《线性代数与概率统计》(概率统计)A)参考答案及评分标准

合集下载

线性代数与概率统计试卷与答案

线性代数与概率统计试卷与答案

一、单选( 每题参考分值2.5分)1、设随机变量的分布函数为,则()A.B.C.D.正确答案:【B】2、设总体为参数的动态分布,今测得的样本观测值为0.1,0.2,0.3,0.4,则参数的矩估计值为()A.0.2B.0.25C.1D.4正确答案:【B】3、A.B.C.D.正确答案:【B】4、设均为阶方阵,,且恒成立,当()时,A.秩秩B.C.D.且正确答案:【D】5、设是方程组的基础解系,则下列向量组中也可作为的基础解系的是()A.B.C.D.正确答案:【D】6、盒中放有红、白两种球各若干个,从中任取3个,设事件,,则事件()A.B.C.D.正确答案:【A】7、已知方阵相似于对角阵,则常数()A.B.C.D.正确答案:【A】8、掷一枚骰子,设,则下列说法正确的是()A.B.C.D.正确答案:【B】9、设为二维连续随机变量,则和不相关的充分必要条件是()A.和相互独立B.C.D.正确答案:【C】10、袋中有5个球(3新2旧),每次取1个,无放回的抽取2次,则第2次取到新球的概率为()A.B.C.D.正确答案:【A】11、A.B.C.D.正确答案:【D】12、设和是阶矩阵,则下列命题成立的是()A.和等价则和相似B.和相似则和等价C.和等价则和合同D.和相似则和合同正确答案:【B】13、二次型是()A.正定的B.半正定的C.负定的D.不定的正确答案:【A】14、矩阵与的关系是()A.合同但不相似B.合同且相似C.相似但不合同D.不合同也不相似正确答案:【B】15、随机变量X在下面区间上取值,使函数成为它的概率密度的是()A.B.C.D.正确答案:【A】16、A.全不非负B.不全为零C.全不为零D.全大于零正确答案:【C】17、随机变量的概率密度则常数()A.1B.2C.D.正确答案:【B】18、设二维随机变量的概率密度函数为,则()A.B.C.D.正确答案:【B】19、设随机变量的方差,利用切比雪夫不等式估计的值为()A.B.C.D.正确答案:【B】20、A.每一向量不B.每一向量C.存在一个向量D.仅有一个向量正确答案:【C】21、A.B.C.D.正确答案:【C】22、设,则()A.B.C.D.正确答案:【B】23、设随机变量的数学期望,方差,则由切比雪夫不等式有()A.B.C.D.正确答案:【B】24、以下结论中不正确的是()A.若存在可逆矩阵,使,则是正定矩阵B.二次型是正定二次型C.元实二次型正定的充分必要条件是的正惯性指数为D.阶实对称矩阵正定的充分必要条件是的特征值全为正数正确答案:【B】25、设总体服从两点分布:为其样本,则样本均值的期望()A.B.C.D.正确答案:【A】26、设是二阶矩阵的两个特征,那么它的特征方程是()A.B.C.D.正确答案:【D】27、已知,则()A.必有一特征值B.必有一特征值C.必有一特征值D.必有一特征值正确答案:【D】28、设是来自总体的样本,其中已知,但未知,则下面的随机变量中,不是统计量的是()A.B.C.D.正确答案:【D】29、矩阵的秩为,则()A.的任意一个阶子式都不等于零B.的任意一个阶子式都不等于零C.的任意个列向量必线性无关对于任一维列向量,矩阵的秩都为正确答案:【D】30、设向量组;向量组,则()A.相关相关B.无关无关C.无关无关D.无关相关正确答案:【B】31、A.交换2、3两行的变换B.交换1、2两行的变换C.交换2、3两列的变换D.交换1、2两列的变换正确答案:【A】32、设是矩阵,则下列()正确A.若,则中5阶子式均为0B.若中5阶子式均为0,则C.若,则中4阶子式均非0D.若中有非零的4阶子式,则正确答案:【A】33、分别是二维随机变量的分布函数和边缘分布函数,分别是的联合密度和边缘密度,则()A.B.C.和独立时,D.正确答案:【C】34、A.B.C.D.正确答案:【D】35、设随机变量的概率密度为,则()A.B.C.D.正确答案:【B】36、设是阶正定矩阵,则是()A.实对称矩阵B.正定矩阵C.可逆矩阵D.正交矩阵正确答案:【C】37、某学习小组有10名同学,其中7名男生,3名女生,从中任选3人参加社会活动,则3人全为男生的概率为()A.B.C.D.正确答案:【A】38、从0、1、2、…、9十个数字中随机地有放回的接连抽取四个数字,则“8”至少出现一次的概率为()A.0.1B.0.3439C.0.4D.0.6561正确答案:【B】39、A.B.C.正确答案:【D】40、设矩阵其中均为4维列向量,且已知行列式,则行列式()A.25B.40C.41D.50正确答案:【B】41、若都存在,则下面命题中正确答案的是()A.B.C.D.正确答案:【D】42、与矩阵相似的矩阵是()A.B.C.D.正确答案:【B】43、A.B.C.D.正确答案:【B】44、某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该动物已经活了20年,它能活到25年的概率是()A.0.48B.0.6C.0.8D.0.75正确答案:【D】45、设4维向量组中的线性相关,则()A.可由线性表出B.是的线性组合C.线性相关D.线性无关正确答案:【C】46、设为阶方阵,且(为正数),则()A.B.的特征值全部为零C.的特征值全部为零D.存在个线性无关的特征向量正确答案:【C】47、若连续型随机变量的分布函数,则常数的取值为()A.B.C.D.正确答案:【B】48、A.B.C.D.正确答案:【C】49、设,则~()A.B.C.D.正确答案:【B】50、设是未知参数的一个估计量,若,则是的()A.极大似然估计B.矩估计C.有效估计D.有偏估计正确答案:【D】一、单选(共计100分,每题2.5分)1、A.B.C.D.正确答案:【D】2、已知线性无关则()A.必线性无关B.若为奇数,则必有线性无关C.若为偶数,则线性无关D.以上都不对正确答案:【C】3、A.B.C.D.正确答案:【D】4、A.B.C.D.正确答案:【D】5、矩阵()是二次型的矩阵A.B.C.D.正确答案:【C】6、设为二维连续随机变量,则和不相关的充分必要条件是()A.和相互独立B.C.D.正确答案:【C】7、设是参数的两个相互独立的无偏估计量,且若也是的无偏估计量,则下面四个估计量中方差最小的是()A.B.C.D.正确答案:【A】8、设二维随机变量,则()A.B.3C.18D.36正确答案:【B】9、已知是非齐次方程组的两个不同解,是的基础解系,为任意常数,则的通解为()A.B.C.D.正确答案:【B】10、下列矩阵中,不是二次型矩阵的是()A.B.C.D.正确答案:【D】11、若总体为正态分布,方差未知,检验,对抽取样本,则拒绝域仅与()有关A.样本值,显著水平B.样本值,显著水平,样本容量C.样本值,样本容量D.显著水平,样本容量正确答案:【D】12、在假设检验中,设服从正态分布,未知,假设检验问题为,则在显著水平下,的拒绝域为()A.B.C.D.正确答案:【B】13、A.B.C.D.正确答案:【C】14、已知4阶行列式中第1行元依次是-4,0,1,3, 第3行元的余子式依次为-2,5,1,x ,则X=A.0B.3C. -3D.2正确答案:【B】15、设是阶正定矩阵,则是()A.实对称矩阵B.正定矩阵C.可逆矩阵D.正交矩阵正确答案:【C】16、设总体服从泊松分布:,其中为未知参数,为样本,记,则下面几种说法正确答案的是()A.是的无偏估计B.是的矩估计C.是的矩估计D.是的矩估计正确答案:【D】17、下列函数中可以作为某个二维随机变量的分布函数的是()A.B.C.D.正确答案:【D】18、A.B.C.D.正确答案:【A】19、若都存在,则下面命题正确答案的是()与独立时,B.与独立时,C.与独立时,D.正确答案:【C】20、设是从正态总体中抽取的一个样本,记则服从()分布A.B.C.D.正确答案:【C】21、设随机变量,则()A.B.C.D.正确答案:【A】22、已知向量,若可由线性表出那么()A.,B.,C.,D.,正确答案:【A】23、设,则()A.A和B不相容B.A和B相互独立C.或D.正确答案:【A】24、设总体,为样本均值,为样本方差,样本容量为,则以下各式服从标准正态分布的是()A.B.C.D.正确答案:【A】25、为三阶矩阵,为其特征值,当()时,A.B.C.D.正确答案:【C】26、某种商品进行有奖销售,每购买一件有的中奖概率。

工程数学(线性代数与概率统计)答案(1章)

工程数学(线性代数与概率统计)答案(1章)

工程数学(线性代数与概率统计)习题一一、 1.5)1(1222112=-⨯-⨯=-;2.1)1)(1(111232222--=-++-=++-x x x x x x x x x x ;3.b a ab bab a 2222-=4.53615827325598413111=---++=5.比例)第一行与第三行对应成(,000000=dc ba6.186662781132213321=---++=。

二.求逆序数 1. 551243122=↓↓↓↓↓τ即 2. 5213423=↓↓↓↓τ即3. 2)1(12)2()1(12)1(01)2()1(-=+++-+-=-↓↓-↓-↓n n n n n nn n ΛΛτ即 4.2)1(*2]12)2()1[()]1(21[24)22()2()12(31012111-=+++-+-+-+++=--↓↓-↓-↓-↓↓↓n n n n n n n n n n n ΛΛΛΛτ三.四阶行列式中含有2311a a 的项为4234231144322311a a a a a a a a +- 四.计算行列式值1.07110851700202145900157711202150202142701047110025102021421443412321=++------r r r r r r r r2.310010000101111301111011110111113011310131103111301111011110111104321-=---⋅=⋅=+++c c c c3.abcdef adfbce ef cf bf de cd bdae ac ab4111111111=---=--- 4.dcdcba dcb a1010111011110110011001--------按第一行展开 ad cd ab dc dadc ab+++=-+---=)1)(1(1111115.ba c cbc a b a a c b a c c b c a b a a b b a c c c b c a b b a a a ba c c cbc a b b a a c b a --------------=------202022202022222222222222 其中)3)(()(3522)(22)(12221222122)(2202022202022222220222200222202222222222222ac ab a c a b a ab abc ba c c aa c ab b a a b a abc ba c c aa c a bc c b b a aa cc b b a ac cc b b b aa ab ac c b c b aa b a c c b a b a a b a c c c b b b a a a b a c c c b c a b b a a a ++++++=--+-+-=--+---=--------=----其余同法可求。

线性代数概率统计(A)答案

线性代数概率统计(A)答案

线性代数与概率统计模拟试题(A)参考答案“线性代数”部分 ( 共50分 ) 一.选择题:( 每题3分,共12分 )1..设行列式4321630211113510-=D 中的元素j i a 的代数余子式为j i A )4,3,2,1,(=j i , 则下列各式中不正确...的是( A ) 。

A. D A A A A =+++44434241 B. D A A A A =+++44434241432 C. 0432********=+++A A A A D. D A A A A =+++24232221 2.设B A ,为两个n 阶方阵, O A ≠且O B A =,则一定有( B )成立。

A. O B =B. 0=A 或0=BC. O BA =D. 222)(B A B A +=+ 3.设向量(),1,0,1k T =α(),0,2,02=T α(),2,0,13=T α已知向量组321,,ααα线性无关, 则k 满足 ( D )A. 2=kB. 21=kC. 2≠kD. 21≠k 4.设A 是n m ⨯矩阵,若( A ),则齐次线性方程组0=AX 有非零解A. n m <B. n m >C. n A =)(秩D.mA =)(秩二.填空题:( 每题4分,共16分)1.如果⎪⎩⎪⎨⎧=+-=+=++022003z y x z ky z y x 有非零解, 那么k 的取值 8-=k 。

2.设A 为三阶方阵,A 为A 的行列式,且2=A 则行列式 =A A 16 。

3.已知⎪⎪⎭⎫⎝⎛=4321A ,*A 、1-A 分别为A 的伴随矩阵和逆矩阵,则=*A ⎪⎪⎭⎫ ⎝⎛--1324,=-1A⎪⎪⎪⎭⎫⎝⎛--212312。

4.已知⎪⎪⎭⎫ ⎝⎛-=231102A ,⎪⎪⎭⎫ ⎝⎛--=1121B ,TA 为A 的转置矩阵,则=-B AA T 2⎪⎪⎭⎫⎝⎛--16247 。

三.计算行列式:(本题6分)n22222232222222222212001002222222221)3(2-=≥-n i r r i200000010011111222212-=n!)2(20000100111102222112-------==-n n r r四.已知矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=132043100021A ,⎪⎪⎪⎭⎫ ⎝⎛-=110B ,1)(--=T BB A C ,求矩阵C (本题8分)解:=-T BB A -⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--132043100021⎪⎪⎪⎭⎫ ⎝⎛-110()110-=-⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--132043100021⎪⎪⎪⎭⎫⎝⎛--110110000 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0310410000211)(--=∴T BB A C 1031041000021-⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=040300002 五.判别线性方程组是否有解,若有解,请求其通解。

线性代数与概率统计和答案

线性代数与概率统计和答案

线性代数部分第一章 行列式一、单项选择题1.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 22. =0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 2 3.若a a a a a =22211211.则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 25. k 等于下列选项中哪个值时.齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)06.设行列式na a a a =22211211.m a a a a =21231113.则行列式232221131211--a a a a a a 等于()A. m n -B.)(-n m +C. n m +D.n m -二、填空题1. 行列式=0100111010100111.2.行列式010 (00)02...0.........000 (10)0 0n n =-.3.如果M a a a a a a a a a D ==333231232221131211.则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .4.行列式=--+---+---1111111111111111x x x x .5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1.则该行列式的值为.6.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.7.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解.则k =.三、计算题2.y x yx x y x y y x y x+++;3.解方程0011011101110=x x xx ;6. 111...1311...1112...1.........111...(1)b b n b----7. 11111222123111...1..................nb a a a b b a a b b b a ; 8.121212123.....................n nn x a a a a x a a a a x a a a a x;四、证明题1.设1=abcd .证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a dcbad c b a +++------=.第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵.则下列各式中成立的是( )。

驾驶线性代数与概率统计A卷

驾驶线性代数与概率统计A卷

秋土木工程专升本《线性代数与概率统计》A 卷姓名: 成绩:一、填空题(20分,每空2分)1. 向量()()12243221αβ==-,,则 2α-3β= __________。

2. 设12303206A t ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,当t = 时,R (A ) = 2。

3. 设A 是一个n 阶方阵,则A 非奇异的充分必要条件是R (A )= __________。

4.12021k k -=-的充要条件是 或 。

5. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________。

6. 已知),2(~2σN X ,且3.0}42{=<<X P ,则=<}0{X P __________。

7. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E _________。

8.设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()ni i X μσ=-∑服从_________分布.9. 设),3(~),,2(~p B Y p B X ,且95}1{=≥X P ,则=≥}1{Y P __________。

二、选择题(24分,每题3分)1.设A ,B 是两个n 阶方阵,若AB=0则必有( ) A .A=0且B=0B .A=0或B=0C .|A|=0且|B|=0D .|A|=0或|B|=02.若A ,B 都是方阵,且|A|=2,|B|=-1,则|A-1B|=( ) A .-2B .2C .-1/2D .1/23.设向量组(I):1α,2α,…r α,向量组(II):1α,2α,…r α,1r +α,…,s α则必有( )A .若(I)线性无关,则(II)线性无关B .若(II)线性无关,则(I)线性无关C .若(I)线性无关,则(II)线性相关D .若(II)线性相关,则(I)线性相关 4.从矩阵关系式C=AB 可知C 的列向量组是( ) A .A 的列向量组的线性组合 B .B 的列向量组的线性组合 C .A 的行向量组的线性组合D .B 的行向量组的线性组合5. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是( ) A 、P (A+B) = P (A); B 、()P(A);P AB = C 、(|A)P(B);P B = D 、(A)P B -=()P(A)P B -6. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( ) A 、“甲种产品滞销,乙种产品畅销”; B 、“甲、乙两种产品均畅销” C 、“甲种产品滞销”; D 、“甲种产品滞销或乙种产品畅销”。

《线性代数与概率统计》概率统计答案及评分标准

《线性代数与概率统计》概率统计答案及评分标准

计算机系《线性代数与概率统计》(概率统计)(A)参考答案及评分标准一、选择题(本大题共 5题,每小题 3 分,共 15 分)1. 一射手向目标射击3 次,i A 表示第i 次射击击中目标这一事件)3,2,1(=i ,则3次射击中至多2次击中目标的事件为( B )321321321321)()()()(A A A D A A A C A A A B A A A A ⋃⋃⋃⋃2. 若x x cos )(=ϕ可以成为随机变量X 的概率密度函数,则X 的可能取值区间为( A )(A )]2,0[π(B) ],2[ππ(C ) ],0[π (D ) ]47,23[ππ 3. 设随机变量X 的概率密度为()p x ,且{}01P x ≥=,则必有( C ) (A ) ()p x 在()0+∞,内大于零(B ) ()p x 在(),0-∞内小于零(C ) 01p(x)dx +∞=⎰(D ) ()p x 在()0+∞,上单调增加4. 下列数列是随机变量的分布律的是( A ).(A ) )5,4,3,2,1,0(15==i ip i(B ) )3,2,1,0(652=-=i i p i(C ) )4,3,2,1(51==i p i (D ) )5,4,3,2,1(251=+=i i p i5. 设X 1,X 2,X 3,X 4是来自总体N (?,?2)的简单随机样本,则四个统计量:μ1=( X 1+X 2+X 3+X 4 )/4, μ2=X 1,μ3=X 1/2+X 2/3+X 3/6,μ4=X 1/2+X 2/3+X 3/4中,是?的无偏估计量的个数为( C ) (A ) 1(B ) 2 (C ) 3 (D ) 4二、填空题(本大题共 5 题,每小题 3 分,共 15 分)1.设()0.4,()0.3,()0.6P A P B P A B ===U ,则()P AB =__0.3___.2.将3个球随机地放入3个盒子中(每个盒子中装多少个球不限),则每盒中各有一球的事件的概率等于____2/9___.3.设离散随机变量X的分布函数为00;1,01;3()=2,12;31, 2.xxF xxx<⎧⎪⎪≤<⎪⎨⎪≤<⎪⎪≥⎩, 则122P X⎧⎫<≤=⎨⎬⎩⎭___2/3______.4.连续型随机变量取任何给定实数值a的概率为 0 .5.设随机变量X与Y服从分布:X~(1,2)N,Y~(100,0.2)B,则(23)-+=E X Y -15 .三、计算题(本大题共 6 题,其中1、2小题每题8分,3、4小题每题10分,5、6小题每题12分,共 60 分)1.设一口袋装有10只球,其中有4只白球,6只红球,从袋中任取一只球后,不放回去,再从中任取一只球。

《线性代数与概率统计》(线性代数)试卷A 答案

《线性代数与概率统计》(线性代数)试卷A 答案

装订计算机系《线性代数与概率统计》(线性代数)课程试卷 (A)参考答案及评分标准一、单项选择题(本大题共 5 题,每小题 3 分,共 15 分)1. 行列式x 010x4x13 的展开式中,2x 的系数为( B )A. -1B. 2C. 3D. 42. n 阶方阵A 可逆的充分必要条件是( B )。

A.n r A r <=)(B.A 的列秩为nC.A 的每一个行向量都是非零向量D. 伴随矩阵存在3.n 维向量组)2(,,,21≥s s ααα 线性相关的充要条件是( D ) A. s ααα,,,21 中至少有一个零向量 B. s ααα,,,21 中至少有两个向量成比例 C. s ααα,,,21 中任意两个向量不成比例D.s ααα,,,21 中至少有一向量可由其它向量线性表示4. n 阶对称阵A 为正定矩阵的充分必要条件是( C )A. 0A >B. A 等价于单位矩阵EC. A 的特征值都大于0D. 存在n 阶矩阵C ,使TA C C =5. 当r (A )=r (A ,B ) < n 时,则n 元线性方程组AX = B ( A ) A .有无穷多解B. 无解C. 有唯一解D. 无法确定解的个数二、填空题(本大题共 5 题,每小题 3 分,共 15 分)1. 设A 为三阶矩阵,且2=A ,则=A 3 54装订线 内 不 准 答 题2. n 维零向量一定线性___相___关。

3. 设向量T )1,0,1(1=α与T a ),1,1(2=α正交,则=a -1 。

4. 设A 为正交矩阵,则=A A T15. 设三阶矩阵A 的特征值为-2、1、4,则=A -8三、计算题(本大题共6 题,每小题10分,共 60 分)1. 计算4阶行列式2123100023126231解: 2123100023126231=(4分) =-1*(1+8+27-6-6-6) (8分)=-18 (10分)2. 求矩阵⎪⎪⎭⎫⎝⎛---145243121的逆矩阵。

线性代数、概率论与数理统计试题及答案

线性代数、概率论与数理统计试题及答案

2010线性代数试题及答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页,共6页


计算机系
《线性代数与概率统计》(概率统计)(A)
参考答案及评分标准
一、选择题(本大题共 5题,每小题 3 分,共 15 分)
1. 一射手向目标射击3 次,i A 表示第i 次射击击中目标这一事件)3,2,1(=i ,
则3次射击中至多2次击中目标的事件为( B ) 3213213213
21)()()()(A A A D A A A C A A A B A A A A ⋃⋃⋃⋃
2. 若x x cos )(=ϕ可以成为随机变量X 的概率密度函数,则X 的可能取值 区间为( A ) (A )]2
,
0[π
(B) ],2
[
ππ
(C ) ],0[π
(D ) 4
7,23[
π
π 3. 设随机变量X 的概率密度为()p x ,且{}01P x ≥=,则必有( C ) (A ) ()p x 在()0+∞,内大于零 (B ) ()p x 在(),0-∞内小于零 (C )
1p(x)dx +∞
=⎰
(D ) ()p x 在()0+∞,上单调增加
4. 下列数列是随机变量的分布律的是( A ).
(A ) )5,4,3,2,1,0(15
==
i i p i (B ) )3,2,1,0(6
52
=-=
i i p i
(C ) )4,3,2,1(5
1==
i p i
(D ) )5,4,3,2,1(25
1=+=
i i p i
5. 设X 1,X 2,X 3,X 4是来自总体N (μ,σ2
)的简单随机样本,则四个统计量:
μ1=( X 1+X 2+X 3+X 4 )/4, μ2=X 1, μ3=X 1/2+X 2/3+X 3/6,
μ4=X 1/2+X 2/3+X 3/4
中,是μ的无偏估计量的个数为( C ) (A ) 1
(B ) 2
(C ) 3
(D ) 4
第2页,共6页
装 订
线 内 不 准 答 题
二、填空题(本大题共 5 题,每小题 3 分,共 15 分)
1.设()0.4,()0.3,()0.6P A P B P A B === ,则()P AB =__0.3___.
2.将3个球随机地放入3个盒子中(每个盒子中装多少个球不限),则每盒中各有一球的事件的概率等于____2/9___.
3.设离散随机变量X 的分布函数为00;
1
,01;3
()=2,12;3
1, 2.x x F x x x <⎧⎪⎪≤<⎪⎨⎪≤<⎪⎪≥⎩
,
则122P X ⎧⎫<≤=⎨⎬⎩⎭
___2/3______.
4.连续型随机变量取任何给定实数值a 的概率为 0 .
5.设随机变量X 与Y 服从分布:X ~(1,2)N ,Y ~(100,0.2)B ,则
(23)-+=E X Y -15 .
三、计算题(本大题共 6 题,其中1、2小题每题8分,3、4小题每题10分,5、6小题每题12分,共 60 分)
1.设一口袋装有10只球,其中有4只白球,6只红球,从袋中任取一只球后,不放回去,再从中任取一只球。

求下列事件的概率: (1) 取出两只球都是白球; (2) 第二次取的是白球.
解:(1) 设:取出两只球都是白球的事件为A 15
2/)(1
91
101
31
4=
=C C C C A P …………(4分)
(2) 设:第二次取的是白球的事件为B 5
2
//)(1
91
101
31
41
91
101
41
6=+=C C C C C C C C B P …………(8分)
第 3 页,共6页


2. 甲、乙是位于某省的二个城市,考察这二城市六月份下雨的情况,以A ,B 分别表示甲,乙二城市出现雨天这一事件,根据以往的气象记录知()()0.4P A P B ==, ()0.28P AB =, 求
(|)P B A 和()P A B ⋃.
解:(|)P B A =
)
()(A P AB P =4.028
.0=0.7 …………(4分) ()P A B ⋃=)()()(AB P B P A P -+=0.4+0.4-0.28=0.52 …………(8分)
3.已知连续型随机变量X 有概率密度 1,02
()0,
kx x f x +<<⎧=⎨⎩其它
(1) 求系数k ;
(2) 计算(1.5 2.5)<<P X ; (3) 求数学期望()E X . 解 (1)⎰
+∞

-=1)(dx x f ,即⎰=+2
1)1(dx kx …………
得2
1
-
=k ………………………………(2分) (2))5.25.1(<<X P =⎰
5
.25.1)(dx x f ………………(4分)
=
dx x

+-
2
5
.1)12
(==1/16=0.0625………(6分) (3))(X E =

+∞
∞-dx x xf )( …………………………(8分)
=
dx x x ⎰
+-
2
)12(=3
2
……………………(10分)
第4页,共6页
装 订
线 内 不 准 答 题
4.设随机变量),(Y X 在G 上服从均匀分布,其中G 由x 轴y ,轴及直线1x y +=所围成, ⑴ 求),(Y X 的边缘概率密度)(x f X ,⑵ 计算{}P Y X <。

解:),(Y X 的联合概率密度为 2,(,);
(,)0,x y G f x y ∈⎧=⎨
⎩其它. ……………… (2分)
(1) 2(1),01;
()(,)0,X x x f x f x y dy ∞
-∞
-<<⎧=
=⎨
⎩⎰
其它.
, …………… (6分) ⑵ 1210
12
{}(,)2y
y
y x
P Y X f x y dxdy dy dx -<<===
⎰⎰⎰⎰。

…………… (10分)
5.设X,Y 服从同一分布,其分布律为:
已知P (|X |=|Y |)=0,判断X 和Y 是否不相关?是否不独立? 解:根据P (|X |=|Y |)=0,易得X ,Y 的联合分布律为: ……(6分)
04/112/104/1)1()(=⨯+⨯+⨯-=X E
另易得:E (XY )=0
所以,COV(X ,Y ) = E (XY ) - E (X )E (Y ) = 0,即X 与Y 不相关。

……(10分) 根据P (X =i ,Y =j ) ≠ P (X =i ) P (Y =j ) 得X 与Y 不是相互独立。

………(12分)
第 5 页,共6页


6.设总体X 的概率分布为
其中θ(0<θ<
2
)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值。

解:
8
13ˆ(1)()34,()4
2
8i
i x E X E X x x x θθ
=-=-====∑令得又 …………(3分) 所以θ的矩估计值31
ˆ.44
x θ
-== ……………………(6分) (2) 似然函数8
6
241
(,)4(1)(12).i
i L P x θθ
θθ==
=--∏ …………(8分)
2
ln ln 46ln 2ln(1)
4ln(1),
d ln 628628240,d 112(1)(12)
L L θθθ
θθθθθθθθθ=++-+--+=--==
---- 解2
628240θθ-+= 得 1,272
θ=
. 由于
1
,2
> 所以θ的极大似然估计值为 ˆθ
=…………(12分)
第6页,共6页


线 内 不 准 答 题
四、应用题 设考生的外语成绩(百分制)X 服从正态分布,平均成绩(即参数μ之值)为72分,96以上的人占考生总数的2.3%,今任取100个考生的成绩,以Y 表示成绩在60分至84分之间的人数,求:Y 的分布律。

其中: (2)0.977,(1)0.8413Φ=Φ=.
解:),72(~2σN X ,),100(~p B Y ,其中 …………………………(2分)
)8460(<<=X P p
=1)12
(2)72
60(
)72
84(
-Φ=-Φ--Φσ
σ
σ
…………………(4分)
)24
(
1)72
96(1)96(023.0σ
σ
Φ-=-Φ-=>=X P ………………(6分)
977.0)24
(
=Φ∴σ
,即
224

,故
112

所以6826.01)1(2=-Φ=p ……………………………………(8分)
故Y 的分布率为)6826.0,100
(~B Y 即:k
k
k C k Y P -==100100
)3714.0()6826.0()( ……………………(10分)。

相关文档
最新文档