所获得的利润为y(千元),试将y表示x的函数;并求当每台机器的日产量x(千件)为多少时所获得的利润最大,最大利润为多少?4.(2013•乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?5.(2013•沙市区三模)某公司准备购进一批产品进行销售,该产品的进货单价为6元/个.根据市场调查,得到了四组关于日销售量y(个)与销售单价x(元/个)的数据,如表(1)如果在一次函数、二次函数和反比例函数这三个函数模型中,选择一个来描述日销售量与销售单价之间的关系,你觉得哪个合适?并写出y与x之间的函数关系式(不要求写出自变量的取值范围)(2)按照(1)中的销售规律,请你推断,当销售单价定为17.5元/个时,日销售量为多少?此时,获得日销售利润是多少?(3)为了防范风险,该公司将日进货成本控制在900元(含900元)以内,按照(1)中的销售规律,要想获得的日销售利润最大,那么销售单价应定为多少?并求出此时的最大利润.6.(2012•新区二模)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?7.“哪里的民营经济发展得好,哪里的经济就越发达.”恒强科技公司在重庆市委市政府这一执政理念的鼓舞下,在已有高科技产品A产生利润的情况下,决定制定一个开发利用高科技产品B的10年发展规划,该规翘晦年的专项投资资金是50万元,在前五年,每年从专项资金中最多拿出25万元投入到产品A使它产生利润,剩下的资金全部用于产品B的研发.经测算,每年投入到产品A中x万元时产生的利润y1(万元)满足下表的关系从第六年年初开始,产品B已研发成功,在产品A继续产生利润的同时产品B也产生利润,每年投入到产品B中x万元时产生的利润y2(万元)满足.(1)请观察题目中的表格,用所学过的一次函数、二次函数或反比例函数的相关知识,求出y1与x的函数关系式?(2)按照此发展规划,求前5年产品A产生的最大利润之和是多少万元?(3)后5年,专项资金全部投入到产品A、产品B使它们产生利润,求后5年产品A、产品B产生的最大利润之和是多少万元?8.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.而且物价部门规定这种产品的销售价不得高于28元/千克,通过市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)的变化如下表:设这种产品每天的销售利润为y(元).(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出w与x所满足的函数关系式,并求出y与x所满足的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)该农户想要每天获得150元的销售利润,销售价应定为多少元?9.某商品每件成本60元,试销阶段每件商品的销售价x(元)与商品的日销售量y (件)之间的关系如下表,其中日销售量y是销售价x的函数.(1)请判断这种函数是一次函数、反比例函数,还是二次函数?并求出函数解析式;(2)要使每日的销售利润最大,每件商品的销售价应定为多少元?此时每日销售利润是多少?(3)要使这种商品每日的销售利润不低于600元,且每件商品的利润率不得高于40%,那么该商品的销售价x应定为多少?请直接写出结果.10.某厂设计了一款成本为20元∕件的公益用品投放市场进行试销.经过调查,得到如下数据:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的y与x的函数关系,并求出函数关系式.(2)当销售单价定为多少时,该厂试销该公益品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地民政部门规定,若该厂销售此公益品单价不低于成本价且不超过46元/件时,该厂每销售一件此公益品,国家就补贴该厂a元利润(a>4),公司通过销售记录发现,日销售利润随销售单价的增大而增大,求a的取值范围.11.(2011•南昌模拟)阅读下列文字2010年广州亚运会前夕某公司生产一种时令商品每件成本为20元,经市场发现该商品在未来40天内的日销售量为a件,与时间t天的关系如下表:未来40天内,前20天每天的价格b(元/件)与时间t的关系为b=t+25(1≤t≤20),后20天每天价格为c(元/件)与时间t的关系式为c=﹣t+40(21≤t≤40)解得下列问题(1)分析表中的数据,用所学过的一次函数,二次函数,反比例函数知识确定一个满足这些数据的a与t的函数关系式;(2)请预测未来40天中哪一天日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定销售一件就捐赠n元(n<4)利润给亚运会组委会,通过销售记录发现前20天中,每天扣除捐赠后利润随时间t的增大而增大,求n的取值范围.12.2009年11月4日,上海市人民政府新闻办宣布上海迪斯尼项目报告已获国家有关部门核准.相应的周边城市效应也随即带动,某周边城市计划开通至上海的磁悬浮列车,列车走完全程包含启动加速、均匀运行、制动减速三个阶段,已知磁悬浮列车从启动加速到稳定匀速运行共需200秒,在这段时间内的相关数据如表所示:(1)请你在一次函数、二次函数和反比例函数中选择合适的函数来分别表示在加速阶段(0≤t≤200)速度v与时间t的函数关系,路程s与时间t的函数关系.(2)最新研究表明,此种列车的稳定运行速度可达180米/秒,为了检测稳定运行时各项指标,在列车达到这一速度后至少要运行100秒,才能收集全相关数据.若在加速过程中,路程、速度随时间的变化关系任然满足(1)中的函数关系式,并且制动减速所需路程与启动加速的路程相同,根据以上要求,至少要建多长的轨道才能满足实验检测要求?13.(2013•蕲春县模拟)今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如表:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x 的函数关系式;(2)进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=﹣x2+bx+c,请求出5月份y与x的函数关系式;(3)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?14.(2014•宜兴市模拟)在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活逐渐成为人们的共识,某企业采用技术革新,节能减排,今年前5个月二氧化碳排放量y(吨)与月份x(月)之间的关系如下表:(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数关系能表示y 和x的变化规律,请写出y与x的函数关系式;(2)随着二氧化碳排放量的减少,每排放一吨二氧化碳,企业相应获得的利润也有所提高,且相应获得的利润p(万元)与月份x(月)的函数关系如图所示,那么今年哪月份,该企业获得的月利润最大?最大月利润是多少万元?(3)受国家政策的鼓励,该企业决定从今年6月份起,每月二氧化碳排放量在上一个月的基础上都下降a%,与此同时,每排放一吨二氧化碳,企业相应获得的利润在上一个月的基础上都增加50%,要使今年6、7月份月利润的总和是今年5月份月利润的3倍,求a的值(精确到个位)(参考数据:,,,)15.(2010•安庆一模)某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如图.未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为(1≤t≤20,且t为整数),后20天每天的价格30元/件(21≤t≤40,且t为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.16.中央综治委在对全国各省市自治区2010年社会治安综合治理考评中,重庆市以93.48分居全国第一,成为全国最安全、最稳定的城市之一.市政府非常重视交巡警平台的建设,据统计,某行政区在去年前7个月内,交巡警平台的数量与月份之间的关系如下表:而由于部分地区陆续被划分到其它行政区,该行政区8至12月份交巡警平台数量y2(个)与月份x(月)之间存在如图所示的变化趋势:(1)请观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)2012年一月份,政府计划该区的交巡警平台数量比去年12份减少a%,在去年12月份的基础上每一个交巡警平台所需的资金量将增加0.1a%,某民营企业为表示对“平安重庆”的鼎力支持,决定在1月份对每个交巡警平台分别赞助30000元.若政府计划一月份用于交巡警平台的资金总额为126万元,请参考以下数据,估计a的整数值.(参考数据:872=7569,882=7744,892=7921)17.(2012•重庆模拟)樱桃含铁量位于各种水果之首,常食樱桃可促进血红蛋白再生,既可防治缺铁性贫血,又可增强体质,健脑益智.樱桃营养丰富,具有调中益气,健脾和胃,祛风湿,“令人好颜色,美志性”之功效,对食欲不振,消化不良,风湿身痛等症状均有益处,今年4月份,某樱桃种植基地种植的樱桃喜获丰收,4月1日至10日,销售价格y(元/千克)与天数x(天)(1≤x≤10且x为整数)的函数关系如下表:销售量z(千克)与天数x(天)(1≤x≤10且x为整数)之间存在如图所示的变化趋势;(1)请观察题中的表格,用所学过的一次函数,反比例函数或二次函数的有关知识,直接写出y与x之间的函数关系式,根据如图所示的变化趋势,直接写出z与x之间满足的一次函数关系式;(2)若采摘樱桃的人员费用m(元)与销售量z(千克)之间的函数关系式为:m=0.1z+100.则4月份前10天,哪天销售樱桃的利润最大,求出这个最大利润;(3)在(1)问的基础上,4月11日至4月12日,该樱桃种植基地调整了销售价格,每天都比前一天增加a%(0<a<20),在此影响下,销售量每天都比前一天减少100千克,若这两天销售樱桃的利润为80330元,请你参考以下数据,通过计算估算出整数值.(参考数据:742=5476,74.52=5550.25,752=5625)18.该厂生产了一种成本为20元∕个的小镜子投放市场进行试销.经过调查,得到如下数据:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的y(个)与x(元∕个)之间的关系式;(2)当销售单价定为多少时,该厂试销这种镜子每天获得的总利润最大?最大利润是多少?(总利润=每个镜子的利润×销售量)参考答案与试题解析一.解答题(共18小题)1.(2014•武汉四月调考)某工厂生产一种矩形材料板,其长宽之比为3:2.每张材料板的成本c(单位:元)与它的面积(单位:cm2)成正比例,每张材料板的销售价格y(单位:元)与其宽x之间满足我们学习过的三种函数(即一次函数、反比例函数和二次函数)关系中的一种.下表记录了该工厂生产、销售该材料板一些数据.(1)求一张材料板的销售价格y与其宽x之间的函数关系式,不要求写出自变量的取值范围;(2)若一张材料板的利润w为销售价格y与成本c的差.①请直接写出一张材料板的利润w与其宽x之间的函数关系,不要求写出自变量的取值范围;②当材料板的宽为多少时,一张材料板的利润最大?最大利润是多少.﹣x﹣﹣(x=2.(2001•安徽)某工厂生产的A种产品,它的成本是2元,售价是3元,年销量为100万件,为了获得更好的效益,厂家准备拿出一定的资金做广告;根据统计,每年投入的广告费是x(十万元),产品的年销量将是原销售量的y倍,且y是x的二次函数,它们的关系如表:(1)求y与x的函数关系式;(2)如果把利润看成销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元的函数关系式);(3)如果投入的年广告费为10万元~30万元,问广告费在什么范围内,工厂获得的利润最大?最大利润是多少?,,3.(2014•合肥模拟)某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.每台机器产生的次品数p(千件)与每台机器的日产量x(千件)(生产条件要求4≤x≤12)之间变化关系如表:已知每生产1千件合格的元件可以盈利1.6千元,但没生产1千件次品将亏损0.4千元.(利润=盈利﹣亏损)(1)观察并分析表中p与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识求出p(千件)与x(千件)的函数解析式;(2)设该工厂每天生产这种元件所获得的利润为y(千元),试将y表示x的函数;并求当每台机器的日产量x(千件)为多少时所获得的利润最大,最大利润为多少?4.(2013•乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?﹣(则,﹣x+8﹣x﹣(﹣[﹣(即﹣(﹣(﹣x+85.(2013•沙市区三模)某公司准备购进一批产品进行销售,该产品的进货单价为6元/个.根据市场调查,得到了四组关于日销售量y(个)与销售单价x(元/个)的数据,如表(1)如果在一次函数、二次函数和反比例函数这三个函数模型中,选择一个来描述日销售量与销售单价之间的关系,你觉得哪个合适?并写出y与x之间的函数关系式(不要求写出自变量的取值范围)(2)按照(1)中的销售规律,请你推断,当销售单价定为17.5元/个时,日销售量为多少?此时,获得日销售利润是多少?(3)为了防范风险,该公司将日进货成本控制在900元(含900元)以内,按照(1)中的销售规律,要想获得的日销售利润最大,那么销售单价应定为多少?并求出此时的最大利润.,﹣=136.(2012•新区二模)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?)代入得:,7.“哪里的民营经济发展得好,哪里的经济就越发达.”恒强科技公司在重庆市委市政府这一执政理念的鼓舞下,在已有高科技产品A产生利润的情况下,决定制定一个开发利用高科技产品B的10年发展规划,该规翘晦年的专项投资资金是50万元,在前五年,每年从专项资金中最多拿出25万元投入到产品A使它产生利润,剩下的资金全部用于产品B的研发.经测算,每年投入到产品A中x万元时产生的利润y1(万元)满足下表的关系从第六年年初开始,产品B已研发成功,在产品A继续产生利润的同时产品B也产生利润,每年投入到产品B中x万元时产生的利润y2(万元)满足.(1)请观察题目中的表格,用所学过的一次函数、二次函数或反比例函数的相关知识,求出y1与x的函数关系式?(2)按照此发展规划,求前5年产品A产生的最大利润之和是多少万元?(3)后5年,专项资金全部投入到产品A、产品B使它们产生利润,求后5年产品A、产品B产生的最大利润之和是多少万元?则,﹣+﹣x+﹣(﹣a a ﹣(+(8.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.而且物价部门规定这种产品的销售价不得高于28元/千克,通过市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)的变化如下表:设这种产品每天的销售利润为y (元).(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出w 与x 所满足的函数关系式,并求出y 与x 所满足的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)该农户想要每天获得150元的销售利润,销售价应定为多少元?.9.某商品每件成本60元,试销阶段每件商品的销售价x(元)与商品的日销售量y (件)之间的关系如下表,其中日销售量y是销售价x的函数.(1)请判断这种函数是一次函数、反比例函数,还是二次函数?并求出函数解析式;(2)要使每日的销售利润最大,每件商品的销售价应定为多少元?此时每日销售利润是多少?(3)要使这种商品每日的销售利润不低于600元,且每件商品的利润率不得高于40%,那么该商品的销售价x应定为多少?请直接写出结果.,10.某厂设计了一款成本为20元∕件的公益用品投放市场进行试销.经过调查,得到如下数据:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的y与x的函数关系,并求出函数关系式.(2)当销售单价定为多少时,该厂试销该公益品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地民政部门规定,若该厂销售此公益品单价不低于成本价且不超过46元/件时,该厂每销售一件此公益品,国家就补贴该厂a元利润(a>4),公司通过销售记录发现,日销售利润随销售单价的增大而增大,求a的取值范围.,a(﹣a﹣a11.(2011•南昌模拟)阅读下列文字2010年广州亚运会前夕某公司生产一种时令商品每件成本为20元,经市场发现该商品在未来40天内的日销售量为a件,与时间t天的关系如下表:未来40天内,前20天每天的价格b(元/件)与时间t的关系为b=t+25(1≤t≤20),后20天每天价格为c(元/件)与时间t的关系式为c=﹣t+40(21≤t≤40)解得下列问题(1)分析表中的数据,用所学过的一次函数,二次函数,反比例函数知识确定一个满足这些数据的a与t的函数关系式;(2)请预测未来40天中哪一天日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定销售一件就捐赠n元(n<4)利润给亚运会组委会,通过销售记录发现前20天中,每天扣除捐赠后利润随时间t的增大而增大,求n的取值范围.)将代入一次函数有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16讲┃ 归类示例
解: (1)根据题意,知这个正方体的底面边长 a= 2 x cm, EF= 2 a=2x (cm), ∴ x+ 2x+ x= 24 , x= 6,a=6 2 cm, V = a3= (6 2 )3= 432 2(cm3). (2)设包装盒的底面边长为 y cm,高为 h cm,则 y= 2x, 24-2x h= = 2(12-x), 2 ∴ S= 4yh+ y2 =4 2 x· 2(12-x)+( 2 x)2=- 6x2+ 96x= - 6(x- 8)2+384, ∵ 0<x<12,∴当 x= 8时,S取得最大值 384 cm2.
第16讲┃ 归类示例
[解析] (1)相等关系:甲、乙两种商品的进货单价之和 是5元;按零售价买甲商品 3件和乙商品2件,共付了 19元. (2)利润=(售价-进价)×件数.
解: (1)设甲商品的进货单价是 x元,乙商品的进货单价 是 y元.
x+ y= 5, 根据题意,得 3( x+ 1)+ 2( 2y- 1)= 19, x= 2, 解得 y= 3
第16讲┃二次函数的应用
第16讲┃ 考点聚焦
考点聚焦
考点1 二次函数的应用
二次函数的应用关键在于建立二次函数的数学模型,这 就需要认真审题,理解题意,利用二次函数解决实际问题, 应用最多的是根据二次函数的最值确定最大利润、最节省方 案等问题.
第16讲┃ 考点聚焦
考点2
建立平面直角坐标系,用二次函数的图象解决实际问题
第16讲┃ 归类示例
二次函数解决销售问题是我们生活中经常遇到的问 题,这类问题通常是根据实际条件建立二次函数关系 式,然后利用二次函数的最值或自变量在实际问题中的 取值解决利润最大问题.
第16讲┃ 归类示例 ► 类型之三 二次函数在几何图形中的应用
命题角度: 1. 二次函数与三角形、圆等几何知识结合往往是涉 及最大面积,最小距离等; 2. 在写函数关系式时,要注意自变量的取值范围.
第16讲┃ 归类示例
利用二次函数解决抛物线形问题,一般是先根据实际问 题的特点建立直角坐标系,设出合适的二次函数的关系式, 把实际问题中已知条件转化为点的坐标,代入关系式求解, 最后要把求出的结果转化为实际问题的答案.
第16讲┃ 归类示例 ► 类型之二 二次函数在营销问题方面的应用
命题角度: 二次函数在销售问题方面的应用.
第16讲┃ 归类示例
解: (1)∵ h= 2.6,球从 O点正上方 2 m的 A处发出, ∴ y= a(x- 6)2+ h过点(0, 2), 1 2 ∴ 2= a(0- 6) + 2.6,解得: a=- , 60 1 故 y与 x的关系式为: y=- (x- 6)2+ 2.6. 60 1 (2)当 x= 9时, y=- (9- 6)2+ 2.6= 2.45> 2.43, 60 所以球能过球网; 1 当 y= 0时,- (x- 6)2+ 2.6= 0, 60 解得 x1= 6+ 2 39> 18, x2= 6- 2 39(舍去). 故球会出界.
第16讲┃ 归类示例
当球刚能过网,此时函数图象过点 (9, 2.43), y= a(x- 6)2 + h的图象还过点(0, 2),将两点坐标代入解析式得: 43 2 a=-2700, 2.43= a( 9- 6) + h, 解得 2 2= a( 0- 6) + h, h=193, 75 193 8 193 8 此时球要过网则 h≥ .∵ > ,∴ h≥ , 75 3 75 3 故若球一定能越过球网,又不出边界, h的取值范围是: 8 h≥ . 3
第16讲┃ 归类示例
(3)当球正好过点 (18,0)时,y=a(x- 6)2+h还过点(0, 2)点, 1 2= 36a+ h, a=-54, 代入解析式得: 解得: 0= 144a+ h, h=8, 3 1 2 8 此时二次函数解析式为: y=- (x- 6) + , 54 3 8 此时球若不出边界则 h≥ . 3
第16讲┃ 回归教材
回归教材
如何定价利润最大
教材母题 华东师大版九下P27T2
某商人开始时,将进价为每件 8元的某种商品按每件 10 元出售,每天可销出 100件.他想采用提高售价的办法来增 加利润.经试验,发现这种商品每件每提价 1元,每天的销 售量就会减少 10件. (1)写出每天所得的利润 y (元 )与售价 x(元/件)之间的函 数关系式; (2)每件售价定为多少元,才能使一天所得的利润最 大?
第16讲┃ 回归教材
中考变式
[2012· 嘉兴 ] 某汽车租赁公司拥有 20辆汽车.据统计, 当每辆车的日租金为 400元时,可全部租出;当每辆车的日 租金每增加 50元,未租出的车将增加 1辆;公司平均每日的 各项支出共 4800元.设公司每日租出 x辆时,日收益为 y 元. (日收益=日租金收入-平均每日各项支出 ) (1)公司每日租出 x辆时,每辆车的日租金为 ________元 (用含 x的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大 是多少元? (3)当每日租出多少辆时,租赁公司日收益不盈也不 亏?
建立平面直角坐标系,把代数问题与几何问题进行互相 转化,充分结合三角函数、解直角三角形、相似、全等、圆 等知识解决问题,求二次函数的关系式是解题关键.
第16讲┃ 归类示例
归类示例
► 类型之一 利用二次函数解决抛物线形问题
命题角度: 1. 利用二次函数解决导弹、铅球、喷水池、抛球、跳 水等抛物线形问题; 2. 利用二次函数解决拱桥、护栏等问题.
第16讲┃ 回归教材
解: (1)(1400-50x) (2)y= x(-50x+1400)- 4800=- 50x2+ 1400x-4800 =- 50(x- 14)2+ 5000. 当 x=14时,在 0≤ x≤20范围内, y有最大值 5000. ∴当每日租出 14辆时,租赁公司日收益最大,最大值 为 5000元. (3)要使租赁公司日收益不盈也不亏,即 y= 0. 即- 50(x-14)2+5000= 0,解得 x1=24,x2=4. ∵ x=24不合题意,舍去. ∴当每日租出 4辆时,租赁公司日收益不盈也不亏 .
第16讲┃ 归类示例
(2)某广告商要求包装盒的表面积 (不含下底面)S最大,试 问 x应取何值?
图 16- 3
第16讲┃ 归类示例
[解析] (1)根据已知得出这个正方体的底面边长 a= 2x cm,EF= 2 a=2x(cm),再利用 AB=24 cm,求出x进而 可得出这个包装盒的体积 V; (2)利用已知表示出包装盒的表面面积,进而利用函数 最值求出即可.
图 16- 1
第16讲┃ 归类示例
[解析] (1)利用h=2.6,将 (0,2)代入解析式求出即可; 1 (2)利用当 x=9时, y=- (x- 6)2+2.6=2.45,当y=0时, 60 1 - (x-6)2+ 2.6= 0,分别得出即可; 60 (3)根据当球正好过点 (18,0)时, y=a(x-6)2+h的图象还过 (0,2)点,以及当球刚能过网,此时函数的图象过点 (9,2.43), y= a(x- 6)2+ h的图象还过点 (0,2)分别得出h的取值范围,即可 得出答案.
[2013· 淮安] 利民商店经销甲、乙两种商品.现有 如下信息:
图 16-2
第16讲┃ 归类示例
请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元? (2)该商店平均每天卖出甲商品 500件和乙商品 300件.经 调查发现,甲、乙两种商品零售单价分别每降 0.1元,这两种 商品每天可各多销售 100件.为了使每天获取更大的利润, 商店决定把甲、乙两种商品的零售单价都下降 m元.在不考 虑其他因素的条件下,当 m定为多少时,才能使商店每天销 售甲、乙两种商品获取的利润最大?每天的最大利润是多 少?
答:甲商品的进货单价是 2元,店每天销售甲、乙两种商品获取的利润为s元,则 m m s= (1- m)500+ 100× + (5-3- m)300+ 100× 0.1 0.1 即 s=- 2000m2+ 2200m+ 1100 =- 2000(m- 0.55)2+ 1705. ∴当 m= 0.55时, s有最大值,最大值为1705. 答:当 m定为0.55时,才能使商店每天销售甲、乙两种商 品获取的利润最大,每天的最大利润是1705元.
第16讲┃ 回归教材
解:(1)根据题意得,y=(x- 8)[100-10(x- 10)], 整理得y=-10x2+ 280x-1600. (2)配方得 y=-10(x- 14)2+ 360,所以当 x= 14时有最大 值,即售价为 14元时利润最大.
第16讲┃ 回归教材
[点析] 根据问题情景建立函数关系式,然后根据二 次函数的最值求最大利润时自变量的值.
第16讲┃ 归类示例
[2012· 无锡 ] 如图 16- 3,在边长为 24 cm的正方形 纸片 ABCD上,剪去图中阴影部分的四个全等的等腰直角三 角形,再沿图中的虚线折起,折成一个长方体形状的包装 盒 (A、 B、 C、 D四个顶点正好重合于上底面上一点 ).已知 E、 F在 AB边上,是被剪去的一个等腰直角三角形斜边的两 个端点,设 AE= BF= x cm. (1)若折成的包装盒恰好是个正方体,试求这个包装盒 的体积 V;
第16讲┃ 归类示例
二次函数在几何图形中的应用,实际上是数形结合思 想的运用,融代数与几何为一体,把代数问题与几何问题 进行互相转化,充分运用三角函数解直角三角形,相似、 全等、圆等来解决问题,充分运用几何知识求关系式是关 键.二次函数与三角形、圆等几何知识结合时,往往涉及 最大面积,最小距离等问题,解决的过程中需要建立函数 关系,运用函数的性质求解.
第16讲┃ 归类示例
[2012· 安徽 ] 如图 16- 1,排球运动员站在点 O处练习发 球,将球从 O点正上方 2 m的 A处发出,把球看成点,其运行的高 度 y(m)与运行的水平距离 x(m)满足关系式 y= a(x- 6)2+ h.已知球 网与 O点的水平距离为 9 m,高度为 2.43 m,球场的边界距 O点的 水平距离为 18 m. (1)当 h= 2.6时,求 y与 x的关系式(不要求写出自变量 x的取值 范围 ); (2)当 h= 2.6时,球能否越过球网?球会不会出界?请说明理 由; (3)若球一定能越过球网,又不出边界,求 h的取值范围.