光学 第一章 习题及答案

合集下载

光学原子物理习题解答

光学原子物理习题解答

光学原⼦物理习题解答光学习题答案第⼀章:光的⼲涉 1、在杨⽒双缝实验中,设两缝之间的距离为0.2mm ,在距双缝1m 远的屏上观察⼲涉条纹,若⼊射光是波长为400nm ⾄760nm 的⽩光,问屏上离零级明纹20mm 处,哪些波长的光最⼤限度地加强?解:已知:0.2d mm =, 1D m =, 20l mm =依公式:五种波长的光在所给观察点最⼤限度地加强。

2、在图⽰的双缝⼲涉实验中,若⽤薄玻璃⽚(折射率1 1.4n =)覆盖缝S 1 ,⽤同样厚度的玻璃⽚(但折射率2 1.7n =)覆盖缝S 2 ,将使屏上原来未放玻璃时的中央明条纹所在处O 变为第五级明纹,设单⾊波长480nm λ=,求玻璃⽚的厚度d (可认为光线垂直穿过玻璃⽚)34104000104009444.485007571.46666.7dl k Ddk l mm nmDk nm k nm k nm k nm k nmδλλλλλλλ-==∴==?===========11111故:od屏 O解:原来,210r r δ=-= 覆盖玻璃后,221121821()()5()558.010r n d d r n d d n n d d mn n δλλλ-=+--+-=∴-===?- 3、在双缝⼲涉实验中,单⾊光源S 0到两缝S 1和S 2的距离分别为12l l 和,并且123l l λ=-,λ为⼊射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D ,如图,求:(1)零级明纹到屏幕中央O 点的距离。

(2)相邻明条纹的距离。

解:(1)如图,设0p 为零级明纹中⼼,则:21022112112021()()03()/3/r r d p o D l r l r r r l l p o D r r d D dλλ-≈+-+=∴-=-==-=(2)在屏上距0点为x 处,光程差 /3dx D δλ≈- 明纹条件 (1,2,3)k k δλ=± = (3)/kx k D d λλ=±+在此处令K=0,即为(1)的结果,相邻明条纹间距1/k k x x x D d λ+?=-=4、⽩光垂直照射到空⽓中⼀厚度为43.810e nm =?的肥皂泡上,肥皂膜的折射率 1.33n =,在可见光范围内44(4.0107.610)?-,那些波长的光在反射中增强?解:若光在反射中增强,则其波长应满⾜条件12(1,2,)2ne k k λλ+= =即 4/(21)ne k λ=- 在可见光范围内,有42424/(21) 6.7391034/(21) 4.40310k ne k nm k ne k nmλλ3= =-=?= =-=?5、单⾊光垂直照射在厚度均匀的薄油膜上(n=1.3),油膜覆盖在玻璃板上(n=1.5),若单⾊光的波长可有光源连续可调,并观察到500nm 与700nm 这两个波长的单⾊光在反射中消失,求油膜的最⼩厚度?解:有题意有:2(1/2)(1/2)2(1/2)500(1/2)700nd k k d nk k λλ=++∴='∴+=+min min 5/277/23,2(31/2)5006732 1.3k k k k d nm'+=+'∴==+∴==?即 56、两块平板玻璃,⼀端接触,另⼀端⽤纸⽚隔开,形成空⽓劈尖,⽤波长为λ的单⾊光垂直照射,观察透射光的⼲涉条纹。

工程光学第3版第一章习题答案

工程光学第3版第一章习题答案
• 光的干涉与衍射的关联与区别:光的干涉和衍射是波动性的两种表现形式,理 解它们之间的联系和区别是解决相关问题的关键。需要注意干涉和衍射产生的 条件、现象及其在光学系统中的应用。
• 光学元件的特性与选择:不同光学元件具有不同的特性,如透镜的焦距、折射 率,反射镜的反射率、角度等。在选择和使用光学元件时,需要考虑系统的需 求和限制,如成像质量、光束直径、光谱范围等。
习题1.6
什么是光的衍射?衍射现象有哪些应用?
答案
光的衍射是指光波在遇到障碍物时,绕过障碍物的边缘继 续传播的现象。衍射现象在许多领域都有应用,如全息摄 影、光学仪器制造和光学信息处理等。
习题1.3答案
习题1.7
什么是光谱线及其分类?光谱分析的原理是什么?
答案
光谱线是指物质在特定温度和压力下发射或吸收的特定波长的光。根据产生机理 ,光谱线可分为发射光谱和吸收光谱。光谱分析的原理是利用物质对光的吸收、 发射或散射特性来分析物质的组成和结构。
习题1.2
简述光学显微镜的基本组成部分。
习题1.1答案
习题1.3
如何正确使用光学显微镜?
答案
使用光学显微镜时,应先调节光源亮度,然后调节聚光镜和物镜的焦距,确保 样品清晰可见。接着,通过调节载物台和调焦装置,使样品在显微镜视场中居 中。最后,通过目镜观察并记录观察结果。
习题1.2答案
习题1.4
什么是光的折射?折射率与题考察了光学显微镜的分辨本领与照 明方式、物镜的数值孔径和照明光的波长的 关系。光学显微镜的分辨本领主要取决于物 镜的数值孔径和照明光的波长。数值孔径越 大,照明光的波长越短,则显微镜的分辨本 领越高。同时,照明方式也会影响显微镜的 分辨本领,暗视场显微镜具有较高的对比度
练习题3

光学第一章习题及答案解析

光学第一章习题及答案解析

物理与机电工程学院 2011级 应用物理班姓名:罗勇 学号:20114052016第一章 习题一、填空题:1001.光的相干条件为 两波频率相等 、相位差始终不变与 传播方向不相互垂直。

1015、迈克尔逊干涉仪的反射镜M 2移动0、25mm 时,瞧到条纹移动的数目为1000个,若光为垂直入射,则所用的光源的波长为_500nm 。

1039,光在媒介中通过一段几何路程相应的光程等于折射率与__路程_的乘积 。

1089、 振幅分别为A 1与A 2的两相干光同时传播到p 点,两振动的相位差为ΔΦ。

则p 点的光强I =2212122cos A A A A ϕ++∆1090、 强度分别为1I 与2I 的两相干光波迭加后的最大光强max I =12+I I 。

1091、 强度分别为I 1与I 2的两相干光波迭加后的最小光强min I =。

12I I -1092、 振幅分别为A 1与A 2的两相干光波迭加后的最大光强max I =12122A A A A ++。

1093、 振幅分别为A 1与A 2的两相干光波迭加后的最小光强min I =12122A A A A +-。

1094、 两束相干光叠加时,光程差为λ/2时,相位差∆Φ=π。

1095、 两相干光波在考察点产生相消干涉的条件就是光程差为半波长的()2j+1倍,相位差为π的()2j+1倍。

1096、 两相干光波在考察点产生相长干涉的条件就是光程差为波长的2j 倍,相位差为π的2j 倍。

1097、 两相干光的振幅分别为A 1与A 2,则干涉条纹的可见度v=1221221A A A A ⎛⎫⎪⎝⎭⎛⎫+ ⎪⎝⎭。

1098、 两相干光的强度分别为I 1与I 2,则干涉条纹的可见度v=1212I I I I -+。

1099、两相干光的振幅分别为A 1与A 2,当它们的振幅都增大一倍时,干涉条纹的可见度为不变。

1100、 两相干光的强度分别为I 1与I 2,当它们的强度都增大一倍时,干涉条纹的可见度 不变。

赵凯华光学及习题答案课件

赵凯华光学及习题答案课件
? 在不同介质里频率不变,但是波速要变,所以波长肯 定变,波长变了光的颜色应该要变吧? 光的颜色由频 率确定,而频率是光源的性质,与光通过的介质没有 关系。波长改变,是与光速改变相适应的,与频率没 有关系!
2)光强:通过单位面积的平均光功率,
或者说,光的平均能流密度
3)光强表达式:
? S?
?? E? H
光的本性
光的两种互补性质: 传播过程中显示波动性 与其他物质相互作用时显示粒子性 光具有波粒二象性
五、现代光学时期
<从1950年至今>
1、全息术、光学传递函数和激光的问世 是经典光学向现代光学过渡的标志
2、光学焕发了青春,以空前的规模和速度 飞速发展 1)智能光学仪器 2)全息术 3)光纤通信 4)光计算机 5)激光光谱学的实验方法
波动光学: 研究光的波动性的学科(干涉、衍射、偏振) 量子光学: 研究光和物质相互作用的问题(分子、原子尺度)
近代光学: 激光全息傅利叶和非线性光学
第一章 光和光的传播
§2 几何光学基本定律
1.1 几何光学三定律 1.2 全反射定律 1.3 棱镜与色散 1.4 光的可逆性原理
2.1 几何光学三定律 (1 )光的直线传播定律:
(n ? 43)
根据折射定律,有
n1 sin i1 ? sin i2
y ? x y' ? x
tan i1
tani2
O
y
y
Q
Q
x
i2
i1 M
空气 水
y' ? y tan i1 ? y sinci1 osi2 ? y 1? n2 sin2 i1
tan i2 sinci2 osi1
n cosi1

《光学教程》课后习题解答

《光学教程》课后习题解答
解:
⑴光垂直入射时,由光栅方程:
即能看到4级光谱
⑵光以角入射
16、xx垂直照射到一个每毫米条刻痕的平面透射光栅上,试问在衍射角为处会出现哪些波长的光?其颜色如何?
解:
在的衍射角方向出现的光,应满足光栅方程:
17、用波长为的单色光照射一光栅,已知该光栅的缝宽为,不透明部分的宽度为,缝数为条。求:⑴单缝衍射图样的中央角宽度;⑵单缝衍射图样中央宽度内能看到多少级光谱?⑶谱线的半宽度为多少?
即每内10条。
10、在上题装置中,沿垂直于玻璃表面的方向看去,看到相邻两条暗纹间距为。已知玻璃片长,纸厚,求光波的波长。
解:
当光垂直入射时,等厚干涉的光程差公式:
可得:相邻亮纹所对应的厚度差:
由几何关系:,即
11、波长为的可见光正射在一块厚度为,折射率为的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强。
解:xx环的反射光中所见亮环的半径为:
即:
则:
第2xx的衍射
1、单色平面光照射到一xx上,将其波面分成半波带。求第个带的半径。若极点到观察点的距离为,单色光波长为,求此时第一半波带的半径。
解:
由公式
对平面平行光照射时,波面为平面,即:
2、平行单色光从xx垂直射到一个有圆形小xx的屏上,设此xx可以像照相机光圈那样改变大小。问:⑴小xx半径应满足什么条件时,才能使得此小xx右侧轴线上距小xx中心的P点的光强分别得到极大值和极小值;⑵P点最亮时,小xx直径应为多大?设此光的波长为。

5、(略)
6、高的物体距凹面镜顶点,凹面镜的焦距是,求像的位置及高度,(并作光路图)
解:
由球面成像公式:
代入数值
得:
由公式:
7、一个高的物体放在球面镜前处成高的虚像。求⑴此镜的曲率半径;⑵此镜是凸面镜还是凹面镜?

工程光学习题解答(第1章)

工程光学习题解答(第1章)

第一章1.举例说明符合光传播基本定律的生活现象及各定律的应用.答:(1)光的直线传播定律影子的形成;日蚀;月蚀;均可证明此定律。

应用:许多精密的测量,如大地测量(地形地貌测量),光学测量,天文测量。

(2)光的独立传播定律定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播.说明:各光束在一点交会,光的强度是各光束强度的简单叠加,离开交会点后,各光束仍按各自原来的方向传播。

2.已知真空中的光速c≈3×108m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1。

65)、加拿大树胶(n=1.526)、金刚石(n=2。

417)等介质中的光速。

解:v=c/n(1)光在水中的速度:v=3×108/1。

333=2。

25×108 m/s(2)光在冕牌玻璃中的速度:v=3×108/1。

51=1。

99×108 m/s(3)光在火石玻璃中的速度:v=3×108/1。

65=1.82×108 m/s(4)光在加拿大树胶中的速度:v=3×108/1。

526=1。

97×108 m/s(5)光在金刚石中的速度:v=3×108/2。

417=1。

24×108 m/s*背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来。

那时候的玻璃极不均匀,多泡沫。

除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃)。

3.一物体经针孔相机在屏上成像的大小为60mm,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离.解:⇒l=300mm4.一厚度为200mm的平行平板玻璃(设n=1。

5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:本题是关于全反射条件的问题。

光学课后习题解答

光学课后习题解答
4汽1.5x 1.2汉1% CrC
当j=9时,
扎一—3/8 nm
19
所以,在390~760nm的可见光中,从玻璃片上反射最强的光波波长为
423.5 nm,480 nm,553.8 nm,654.5 nm.
12.迈克耳孙干涉仪的反射镜M2移动0.25mm时,看到条纹移过的数目为909个,设光为垂直入射,求所
17.9cm,纸厚0.036mm,求光波的波长。
11.波长为400Ll760nm的可见光正射在一块厚度为1.2×10-6m,折射率为1.5玻璃片上,试问从玻璃片反
射的光中哪些波长的光最强.
解:依题意,反射光最强即为增反膜的相长干涉,则有:
=2n2d =(2j1)-
4n2d2j 1
,=4n2d = 4 1.5 1.2 10^ = 7200nm
用光源的波长。
解:根据课本59页公式可知,迈克耳孙干涉仪移动每一条条纹相当h的变化为:
现因
N =909所对应的h为
2 0.25
909
13.迈克耳孙干涉仪平面镜的面积为4×4c∏t观察到该镜上有20个条纹。当入射光的波长为589nm时,
两镜面之间的夹角为多大?
解:因为S
又因为
所以
2
解:
Δ)
(1)由公式

/ =扎
d
A「0
-y二
50__5_2
6.4 10 =8.0 10 cm

d
=0.4
(2)由课本第
20页图1-2
的几何关系可知
r2-r1dsid tan "^=0.04^=0.8 10
2222八'
I=AA22 A1A2cos=4A CoS
(3)由公式2得

物理光学课后习题答案-汇总

物理光学课后习题答案-汇总


的合成。


=
,(m 为奇
= = =
=

两个振动方向相同的单色波在空间某一点产生的
振动分别为

。若
Hz,
数),

所以
=

试求如图所示的周期性矩形波的傅立叶级数的表
达式。
解:由图可知,

V/m, 8V/m,


求该点的合振动表达式。


=


=
所以

=
=
=

求如图所示的周期性三角波的傅立叶分析表达式。
面上时,
,其中

证明: 儒斯特角,所以
,因为 为布 ,
=
=
=
证明光束在布儒斯特角下入射到平行平面玻璃片
的上表面时,下表面的入射角也是布儒斯特角。
证明:由布儒斯特角定义,θ+i=90º ,
设空气和玻璃的折射率分别为 和 ,先由空气入
射到玻璃中则有
,再由玻璃出射
=


,其中
,又根据折射定
,得

,得证。
利用复数表示式求两个波
的宽度为
又由公式
,得双缝间距

=

设双缝间距为 1mm,双缝离观察屏为 1m,用钠光照
某种激光的频宽 的波列长度是多少
Hz,问这种激光
解:由相干长度
,所以波列长度

第二章 光的干涉及其应用
在与一平行光束垂直的方向上插入一透明薄片,其
明双缝。钠光包含波长为
nm 和
两种单色光,问两种光的第 10 级亮 条纹之间的距离是多少
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理与机电工程学院 20XX 级 应用物理班姓名:罗勇 学号:20114052016第一章 习题一、填空题:1001.光的相干条件为 两波频率相等 、相位差始终不变和 传播方向不相互垂直。

1015.迈克尔逊干涉仪的反射镜M 2移动0.25mm 时,看到条纹移动的数目为1000个,若光为垂直入射,则所用的光源的波长为_500nm 。

1039,光在媒介中通过一段几何路程相应的光程等于折射率和__路程_的乘积 。

1089. 振幅分别为A 1和A 2的两相干光同时传播到p 点,两振动的相位差为ΔΦ。

则p 点的光强I =2212122cos A A A A ϕ++∆1090. 强度分别为1I 和2I 的两相干光波迭加后的最大光强max I =12+I I 。

1091. 强度分别为I 1和I 2的两相干光波迭加后的最小光强min I =。

12I I -1092. 振幅分别为A 1和A 2的两相干光波迭加后的最大光强max I =12122A A A A ++。

1093. 振幅分别为A 1和A 2的两相干光波迭加后的最小光强min I =12122A A A A +-。

1094. 两束相干光叠加时,光程差为λ/2时,相位差∆Φ=π。

1095. 两相干光波在考察点产生相消干涉的条件是光程差为半波长的()2j+1倍,相位差为π的()2j+1倍。

1096. 两相干光波在考察点产生相长干涉的条件是光程差为波长的2j 倍,相位差为π的2j 倍。

1097. 两相干光的振幅分别为A 1和A 2,则干涉条纹的可见度v=1221221A A A A ⎛⎫⎪⎝⎭⎛⎫+ ⎪⎝⎭。

1098. 两相干光的强度分别为I 1和I 2,则干涉条纹的可见度v=1212I I I I -+。

1099.两相干光的振幅分别为A 1和A 2,不变。

1100. 两相干光的强度分别为I 1和I 2,当它们的强度都增大一倍时,干涉条纹的可见度 不变。

1101. 振幅比为1/2的相干光波,它们所产生的干涉条纹的可见度V=45。

1102. 光强比为1/2的相干光波,它们所产生的干涉条纹的可见度V=13。

1103. 在杨氏双缝干涉实验中,缝距为d ,缝屏距为D ,屏上任意一点p 到屏中心p 点的距离为y ,则从双缝所发光波到达p 点的光程差为1104. 在杨氏双缝干涉实验中,缝距为d ,缝屏距为D ,波长为λ,屏上任意一点p 到屏中心p 0点的距离为y ,则从双缝所发光波到达p 点的相位差为2πλ 1105. 在杨氏双缝干涉实验中,缝距为d ,缝屏距为D ,波长为λ,屏上任意一点p 到对称轴与光屏的交点p 0的距离为y ,设通过每个缝的光强是I 0,则屏上任一点的光强I=()01cos I V ϕ+∆。

1106. 在杨氏双缝干涉实验中,缝距为d ,缝屏距为D ,入射光的强度为I 0,波长为λ,则观察屏上相邻明条纹的距离为Ddλ。

1107. 波长为600nm 的红光透射于间距为0.02cm 的双缝上,在距离1m 处的光屏上形成干涉条纹,则相邻明条纹的间距为__3_mm 。

1108. 在杨氏双缝干涉实验中,缝距为d ,缝屏距为D ,屏上干涉条纹的间距为Δy 。

现将缝距减小一半,则干涉条纹的间距为2y ∆。

1109. 在杨氏双缝干涉实验中,用一薄云母片盖住实验装置的上缝,则屏上的干涉条纹要向_上移_____移动,干涉条纹的间距不变_____。

1110. 在杨氏双缝干涉实验中,得到干涉条纹的的间距为Δy ,现将该装置移入水中,(n=3/4),则此时干涉条纹的焦距为3y 4∆。

1111. 用波长为500 nm 的单色光照射杨氏双缝,入用折射率为1.5的透明薄片覆盖下缝,发现原来第五条移至中央零级处,则该透明片的厚度为___4510cm-⨯____________。

1112. 增透膜是用氟化镁(n=1.38)镀在玻璃表面形成的,当波长为λ的单色光从空气垂直入射到增透膜表面是,膜的最小厚度为_5.52λ____________。

1113. 在玻璃(n 0=1.50)表面镀一层MgF 2(n=1.38)薄膜,以增加对波长为λ的光的反射,膜的最小厚度为______2.76λ________。

1114. 在玻璃(n=1.50)表面上镀一层ZnS (n 0=2.35),以增加对波长为λ的光的反射,这样的膜称之为高反膜,其最小厚度为9.40λ。

1115. 单色光垂直照射由两块平板玻璃构成的空气劈,当把下面一块平板玻璃缓慢向下平移时,则干涉条纹___下移_______,明暗条纹间隔____不变_______。

1116. 波长为λ的单色光垂直照射劈角为α的劈形膜,用波长为的单色光垂直照射,则在干涉膜面上干涉条纹的间距为___2tan λα_____________。

1117. 空气中折射率为n ,劈角为α的劈形膜,用波长为λ的单色光垂直折射,则在干涉膜面上干涉条纹的间距为____2tan n λα________。

1118. 由平板玻璃和平凸透镜构成的牛顿环仪,置于空气中,用单色光垂直入射,在反射方向观察,环心是__暗的_________,在透射方向观察,环心是_____亮的_____。

1119. 通常牛顿环仪是用平凸透镜和平板玻璃接触而成,若平凸透镜的球面改为 ______圆锥_______面,则可观察到等距同心圆环。

1120. 在牛顿环中,将该装置下面的平板玻璃慢慢向下移动,则干涉条纹向环心缩小___________。

1121. 牛顿环是一组内疏外密的,明暗相间的同心圆环,暗环半径与_其干涉级的二分之一次方__________成正比。

1122. 用波长为λ的单色光产生牛顿环干涉图样,现将该装置从空气移入水中(折射率为n),则对应同一级干涉条纹的半径将是原条纹半径的____1n_________倍。

1123. 当牛顿环装置中的平凸透镜与平板玻璃之间充以某种液体时,原来第10个亮环的直径由1.4 cm变为1.27 cm,则这种液体的折射率为______1.10___________。

1124. 在迈克尔逊干涉仪中,当观察到圆环形干涉条纹时,这是属于___等倾_________干涉。

1125. 在迈克尔逊干涉仪实验中,当M1和M2垂直时,可观察到一组明暗相间的同心圆环状干涉条纹,环心级次_最高_______,环缘级次_最低_______。

1126. 观察迈克尔逊干涉仪的等倾圆环形条纹,当等效空气薄膜的厚度增大时,圆环形条纹____沿法线放向外扩大_________________。

1127. 在调整迈克尔逊干涉仪的过程中,在视场中发现有条纹不断陷入,这说明等效空气膜的厚度在_______变小___________。

1128. 调整好迈克尔逊干涉仪,使M1和M2严格垂直的条件下,干涉条纹将是一组同心圆环。

当移动动镜使等效薄膜厚度连续增大,则视场中观察到干涉条纹从中心__涌出_______,条纹间距___变大____________。

1129. 调整好迈克尔逊干涉仪,使M1和M2严格垂直的条件下,干涉条纹将是一组同心圆环。

当移动动镜使等效薄膜厚度连续减小,则视场中观察到干涉条纹从中心__缩进_______,条纹间距___变小___________。

1130. 用波长为600nm的光观察迈克尔逊干涉仪的干涉条纹,移动动镜使视场中移过100个条纹,则动镜移动的距离为__0.03mm_________。

1131. 在迈克尔逊干涉仪的一条光路中,放入一折射率为n,厚度为d的透明介质片,放入后两光路的程差改变____2(n-1)d___________。

1132. 迈克尔逊干涉仪的一臂重插有一折射率为n,厚度为h的透明膜片,现将膜片取走,为了能观察到与膜片取走前完全相同级次的干涉条纹,平面镜移动的距离为___2h(n-1)__________。

二、选择题:2007.将扬氏双缝干涉实验装置放入折射率为n的介质中,其条纹间隔是空气中的(C)(A(B(C)1n倍(D)n倍2013.用迈克耳逊干涉仪观察单色光的干涉,当反射镜M1移动0.1mm时,瞄准点的干涉条纹移过了400条,那么所用波长为(A )(A)500nm。

(B)498.7nm。

(C)250nm。

(D)三个数据都不对。

2015.用单色光观察牛顿环,测得某一亮环直径为3mm,在它外边第5个亮环直径为4.6mm,用平凸透镜的凸面曲率半径为1.0m,则此单色光的波长为(B )(A)590.3 nm (B)608nm (C)760nm (D)三个数据都不对2024.以波长为650nm的红光做双缝干涉实验,已知狭缝相距10-4m,从屏幕上测量到相邻两条纹的间距为1cm,则狭缝到屏幕之间的距离为多少m?( B )(A)2 (B)1.5 (C)1.8 (D)3.22025.玻璃盘中的液体绕中心轴以匀角速度旋转,液体的折射率为4/3,若以波长600nm的单色光垂直入射时,即可在反射光中形成等厚干涉条纹,如果观察到中央是两条纹,第一条纹的半径为10.5mm,则液体的旋转速度为多少rad/s?( B )(A)0.638 (B)0.9 (C)1.04 (D)0.1042096,两光强均为I的相干光干涉的结果,其最大光强为(C )(A)I (B)2I (C)4I (D)8I2097,两相干光的振幅分别为A1和A2,他们的振幅增加一倍时,干涉条纹可见度( C )(A)增加一倍(B)增加1/2倍(C)不变(D)减小一半2098,两相干光的光强度分别为I1和I2,当他们的光强都增加一倍时,干涉条纹的可见度(C )(A)增加一倍(B)增加1/2 倍(C)不变(D)减小一半2099,两相干光的振幅分别为A1和2A1,他们的振幅都减半时,干涉条纹的可见度( C )(A)增加一倍(B)增加1/2 倍(C)不变(D)减小一半2100,两相干光的光强分别为I1和2I1,当他们的光强都减半时,干涉条纹的可见度( D )(A)减小一半(B)减为1/4 (C)增大一倍(D)不变2101,在杨氏干涉花样中心附近,其相邻条纹的间隔为( B )(A)与干涉的级次有关(B)与干涉的级次无关(C)仅与缝距有关(D)仅与缝屏距有关2102,在杨氏双缝干涉试验中,从相干光源S1和S2发出的两束光的强度都是I o,在双缝前面的光屏上的零级亮条纹的最大光强度为( D )(A)I o(B)2I o(C)3I o (D)4I o2103,在杨氏双缝干涉试验中,如果波长变长,则( A )(A)干涉条纹之间的距离变大(B)干涉条纹之间的距离变小(C)干涉条纹之间的距离不变(D)干涉条纹变红2104.在杨氏双缝干涉试验中,若将两缝的间距加倍,则干涉条纹的间距( D )(A)是原来的两倍(B)是原来的四倍(C)是原来的四分之一(D)是原来的二分之一2105,将整个杨氏试验装置(双缝后无会聚透镜),从空气移入水中,则屏幕上产生的干涉条纹( C )(A)间距不变(B)间距变大(C)间距变小(D)模糊2106,在杨氏双缝干涉试验中,若用薄玻璃片盖住上缝,干涉条纹将( A )(A)上移(B)下移(C)不动(D)变密2107,若用一张薄云母片将杨氏双缝干涉试验装置的上缝盖住,则( D )(A)条纹上移,但干涉条纹间距不变(B)条纹下移,但干涉条纹间距不变(C)条纹上移,但干涉条纹间距变小(D)条纹上移,但干涉条纹间距变大2108,用白光作杨氏干涉试验,则干涉图样为(A )(A)除了零级条纹是白色,附近为内紫外红的彩色条纹(B)各级条纹都是彩色的(C)各级条纹都是白色的(D)零级亮条纹是白色的,附近的为内红外紫的彩色条纹2109,日光照在窗户玻璃上,从玻璃上、下表面反射的光叠加,看不见干涉图样的原因是(D )(A)两侧光的频率不同(B)在相遇点两束光振动方向不同(C)在相遇点两束光的振幅相差太大(D)在相遇点的光程差太大2110,雨后滴在马路水面上的汽油薄膜呈现彩色时,油膜的厚度是( A )(A)十的-5次方(B)十的-6次方(C)十的-7次方(D)十的-8次方2111,白光垂直照射在肥皂膜上,肥皂膜呈彩色,当肥皂膜的厚度趋于零时,从反射光方向观察肥皂膜( D )(A)还是呈彩色(B)呈白色(C)呈黑色(D)透明无色2112,单色光垂直入射到两平板玻璃板所夹的空气劈尖上,当下面的玻璃板向下移动时,干涉条纹将( A )(A)干涉条纹向棱边移动,间距不变(B)干涉条纹背离棱编移动,间距不变(C)干涉条纹向棱边密集(D)干涉条纹背向棱边稀疏2113,单色光垂直入射到两块平板玻璃板所形成的空气劈尖上,当劈尖角度逐渐增大时,干涉条纹如何变化( A )(A)干涉条纹向棱边密集(B)干涉条纹背向棱边密集(C)干涉条纹向棱边稀疏(D)干涉条纹内向棱边稀疏2114,单色光垂直照射在空气劈尖上形成干涉条纹,若要使干涉条纹变宽,可以( C )(A)增大劈角(B)增大光频(C)增大入射角(D)充满介质2115,在两块光学平板之间形成空气薄膜,用单色光垂直照射,观察等厚干涉若将平板间的空气用水代替,则( A )(A)干涉条纹移向劈棱,条纹间距变小(B)干涉条纹移向劈背,条纹艰巨变小(C)干涉条纹移向劈背,条纹间距变大(D)干涉条纹移向劈棱,条纹间距变大2116,利用劈尖干涉装置可以检验工件表面的平整度,在钠光垂直照射下,观察到平行而且等距的干涉条纹,说明工作表面是(A )(A)平整的(B)有凹下的缺陷(C)有突起的缺陷(D)有缺陷但是不能确定凸凹2117.利用劈尖干涉装置可以检测工件表面的平整度,在钠光垂直照射下,观察到在平行而且等距的干涉条纹中,有局部弯曲背向棱边的条纹,说明工作表面是( B )(A)平整的(B)有凹下的缺陷(C)有突起的缺陷(D)有缺陷但是不能确定凸凹2118,在两块光学平板玻璃板形成劈形空气膜,用单色光垂直入射时,观察到平行干涉条纹,当上面的玻璃板向下移动时,干涉条纹( B )(A)向棱边移动(B)背向棱边移动(C)不动(D)向中心移动2119,在两块光学平板玻璃板形成劈形空气膜,用单色光垂直入射时,观察到平行干涉条纹,当上面的玻璃板向下移动时,干涉条纹( B )(A)向棱边移动(B)背向棱边移动(C)不动(D)向中心移动2120.用力下压牛顿环实验装置的平凸透镜时,干涉条纹将( B )(A)向中心收缩(B)向外扩散(C)不动(D)变窄2121,在透射光中观察白光所形成的牛顿环,则零级条纹是( D )(A)暗(B)红色亮斑(C)紫色亮斑(D)白色亮斑2122,等倾干涉花样和牛顿环相比,他们的中心明暗情况是( C )(A)等倾干涉花样中心是亮的,牛顿环中心是暗的(B)等倾干涉和牛顿环干涉花样中心都是亮的(C)等倾干涉和牛顿环干涉花样的中心都是暗的(D)等倾干涉花样的中心可亮可暗,牛顿环干涉花样中心一定是暗的2123, 等倾干涉花样和牛顿环干涉花样干涉级分布是( B )(A)等倾干涉,干涉级向外递增,牛顿环干涉级向外递减(B)等倾干涉,干涉级向外递减,牛顿环干涉级向外递增(C)等倾干涉和牛顿环干涉级都是向外递增(D)等倾干涉和牛顿环干涉级都是向外递减2124,迈克尔孙干涉仪的两块平面反射镜互相垂直时,从该干涉仪中观察到的干涉图样是一组同心圆圈,他们是:( C )(A)内圈的干涉级数高于外圈的等厚干涉条纹;(B)内圈的干涉级数低于外圈的等厚干涉条纹;(C)内圈的干涉级数高于外圈的等倾干涉条纹;(D)内圈的干涉级数低于外圈的等倾干涉条纹;2125在迈克尔孙干涉仪实验中,调整平面镜M2的像M′2与另一平面镜之间的距离d,当d 增加时:( B )(A)干涉圈环不断在中心消失,且环的间距增大;(B)干涉圈环不断在中心冒出,且环的间距增大;(C)干涉圈环不断在中心消失,且环的间距减小;(D)干涉圈环不断在中心冒出,且环的间距减小;2126 在迈克尔孙的等倾干涉实验中,可以观察到环形干涉条纹,干涉仪的平面反射镜M 2由分光板所成的像为M ′2,当M ′2与干涉仪的另一块平面反射镜M 1之间的距离变小时,则:( B )(A )条纹一个一个地从中间冒出,条纹间距变小; (B )条纹一个一个地向中间陷入,条纹间距变大; (C )条纹不变,但条纹的可见度下降; (D )条纹不变,但条纹的可见度提高。

相关文档
最新文档