2020年广东省佛山市顺德区中考数学测试考试试卷(四) 解析版

合集下载

广东省2020年中考数学试题(word版,含答案)二四

广东省2020年中考数学试题(word版,含答案)二四

2020年广东省初中毕业生学业考试数 学学校: 班级: 姓名: 得分:说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( )A.15B.5C.-15D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒D.20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )题7图A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△; ④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。

2020年中考广东佛山数学卷

2020年中考广东佛山数学卷
7
第二问 (3)观察图像,点 C 为抛物线顶点,给 1 分。 (4)A、B 两点的对称点要均在格点上,给 1 分。 (5)图像光滑,且抛物线在 A 点处有延长,给 1 分(若 A 点处不延长,扣 1 分)。 (6)函数解析式求错,图象做对,给 2 分。 22 题(8 分) 第一问 (1) 每画对一个点,给 2 分。 (2) 连线给 1 分。连线不出头不扣分。 (3) 不写“……即为所求”,不扣分。 第二问 (4) 可以用刻度度量找中点,可以用直角三角板或其他工具找垂直。 (5) 作法说明清晰,体现中点、垂直、直线三要素,给 3 分。 (6) 作法说明中体现了中点、垂直等要素,但说明不清晰,给 2 分。 (7) 此题有开放性,其他情况本着以上原则酌情给分。 23 题(8 分) 第一问 (1) 此题的得分要点在讲明“等可能”、“所有可能的结果有多少个”、“符合题目 条件的结果有多少个”,若少了一个,扣 1 分。若没有任何说明,扣 2 分。 (2) 未写事件名称,不扣分。
验可以借助树状图或表格列举),比如掷一枚均匀硬币的试验。 第二类是用试验或者模拟试验的数据计算频率,并用频率估计概率的概率计算问题,比如掷图钉
的试验。 解决概率计算问题,可以直接利用模型,也可以转化后再利用模型。
请解决以下问题 (1) 如图,类似课本的一个寻宝游戏,若宝物随机藏在
某一块砖下(图中每一块砖除颜色外完全相同),则 宝物藏在阴影砖下的概率是多少?
A
请解决以下问题:
B
D
如图,我们把满足 AB AD 、 CB CD 且 AB BC 的四边形
ABCD 叫做“筝形”。
(1) 写出筝形的两个性质(定义除外)。
C
(2) 写出筝形的两个判定方法(定义除外),并选出一个进行证明。

2020年广东省佛山市顺德区中考数学四模试卷

2020年广东省佛山市顺德区中考数学四模试卷
15.36.
【分析】
连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题.
【详解】
如图,连接OC,OD.
∵五边形ABCDE是正五边形,
∴∠COD= =72°,
∴∠CFD= ∠COD=36°,
故答案为:36.
【点睛】
本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识.
16.
【详解】
解:这个正多边形的边数:360°÷30°=12.
故答案为:12.
【点睛】
本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.
13.
【分析】
依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
【详解】
解:随机闭合开关 、 、 中的两个出现的情况列表得:
(3)在(2)的条件下,当点P从左往右运动时,判断△MNP的面积如何变化?并说明理由.
23.某高校共有5个大餐厅和2个小餐厅,若同时开放1个大餐厅、2个小餐厅,可供1600名学生就餐;若同时开放2个大餐厅、1个小餐厅,可供2000名学生就餐.
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐?
(2)按照疫情防控的就餐要求,每个大餐厅只能容纳原来就餐人数的40%,每个小餐厅只能容纳原来就餐人数的30%,若同时开放7个餐厅,能否供返校的1800名毕业生同时就餐?请说明理由.
【详解】
解:当x2﹣9≠0时,分式有意义,
由x2﹣9≠0得:x2≠9,
则x≠±3,
故选:C.
【点睛】
本题主要考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.
9.C
【分析】

精品解析:2020年广东省佛山市顺德区中考数学三模试题(解析版)

精品解析:2020年广东省佛山市顺德区中考数学三模试题(解析版)

2020年广东省佛山市顺德区中考数学三模试卷一.选择题(共10小题)1.比﹣2大5的数是()A. ﹣7B. ﹣3C. 3D. 7【答案】C【解析】【分析】直接利用有理数的加法运算法则计算得出答案.【详解】解:比﹣2大5的数是:﹣2+5=3.故选:C.【点评】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.2.截止到4月10日,各国累计报告新冠肺炎确诊病例超过1620000人,将1620000用科学记数法表示为()A. 162×104B. 1.62×106C. 16.2×105D. 0.162×107【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将1620000用科学记数法表示为:1.62×106.故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由6个大小相同的正方体搭成的几何体,这个几何体的左视图是()A. B. C. D.【答案】D【解析】【分析】左视图是从物体的左边观察得到的图形,结合选项进行判断即可.【详解】解:从左边看,有两列,从左到右第一列是两个正方形,第二列底层是一个正方形.故选:D.【点睛】本题考查了简单组合体的三视图,属于基础题,解答本题的关键是掌握左视图的定义.4.数据2,3,4,5,4,3,2的中位数是()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】先将题目中的数据按照从小到大排列,奇数个取最中间的那个数,即得到这组数据的中位数.【详解】数据2,3,4,5,4,3,2按照从小到大排列是:2,2,3,3,4,4,5,故这组数据的中位数是3,故选:B.【点睛】本题考查了中位数,先把数据按照从小到大排列,奇数个取最中间的那个数,偶数个取最中间两个数的平均数.5.下面是证明勾股定理的四个图形,其中是轴对称图形的是()A. B.C. D.【答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点睛】此题主要考查了轴对称图形的定义,正确掌握轴对称图形的定义是解题关键.6.下列运算结果正确的是()A. 6x﹣5x=1B.C. (﹣2x)2=﹣4x2D. x6÷x2=x4【答案】D【解析】【分析】直接利用合并同类项法则以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的除法运算法则分别化简得出答案.【详解】A、6x﹣5x=x,故此选项错误;B、,故此选项错误;C、(﹣2x)2=4x2,故此选项错误;D、x6÷x2=x4,正确.故选:D.【点睛】此题主要考查了合并同类项以及二次根式的加减运算、积的乘方运算、同底数幂的除法运算,正确掌握相关运算法则是解题关键.7.如图,AB是半圆O的直径,AC,BC是弦,OD⊥AC于点D,若OD=1.5,则BC等于()A. 1.5B. 2C. 3D. 4.5【答案】C【解析】【分析】先根据垂径定理得到AD=CD,则OD为△ABC的中位线,然后根据三角形中位线性质得到BC的长.【详解】解:∵OD⊥AC,∴AD=CD,而OA=OB,∴OD为△ABC的中位线,∴BC=2OD=2×1.5=3.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.8.下列关于x的一元二次方程,一定有两个不相等的实数根的是()A. x2+kx﹣1=0B. x2+kx+1=0C. x2+x﹣k=0D. x2+x+k=0【答案】A【解析】【分析】先求出△的值,再比较出其与0的大小即可求解.【详解】解:A、△=k2﹣4×1×(﹣1)=k2+4>0,一定有两个不相等的实数根,符合题意;B、△=k2﹣4×1×1=k2﹣4,可能小于等于0,不一定有两个不相等的实数根,不符合题意;C、△=12﹣4×1×(﹣k)=1+4k,可能小于等于0,不一定有两个不相等的实数根,不符合题意;D、△=12﹣4×1×k=1﹣4k,可能小于等于0,不一定有两个不相等的实数根,不符合题意.故选:A.【点睛】本题考查的是根的判别式,熟知一元二次方程的根与△的关系是解答此题的关键.9.为了防治“新型冠状病毒”,某小区购买了某品牌消毒液用作楼梯消毒.使用这种消毒液时必须先稀释,使稀释浓度不小于0.3%且不大于0.5%.若一瓶消毒液净含量为1L,那么一瓶消毒液稀释到最小浓度需用水多少L?设一瓶消毒液稀释到最小浓度需用水xL,下列方程正确的是()A ×100%=0.3% B. ×100%=0.5%C. ×100%=0.3%D. ×100%=0.5%【答案】A【解析】【分析】根据浓度=×100%,即可得出关于x的分式方程,此题得解.【详解】解:依题意,得:×100%=0.3%.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.10.“分母有理化”是根式运算的一种化简方法,如:;除此之外,还可以用先平方再开方的方法化简一些有特点的无理数,如要化简,可以先设,再两边平方得,又因为,故x>0,解得,,根据以上方法,化简的结果是()A. B. C. D. 3【答案】D【解析】【分析】直接利用有理化因式以及二次根式的性质、完全平方公式分别化简得出答案.【详解】解:原式=+﹣=++﹣(﹣)=3﹣2++﹣+=3.故选:D.【点睛】此题主要考查了分母有理数,正确化简二次根式是解题关键.二.填空题(共7小题)11.从这五个数中随机抽取一个数,恰好是无理数的概率是_____.【答案】【解析】【分析】根据无理数的定义、简单事件的概率计算公式即可得出答案.【详解】中的无理数有从这五个数中随机抽取一个数的结果共有5种,它们每一种出现的可能性都相等,其中,抽到的数恰好是无理数的结果有2种则所求的概率为故答案为:.【点睛】本题考查了无理数的定义、简单事件的概率计算公式,依据题意,正确列出事件的所有可能的结果是解题关键.12.菱形的对角线长分别为6和8,则菱形的边长是________,面积是________【答案】 (1). 5 (2). 24【解析】【详解】解:∵菱形的两条对角线长分别为6和8,∴由勾股定理得,菱形的边长==5,∵菱形的面积=对角线乘积的一半,∴菱形面积=6×8÷2=24,故答案为:5,24.13.不等式4﹣x>1的解集是_____.【答案】【解析】【分析】不等式移项,系数化为1即可求解.【详解】解:4﹣x>1,﹣x>1﹣4,﹣x>﹣3,x<3.故答案为:x<3.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.已知y是x的函数,用列表法给出部分x与y的值,表中“▲“处的数可以是.(填一个符合题意的答案)【答案】【解析】【分析】用待定系数法求出反比例函数的解析式,再将表中x=1代入,即可求出“▲”处的数.【详解】解:设解析式为y=,将(2,6)代入解析式得k=12,这个函数关系式为:y=,把x=1代入得y=12,∴表中“▲”处的数为12,故答案为:12.【点评】本题考查了函数关系式,需仔细分析表中的数据,进而解决问题;关键是写出解析式.15.如图,已知点A、B、C、D都在⊙O上,且∠BOD=110°,则∠BCD为_____.【答案】【解析】【分析】利用圆周角定理以及圆内接四边形的性质即可解决问题.详解】解:∵∠A=∠BOD,∠BOD=110°,∴∠A=55°,∵∠BCD+∠A=180°,∴∠BCD=180°﹣55°=125°,故答案为125°.【点睛】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.中国清代数学著作《御制数理精蕴》中有这样一道题:“马四匹、牛六头,共价四十八两(“两”是我国古代货币单位);马三匹、牛五头,共价三十八两.则马每匹价_____两.【答案】【解析】【分析】设马每匹价x两,牛每头价y两,根据“马四匹、牛六头,共价四十八两;马三匹、牛五头,共价三十八两”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设马每匹价x两,牛每头价y两,依题意,得:,解得:故答案为:6.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.如图,分别以△ABC的边AB、AC为一边向外做正方形ABDE和正方形ACFG,连结CE、BG交于点P,连结AP和EG.在不添加任何辅助线和字母的前提下,写出四个不同类型的结论_____.【答案】△AEC≌△ABG,EC=BG,EC⊥BG,AP平分∠EPG,【解析】【分析】如图,连接BE,由“SAS”可证△EAC≌△BAG,可得EC=BG,∠CEA=∠GBA,可证点P,点A,点E,点B四点共圆,可得∠EPB=∠EAB=90°,∠APE=∠ABE=45°,可得EC⊥BG,AP平分∠EPG.【详解】解:△AEC≌△ABG,EC=BG,EC⊥BG,AP平分∠EPG,(答案不唯一)理由如下:如图,连接BE,∵正方形ABDE和正方形ACFG,∴AB=AE,AC=AG,∠BAE=∠CAG=90°,∠ABE=45°∴∠EAC=∠BAG,∴△EAC≌△BAG(SAS),∴EC=BG,∠CEA=∠GBA,∵∠CEA=∠GBA,∴点P,点A,点E,点B四点共圆,∴∠EPB=∠EAB=90°,∠APE=∠ABE=45°,∴EC⊥BG,∠EPG=90°,∴∠APG=∠APE=45°,∴AP平分∠EPG.【点评】本题考查了正方形的性质,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.三.解答题(共8小题)18.计算:.【答案】【解析】【分析】直接利用特殊角的三角函数值以及绝对值的性质、负整数指数幂的性质分别化简得出答案.【详解】原式===﹣2.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.19.先化简,再求值,其中x是方程230x-+=的根.【答案】值为.【解析】【分析】原式利用除法法则变形,约分得到最简结果,求出x的值,代入计算即可求出值.【详解】原式==x-+=,得到,由方程230解得:,则原式=.【点睛】此题考查了分式的化简求值,以及一元二次方程的解法,熟练掌握运算法则及方程的解法是解本题的关键.20.2020年3月“停课不停学”期间,某校采用简单随机抽样的方式调查本校学生参加第一天线上学习的时长,将收集到的数据制成不完整的频数分布表和扇形图,如下所示:(1)求m ,n 的值;(2)学校有学生2400人,学校决定安排老师给““线上学习时长”在x ≤60分钟范围内的学生打电话了解情况,请你根据样本估计学校学生“线上学习时长”在x ≤60分钟范围内的学生人数.【答案】(1)9,36m n ==;(2)人.【解析】【分析】(1)根据第2组的人数是6,对应的百分比是12%,即可求得调查的总人数,利用总人数减去其它组的人数求得m 的值;(2)利用总人数乘以对应的比例即可求解.【详解】解:(1)抽取的总人数是6÷12%=50(人), m =50﹣3﹣6﹣18﹣14=9(人).n %=×100%=36%,∴n =36;(2)估计学校学生“线上学习时长”在x ≤60分钟范围内的学生人数是2400×=432(人).【点睛】本题考查的是扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.频率=所求情况数与总情况数之比.21.如图,AB=4cm,∠ACB=45°.(1)尺规作图:作△ABC的外接圆(不要求写作法,保留作图痕迹);(2)在(1)的条件下,若弦AB和其所对的劣弧所围成图形的面积为S,求S的值.【答案】(1)作图见解析;(2)【解析】【分析】(1)作线段BC的垂直平分线MN,作线段AB的垂直平分线EF,直线MN交EF于点O,以O为圆心,OA为半径作⊙O即可.(2)连接OA,OB,证明∠AOB=90°,利用弧长公式计算即可.【详解】解:(1)如图,⊙O即为所求.(2)连接OA,OB.∵∠AOB=2∠ACB=90°,AB=4cm,∴AO=OB=2cm,∴S=S扇形OAB﹣S△AOB=﹣×2×2=2π﹣4.【点睛】本题考查作图﹣复杂作图,三角形的外心,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.如图,隧道的截面由抛物线和长方形构成.长方形的长为16m,宽为6m,抛物线的最高点C离路面AA1的距离为8m.(1)建立适当的坐标系,求出表示抛物线的函数表达式;(2)一大型货车装载设备后高为7m,宽为4m.如果隧道内设双向行驶车道,那么这辆货车能否安全通过?【答案】(1)以AA1所在直线为x轴,以线段AA1的中点为坐标原点建立平面直角坐标系,;(2)货运卡车能通过.【解析】【分析】(1)根据抛物线在坐标系中的特殊位置,可以设抛物线的解析式为y=ax2+8,再把B(﹣8,6)代入,求出a的值即可;(2)隧道内设双行道后,求出纵坐标与7m作比较即可.【详解】解:(1)如图,以AA1所在直线为x轴,以线段AA1中点为坐标原点建立平面直角坐标系,根据题意得A(﹣8,0),B(﹣8,6),C(0,8),设抛物线的解析式为y=ax2+8,把B(﹣8,6)代入,得:64a+8=6,解得:a=﹣.∴抛物线的解析式为y=﹣x2+8.(2)根据题意,把x=±4代入解析式y=﹣x2+8,得y=7.5m.∵7.5m>7m,∴货运卡车能通过.【点睛】本题考查了二次函数在实际问题中的应用,恰当地建立平面直角坐标系、利用待定系数法求得二次函数的解析式是解题的关键.23.如图,在正方形ABCD中,以BC为直径作半圆O,以点D为圆心、DA为半径做圆弧交半圆O于点P.连结DP并延长交AB于点E.(1)求证:DE为半圆O的切线;(2)求的值.【答案】(1)证明见解析;(2)【解析】【分析】(1)根据SSS证得△ODP≌△ODC,从而证得∠OPD=∠OCD=90°,即可证得结论;(2)根据切线长定理和相似三角形的判定与性质得到:(AB﹣EB)2=EB(2AB+EB),整理得到AB=4EB,即可证得AE=3EB,从而求得【详解】(1)证明:连接OP,OD,∵BC是⊙O的直径,∴OP=OC,∵以点D为圆心、DA为半径做圆弧,∴PD=CD,在△ODP和△ODC中,,∴△ODP ≌△ODC (SSS ),∴∠OPD =∠OCD =90°,∵P 点在⊙O 上,∴DE 为半圆O 的切线;(2)解:∵以点D 为圆心、DA 为半径做圆,延长ED 与圆的另一个交点为H ,连接AP,四边形ABCD 是正方形,∴EA 是⊙D 的切线,90,EAP ∴∠=︒90,EAP DAP ∴∠+∠=︒为圆D 的直径,90,PAH ∴∠=︒90,DAP DAH ∴∠+∠=︒,,DA DH DAH DHA =∴∠=∠,EAP DHA ∴∠=∠,AEP AEH ∠=∠,EAP EHA ∴∆∆∽∴EA 2=EP •EH ,同理,EB 是半圆O 的切线,∵DE 为半圆O 的切线,∴EB =EP ,∵AD =PD =AB ,∴(AB ﹣EB )2=EP (PH +EP )∴(AB ﹣EB )2=EB (2AB +EB )整理得AB =4EB ,∴AE =3EB ,∴.【点睛】本题考查了正方形性质,切线的判定和性质,全等三角形的判定和性质,相似三角形的判定与性质,切线长定理,掌握以上知识是解题的关键.24.如图1,矩形OABC 的顶点O 是直角坐标系的原点,点A 、C 分别在x 轴、y 轴上,点B 的坐标为(8,4),将矩形OABC 绕点A 顺时针旋转得到矩形ADEF ,D 、E 、F 分别与B 、C 、O 对应,EF 的延长线恰好经过点C ,AF 与BC 相交于点Q .(1)证明:△ACQ 是等腰三角形;(2)求点D 的坐标;(3)如图2,动点M 从点A 出发在折线AFC 上运动(不与A 、C 重合),经过的路程为x ,过点M 作AO 的垂线交AC 于点N ,记线段MN 在运动过程中扫过的面积为S ;求S 关于x 的函数关系式.【答案】(1)证明见解析;(2);(3)223(08)20248168(812)555x x S x x x ⎧≤⎪⎪=⎨⎪-+-⎪⎩<<< 【解析】【分析】(1)想办法证明∠QCA =∠QAC 即可解决问题.(2)设CQ =AQ =x ,利用勾股定理求出x ,如图1中,过点D 作DH ⊥x 轴于H .利用相似三角形的性质求出AH ,DH 即可解决问题.(3)分两种情形:①当0<x ≤8时,如图2中,延长MN 交AO 于H ,作QJ ∥AB 交AC 于J .利用相似三角形的性质求出AH ,MN 即可解决问题.②当8<x <12时,如图3中,作QJ ∥AB 交AC 于J ,作EK ∥AB 交BC 于T ,设MN 交BC 于R .利用相似三角形的性质求出MN ,AR 即可解决问题.【详解】(1)证明:∵四边形OABC ,四边形F ADE 都是矩形,∴∠AOC =90°,∠AFE =∠AFC =90°,BC ∥OA ,∵∠CF A =∠AOC =90°,AC =AC ,AO =AF ,∴Rt △ACO ≌Rt △ACF (HL ),∴∠CAO =∠CAF ,∵BC ∥OA ,∴∠BCA =∠CAO ,∴∠BCA =∠ACF ,∴QC =QA ,∴△ACQ 是等腰三角形.(2)解:设CQ =AQ =x ,∵B(8,4),∴BC=8,AB=4,在Rt△AQB中,∵AQ2=BQ2+AB2,∴x2=(8﹣x)2+42,∴x=5,∴BQ=3,如图1中,过点D作DH⊥x轴于H.∵∠QAD=∠BAH=90°,∴∠QAB=∠DAH,∵∠B=∠AHD=90°,∴△ABQ∽△AHD,∴,∴,∴AH=,DH=,∴OH=OA+AH=8+=,∴D().(3)①当0<x≤8时,如图2中,延长MN交AO于H,作QJ∥AB交AC于J.∵QJ∥AB,∴,∴,∴QJ=,∵MN∥QJ,∴△AMN∽△AQJ,∴AM MN AH AQ QJ BQ==,∴∴MN=,AH=,∴S=•MN•AH=·x·=x2.②当8<x<12时,如图3中,作QJ∥AB交AC于J,作EK∥AB交BC于T,设MN交BC于R.∵FK∥AB,JQ∥AB,∴FK∥JQ,∴△AQJ∽△AFK,∴,∴,∴FK=4,BT=,∴CT=BC﹣BT=8﹣=,∵MN∥FK,∴△CMN∽△CFK,∴,∴,∴MN=12﹣x,CR=(12﹣x),∴S=S△ACF﹣S△AFK=×4×12﹣×(12﹣x)×(12﹣x)=.综上所述,S=.【点睛】本题属于四边形综合题,考查了矩形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,学会利用分类讨论的思想思考问题,属于中考压轴题.25.探索应用材料一:如图1,在△ABC中,AB=c,BC=a,∠B=θ,用c和θ表示BC边上的高为,用a.c和θ表示△ABC的面积为.材料二:如图2,已知∠C=∠P,求证:CF•BF=QF•PF.材料三:蝴蝶定理(ButterflyTheorem)是古代欧氏平面几何中最精彩的结果之一,最早出现在1815年,由W.G.霍纳提出证明,定理的图形象一只蝴蝶.定理:如图3,M为弦PQ的中点,过M作弦AB和CD,连结AD和BC交PQ分别于点E和F,则ME=MF.证明:设∠A=∠C=α,∠B=∠D=β,∠DMP=∠CMQ=γ,∠AMP=∠BMQ=ρ,PM=MQ=a,ME=x,MF=y由即化简得:MF2•AE•ED=ME2•CF•FB则有: ,又∵CF•FB=QF•FP,AE•ED=PE•EQ,∴22=MF QF FPME PE EQ,即即,从而x=y,ME=MF.请运用蝴蝶定理的证明方法解决下面的问题:如图4,B、C为线段PQ上的两点,且BP=CQ,A为PQ外一动点,且满足∠BAP=∠CAQ,判断△P AQ 的形状,并证明你的结论.【答案】材料一:1sin,sin2θθc ac;材料二:证明见解析;材料三:△P AQ的形状为等腰三角形,证明见解析.【解析】【分析】材料一:作AD⊥BC于D,由三角函数定义得AD=AB×sin B=c•sinθ,由三角形面积公式得△ABC的面积=BC×AD=ac sinθ即可;材料二:证明△CFQ∽△PFB,得出=,即可得出结论;材料三:证S△ABP=S△ACQ,S△APC=S△AQB,证△ABP∽△ACQ,由S△ABP=S△ACQ,证出AP=AQ,即可得出结论.【详解】材料一:解:作AD⊥BC于D,如图1所示:则sin B=,∴AD=AB×sin B=c•sinθ,∴△ABC的面积=BC×AD=ac sinθ,故答案为:c sinθ,ac sinθ;材料二:证明:∵∠C=∠P,∠CFQ=∠PFB,∴△CFQ∽△PFB,∴=,∴CF•BF=QF•PF;材料三:解:△P AQ的形状为等腰三角形,理由如下:∵B、C为线段PQ上的两点,且BP=CQ,∴CP=BQ,∴△ABP与△ACQ等底等高,△APC与△AQB等底等高,∴S△ABP=S△ACQ,S△APC=S△AQB,∵∠BAP=∠CAQ,∴∠BAP+∠BAC=∠CAQ+∠BAC,即∠P AC=∠QAB,∴sin∠QAB=P sin∠P AC,∵S△AQB=AB•AQ sin∠QAB,S△APC=AC•AP sin∠P AC,∴==1,∴=,∴△ABP∽△ACQ,∵S△ABP=S△ACQ,∴==1,∴AP=AQ,∴△P AQ的形状为等腰三角形.【点睛】本题是圆的综合题目,考查了圆周角定理、三角函数定义、相似三角形的判定与性质、等腰三角形的判定、三角形面积公式等知识;本题综合性强,证明三角形相似是解题的关键.:。

广东省2020年中考数学试题(WORD版,有答案)二四

广东省2020年中考数学试题(WORD版,有答案)二四

2020年广东中考数学试题 学校: 班级: 姓名: 得分:一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是 A .0 B .13C . 3.14-D .22.据有关部门统计,2020年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是 A . B . C . D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为A .12B .13C .14D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是A .30°B .40°C .50°D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m < B .94m ≤ C .94m > D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11. 同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是 . 12. 分解因式:=+-122x x .13. 一个正数的平方根分别是51-+x x 和,则x= .14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一) 17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+18.先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。

2020年广东省佛山市顺德区中考数学测试试卷(二)(含答案解析)

2020年广东省佛山市顺德区中考数学测试试卷(二)(含答案解析)

2020年广东省佛山市顺德区中考数学测试试卷(二)一、选择题(本大题共10小题,共30.0分)1.下列方程中,是一元一次方程的是()A. −x+2y=3B. x2−3x=6C. x3=0 D. x2x=12.下列各式进行的变形中,不正确的是()A. 若3a=2b,则3a+2=2b+2B. 若3a=2b,则3a−5=2b−5C. 若3a=2b,则9a=4bD. 若3a=2b,则a2=b33.若x=y,那么下列变形不一定正确的是()A. x+1=y+1B. −x=−yC. 2x+2y=0D. x3=y34.若(|m|−1)x2−(m−1)x−8=0是关于x的一元一次方程,则m的值为()A. −1B. 1C. ±1D. 不能确定5.某小组计划做一批中国结.如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做x个中国结,则可列方程为()A. x+96=x−74B. x−96=x−74C. x+96=x+74D. x−96=x+746.已知x=−2是方程5x+12=x2−a的解,则a2+a−6的值为()A. 0B. 6C. −6D. −187.方程2x−13−3x−44=1时,去分母正确的是().A. 4(2x−1)−9x−12=1B. 8x−4−3(3x−4)=1C. 4(2x−1)−9x+12=12D. 8x−4+3(3x−4)=128.若a+3>b+3,则下列不等式中错误的是()A. −a5<−b5B. −2a>−2bC. a−2>b−2D. −(−a)>−(−b)9.关于x的不等式组{2x−1>5x−m<0有三个整数解,则m的取值范围是()A. 6<m≤7B. 6<m<7C. m≤7D. m<710.不等式组{5x−10≤013x<12x−16的解集在数轴上表示正确的是()A. B. C. D.二、填空题(本大题共7小题,共28.0分)11. 关于x 的方程ax +1=4的解是x =1,则a =____.12. 已知代数式5x −3的值与17的值与互为倒数,则x =______.13. 已知{x =2y =3与{x =3y =2是二元一次方程mx +ny =5的两组解,则m +n =__________. 14. 方程2x −1=0的解是x = ______ . 15. 已知函数的图象为“W ”型,直线y =kx −k +1与函数y 1的图象有三个公共点,则k 的值是______ .16. 若点P(−2,a),Q(−3,b)在反比例函数y =6x 的图象上,则a ________b(填“>”“<”或“=”).17. 将二次函数y =2x 2−12x +1化成y =a(x +m)2+n 的形式为_________________.三、计算题(本大题共1小题,共6.0分)18. 解方程组:(1){x =y −12y −3x =1(2){2x +3y =163x −2y =11四、解答题(本大题共6小题,共56.0分)19.解方程(1)−(3x+1)+2x=2(1.5x−1)(2)1−4−3x4=5x+36.20.如图,一农户要建一个矩形羊舍,羊舍的一边利用长18m的住房墙,另外三边用34m长的栅栏围成,为方便进出,在垂直于墙的一边留一个2m宽的木门.问所围羊舍的长、宽分别是多少时,羊舍的面积是160m2?21.黄浦区政府为残疾人办实事,在道路改造工程中为盲人修建一条长3000米的盲道,根据规划设计和要求,某工程队在实际施工中增加了施工人员,每天修建的盲道比原计划多250米,结果提前2天完成工程,问实际每天修建盲道多少米.22.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,数y=kx轴,垂足为点M,BM=OM=2.(1)求反比例函数和一次函数的解析式;(2)连接OB,MC,求四边形MBOC的面积.23.数轴上A,B两点对应的数分别为a,b,且满足|a+6|+(b−12)2=0,点O为原点;(1)求a,b的值;(2)若点A以每秒3个单位,点B以每秒2个单位的速度同时出发向右运动,多长时间后A,B两点相距2个单位长度?(3)已知M从A向右出发,速度为每秒一个单位长度,同时N从B向右出发,速度为每秒2个单位长度,设NO的中点为P,PO−AM的值是否变化?若不变求其值;否则说明理由.24.抛物线y=2x2+bx+c经过(−3,0),(1,0)两点(1)求抛物线的解析式,并求出其开口方向和对称轴(2)用配方法求出该抛物线的顶点坐标.【答案与解析】1.答案:C解析:解:是一元一次方程的是x3=0,故选C.利用一元一次方程的定义判断即可.此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.2.答案:C解析:此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.根据等式的性质,逐项判断即可.解:∵3a=2b,∴3a+2=2b+2,∴选项A正确;∵3a=2b,∴3a−5=2b−5,∴选项B正确;∵3a=2b,∴9a=6b,∴选项C不正确;∵3a=2b,∴a2=b3,∴选项D正确.故选C.3.答案:C解析:本题考查了等式的性质,性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.根据等式性质1对A进行判断;根据等式性质2对B、D进行判断,通过举反例可判断C.解:A、如果x=y,那么x+1=y+1,所以A选项的变形正确;B、如果x=y,那么−x=−y,所以B选项的变形正确;C、如果x=y=1,那么2x+2y=4≠0,所以C选项的变形不一定正确;D、如果x=y,则x3=y3,所以D选项的变形正确.故选C.4.答案:A解析:此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.利用一元一次方程的定义判断即可.解:∵(|m|−1)x2−(m−1)x−8=0是关于x的一元一次方程,∴|m|−1=0,m−1≠0,解得:m=−1,故选A.5.答案:A解析:本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.设计划做x个“中国结”,根据每人做6个,那么比计划多做了9个,每人做4个,那么比计划少7个,列方程即可.解:由题意得,x+96=x−74.故选A.6.答案:A解析:解:将x=−2代入方程5x+12=x2−a,得:−10+12=−1−a,解得:a=−3,∴a2+a−6=0.故选:A.此题可先把x=−2代入方程,求出a的值,再把a的值代入a2+a−6求解即可.此题考查的是一元一次方程的解,先将x的值代入方程求出a的值,再将a的值代入a2+a−6即可解出此题.7.答案:C解析:本题主要考查了解一元一次方程的步骤:去分母、去括号、移项、合并同类项和系数化为1.在去分母时一定要注意:不要漏乘不含分母的项.方程两边乘以分母的最小公倍数12即可得结果.解:去分母,得4(2x−1)−3(3x−4)=12,即4(2x−1)−9x+12=12.故选C.8.答案:B解析:解:原不等式的两边同时减去3,不等号的方向不变,∴a>b①;A、不等式①的两边同时除以−5,不等号的方向发生改变,即−a5<−b5;故本选项正确,不符合题意;B、不等式①的两边同时乘以−2,不等号的方向发生改变,即−2a<−2b;故本选项错误,符合题意;C、不等式①的两边同时减去−2,不等号的方向不变,即a−2>b−2;故本选项正确,不符合题意;D、由−(−a)>−(−b),得a>b;故本选项正确,不符合题意.故选B .根据不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即可得出答案.主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.答案:A解析:解:{2x −1>5 ①x −m <0 ②由①得:x >3,由②得:x <m ,则不等式组的解集是:3<x <m .不等式组有三个整数解,则整数解是4,5,6.则6<m ≤7.故选:A .先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于m 的不等式组.10.答案:C解析:解:{5x −10≤0①13x <12x −16② ∵解不等式①得:x ≤2,解不等式②得:x >1,∴不等式组的解集为1<x ≤2,在数轴上表示为:,故选:C . 先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.11.答案:3解析:解:根据题意,将x =1代入ax +1=4,得:a +1=4,解得:a =3,故答案为:3.将x =1代入方程得到关于a 的方程,解之可得.本题主要考查一元一次方程的解,解题的关键是熟练掌握方程的解的定义.12.答案:2解析:解:根据题意得:17(5x −3)=1,即5x −3=7,解得:x =2,故答案为:2.利用倒数的性质列出方程,求出方程的解即可得到结果.此题考查了解一元一次方程,以及代数式求值,熟练掌握运算法则是解本题的关键. 13.答案:2解析:代入方程的两组解后得出关于m 、n 的方程组,两方程相加即可求出答案.本题考查了解二元一次方程组和二元一次方程组的解,能根据题意得出关于m 、n 的方程组是解此题的关键.解:∵{x =2y =3与{x =3y =2是二元一次方程mx +ny =5的两组解, ∴代入得:{2m +3n =5①3m +2n =5②。

2020年广东省佛山市顺德区中考数学测试试卷(四)(含答案解析)

2020年广东省佛山市顺德区中考数学测试试卷(四)(含答案解析)

2020年广东省佛山市顺德区中考数学测试试卷(四)一、选择题(本大题共10小题,共30.0分)1.下列计算正确的是()A. b3⋅b3=2b3B. (a3)2⋅a4=a10C. (ab2)3=ab6D. (−2a)2=−4a22.在下列各组根式中,是同类二次根式的是().A. √2和√12B. √2和√12C. √4ab和√ab2D. √a+1和√a−13.从左面看如图中的几何体,得到的平面图形正确的是()A. B. C. D.4.2018年阳泉市郊区常住人口数量大约有287000人.将287000用科学记数法表示为()A. 0.287×106B. 2.87×105C. 28.7×104D. 287×1035.某班17名女同学的跳远成绩如下表所示:成绩(m)1.501.601.651.701.751.801.851.90人数23234111这些女同学跳远成绩的众数和中位数分别是()A. 1.70,1.75B. 1.75,1.70C. 1.70,1.70D. 1.75,1.7256.若x<y,则下列式子不成立的是()A. x−1<y−1B. −2x<−2yC. x+3<y+3D. x2<y27.满足关于x的一次不等式2(1−x)+3≥0的非负整数解的个数有()A. 2个B. 3个C. 4个D. 无数个8.如图,在△ABC中,DE//BC,已知AE=6,ADBD =34,则EC的长是()A. 4.5B. 8C. 10.5D. 149.如图,菱形ABCD中,∠BAD=76°,AB的垂直平分线EF交AC于点F,连接DF,则∠CFD的度数为()A. 86°B. 76°C. 66°D. 52°10.如图,网格中小正方形的边长均为1,△ABC的每个顶点都在网格的格点上,则sin A等于()A. √23B. √55C. 2√55D. 12二、填空题(本大题共7小题,共21.0分)11.已知扇形AOB的半径OA=4,圆心角为90°,则扇形AOB的面积为______.12.分解因式:4x2−9y2=______.13.如图为6个边长相等的正方形的组合图形,则∠1+∠3=______ .14.若a m=2,b m=5,则(a2b)m=__________.15.若|x−2|+√y−3=0,则xy=______ .16.在△ABC中,∠ABC,∠ACB的角平分线交于点P,若∠BPC=110°,则∠A=______°.17. 如图,在Rt △ABC 中,AC =8,BC =6,直线l 经过C ,且l//AB ,P 为l 上一个动点,若△ABC 与△PAC 相似,则PC = .三、计算题(本大题共1小题,共6.0分)18. 计算:2cos 245°+tan60°⋅tan30°−cos60°四、解答题(本大题共7小题,共56.0分)19. 先化简,再求值:(1−1x+2)÷x 2+2x+1x+2,其中.x =120. 已知,AD 是△ABC 的内角平线,交BC 于D 点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,连结EF ,(1)请根据上述几何语言,画出完整的图形,作∠BAC 的角平分线AD 要求尺规作图,(保留作图痕迹,不写作法);(2)判断AD 是否为EF 的垂直平分线,并说明理由.21.在一个不透明的袋子中装有三个小球,分别标有数字−2、2、3,这些小球除数字不同外其余均相同,现从袋子中随机摸出一个小球记下数字后放回,搅匀后再随机摸出一个小球,用画树状图或列表的方法,求两次摸出的小球上数字之和是正数的概率.22.如图,长方形MNOP中,MP>MN,把长方形沿对角线NP所在直线折叠,使点O落在点C处,NC交MP于点D,连接MC.(1)求证:△NMC≌△PCM;(2)求证:△MCD是等腰三角形.23.某湿地风景区特色旅游项目:水上游艇,旅游人员消费后风景区可盈利10元/人,每天消费人员为500人,为增加盈利,准备提高票价,经调查发现,在其他条件不变的情况下,票价每涨1元,消费人员就减少20人.现该项目要保证每天盈利6000元,同时又要旅游者得到实惠,那么票价应涨价多少元?24.如图,在平面直角坐标系中.直线y=−x+3与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx+c经过B,C两点,与x轴负半轴交于点A(−1,0),连结AC.(1)求抛物线的解析式;(2)如图1,若点P(m,n)是抛物线上在第一象限内的一点,求四边形OCPB面积S关于m的函数表达式及S的最大值;(3)如图2,若M为抛物线的顶点,点Q在直线BC上,点N在直线BM上,Q,M,N三点构成以MN为底边的等腰直角三角形,求点N的坐标.25.已知在平面直角坐标系中,正方形OBCD的边长是1,点P为正方形内一动点,若点M在OB上,且满足△PBC∽△POM,延长BP交OD于N,连接CM.(1)如图1,若点M在线段OB上,求证:OP⊥BN;(2)如图2,在点,P、M、N运动的过程中,满足△PBC∽△POM的点M在OB的延长线上时,求证:BM=DN;(3)是否存在满足条件的点P,使得PC=√5−1?若存在,请求出满足条件的P点坐标;若不存在,2请说明理由.【答案与解析】1.答案:B解析:本题考查了幂的乘方与积的乘方、同底数幂的乘法,能正确求出每个式子的值是解此题的关键.根据幂的乘方与积的乘方、同底数幂的乘法求出每个式子的值,再判断即可.解:A、b3⋅b3=b6,故本选项不符合题意;B、(a3)2⋅a4=a10,故本选项符合题意;C、(ab2)3=a3b6,故本选项不符合题意;D、(−2a)2=4a2,故本选项不符合题意;故选:B.2.答案:B解析:本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式,根据二次根式的性质化简,根据同类二次根式的概念判断即可.解:A、√12=2√3,√2与√12不是同类二次根式,故此选项不符合题意;B、√12=√22,√2与√12是同类二次根式,故此选项符合题意;C、√4ab=2√ab,√ab2=|b|√a,√4ab与√ab2不是同类二次根式,故此选项不符合题意;D、√a+1与√a−1不是同类二次根式,故此选项不符合题意.故选B.3.答案:A解析:本题考查了简单组合体的三视图,从左面看得到的图形是左视图.根据从左面看得到的图形是左视图,可得答案.解:从左面看得到的图形为:,故选A.4.答案:B解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数.根据科学记数法的表示方法解答即可.解:将287000用科学记数法表示为2.87×105.故选:B.5.答案:B解析:本题主要考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.根据中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个即可得结果.解:由表可知,1.75出现次数最多,所以众数为1.75;由于一共调查了2+3+2+3+4+1+1+1=17人,所以中位数为排序后的第9个数,即:1.70.故选B.6.答案:B解析:解:A、在不等式x<y的两边同时减去1,不等式仍然成立,即x−1<y−1.故本选项不符合题意;B、在不等式x<y的两边同时乘以−2,不等号方向改变,即−2x>−2y.故本选项符合题意;C、在不等式x<y的两边同时加3,不等式仍然成立,即x+3<y+3.故本选项不符合题意;D、在不等式x<y的两边同时除以2,不等式仍然成立,即x2<y2,故本选项不符合题意.故选:B.根据不等式的性质进行答题.本题主要考查了不等式的基本性质.(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.答案:B解析:本题主要考查一元一次不等式的整数解,准确求得一元一次不等式的解集是解题的关键.求出不等式的解集,从而确定其非负整数解,即可得出答案.解:2 (1−x)+3≥0,去括号,得2−2x+3≥0,移项合并,得:−2x≥−5,系数化为1,得:x≤2.5,所以不等式的非负整数解有:0、1、2,一共3个,故选:B.8.答案:B解析:本题考查了平行线分线段成比例定理,找准对应关系是解题的关键.根据平行线分线段成比例定理列式进行计算即可得解.解:∵DE//BC,∴ADBD =AEEC,即34=6EC,解得:EC=8.故选B.9.答案:B解析:解:连接BF,∵菱形ABCD中,∠BAD=76°,∴∠BAC=∠DAC=12∠BAD=38°,AB=AD,在△ABF和△ADF中,{AB=AD∠BAF=∠DAF AF=AF,∴△ABF≌△ADF(SAS),∴∠AFD=∠AFB,∴∠CFD=∠CFB,∵AB的垂直平分线EF交AC于点F,∴AF=BF,∴∠ABF=∠BAC=38°,∴∠CFB=∠BAC+∠ABF=76°,∴∠CFD=76°.故选B.首先连接BF,易证得△ABF≌△ADF,继而可得∠CFD=∠CFB,由菱形ABCD中,∠BAD=76°,可求得∠BAC的度数,又由AB的垂直平分线EF交AC于点F,求得∠ABF=∠BAC=38°,继而求得答案.此题考查了菱形的性质以及线段垂直平分线的性质.注意准确作出辅助线是解此题的关键.10.答案:B解析:解:如图,作CD⊥AB于D.∵BC=2,BD=CD=√2,AC=√12+32=√10,在Rt△ACD中,sinA=CDAC =√2√10=√55,。

2020年广东省佛山市中考数学试题及答案

2020年广东省佛山市中考数学试题及答案

佛山市2020年高中阶段学校招生考试数学试卷说明:本试卷分为第Ι卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分120分,考试时间100分钟.注意事项:1.试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上.12345.下列说法中,不正确...的是( ).A.为了解一种灯泡的使用寿命,宜采用普查的方法B.众数在一组数据中若存在,可以不唯一C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差6. “明天下雨的概率为80%”这句话指的是( ).A . 明天一定下雨B . 明天80%的地区下雨,20%的地区不下雨C . 明天下雨的可能性是80%D . 明天80%的时间下雨,20%的时间不下雨7. 如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M 、N . 则线段BM 、DN 的大小关系是( ).89(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.把答案填在答题卡中). 11.计算:=--)2)(2(b a b a .12.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 .13.若20082007=a ,20092008=b ,则a 、b 的大小关系是a b .第12题图BCDAP14.在研究抛掷分别标有1、2、3、4、5、6的质地均匀的正六面体骰子时,提出了一个问题:连续抛掷三次骰子,正面朝上的点数是三个连续整数的概率有多大?假设下表是几位同学抛掷骰子的实验数据:同学编号抛掷情况1 2 3 4 5 6 7 8抛掷次数100 150 200 250 300 350 400 450 正面朝上的点数是三个连续整数的次数10 12 20 22 25 33 36 41题每到直(参考数据:7.13≈,4.12≈)A住宅小区M4530B第18题图19.某地为了解当地推进“阳光体育”运动情况,就“中小学生每天在校体育活动时间”的问题随机调查了300名中小学生.根据调查结果绘制成的统计图的一部分如图(其中分组情况见下表):.另22.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨. 现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.人数B 第21题图(1) 将这些货物一次性运到目的地,有几种租用货车的方案?(2) 若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?23.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1) 当AB≠AC时,证明四边形ADFE为平行四边形;最B点25.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形...............提出相关的概念和问题(或者根据问题构造图形),并加以研究.............................例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).请你用上面的思想和方法对下面关于圆的问题进行研究:(1) 如图1,在圆O所在平面上,放置一条..直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些(直接写出两个即可)?(2) 如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心..直.......的两条线m和n(m与圆O分别交于点A、B,n与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之.(3) 如图3,其中AB是圆O的直径,AC是弦,D是的中点,弦DE⊥AB于点F. 请找出点C和点E重合的条件,并说明理由.佛山市2008年高中阶段学校招生考试数学试卷参考答案与评分标准一、选择题. 题号 1 2 3 4 5 6 7 8 9 10 答案B DC B A C C BD A二、填空题. 题号1112131415603MN== 300 . ……………………………………………MN 191≈.………………………………………………6分(由于计算方式及取近似值时机不同有多个值,均不扣分)19.(1) B 组的人数是 30 人; ………………………………………………………………………………2分(2) 本次调查数据的中位数落在 C 组内;…………………………………………………………4分第18题图(3) 5120030024064000=⨯(人). ………………………………………………………………………6分 (每小题2分,不用补全图形)20.第一类解法(直接推理):)2)(1(2323++=++n n n n n n ..…………………………………………………………………………1分因为n 、1+n 、2+n 是连续的三个正整数,………………………………………………………2分所以其中必有一个是2的倍数、一个是3的倍数. ………………………………………………3分 所以)2)(1(2323++=++n n n n n n 一定是6的倍数. ………………………………………4分 又n n n 2323++的最小值是6,……………………………………………………………………………5分∴ x =2.即正方形ADEF 的边长为2. ………………………………………………………………8分(本题可以先作图后计算,也可以先计算后作图;未求出AD 或AF 的值用作中垂线的方法找到D 点或F 点,给2分)22.(1) 设租用甲种货车x 辆,则乙种货车为8x -辆. ……………………………………1分依题意,得:208(8)100,68(8)54.x x x x +-≥⎧⎨+-≥⎩(每列出一个给一分) ………………………………3分解不等式组,得53≤≤x : ………………………………………………………………………………5分 这样的方案有三种:甲种货车分别租5,4,3辆,乙种货车分别租3,4,5辆. ………6分B【另解:设安排甲种货车x 辆,则有54100)8)(88()620(+≥-+++x x . ……………3分解得513≥x ,又8≤x ,可取整数8,7,6,5,4,3=x . ………………………………………5分 租用货车的方案有六种:即甲种货车分别租用8,7,6,5,4,3辆. ………………………6分 (2) 总运费8000300)8(10001300+=-+=x x x s . ………………………………………7分 因为s 随着x 增大而增大,所以当3=x 时,总运费s 最少,为8900元. ………8分((1)若用另解,在总得分中扣1分;(2)若用类似列下表的方式解答,可参考给分) 甲车数量 3 4 5 6 7 8 总运费89009200…………B (12-m ,0),C )3121,12(2++--m m m ,D )3121,(2++-m m m . …………7分 ∴“支撑架”总长AD+DC+CB = )3121()212()3121(22++-+-+++-m m m m m= 18612+-m . …………………………………………………………………………………………………9分∵ 此二次函数的图象开口向下.∴ 当m = 0时,AD+DC+CB 有最大值为18. …………………………………………………10分25.解:(1) 弦(图中线段AB )、弧(图中的ACB 弧)、弓形、求弓形的面积(因为是封闭图形)等.(写对一个给1分,写对两个给2分)(2) 情形1 如图21,AB 为弦,CD 为垂直于弦AB 的直径. …………………………3分 结论:(垂径定理的结论之一). …………………………………………………………………………4分 证明:略(对照课本的证明过程给分). ……………………………………………………………7分 情形2 如图22,AB 为弦,CD 为弦,且AB 与CD 在圆内相交于点P . 结论:PD PC PB PA ⋅=⋅.m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年广东省佛山市顺德区中考数学测试试卷(四)一.选择题(共10小题)1.下列计算正确的是()A.(x2)3=x5B.(x3)5=x15C.x4•x5=x20D.﹣(﹣x3)2=x6 2.与是同类二次根式的是()A.B.C.D.3.如图所示的几何体是由3个大小完全一样的正方体组成,则从左面看这个几何体得到的平面图形是()A.B.C.D.4.据统计,2019年醴陵高铁站年客运进出量约为237000人次.将237000用科学记数法表示为()A.23.7×104B.2.37×105C.2.37×106D.23.7×1055.为了建设“书香校园”,某班开展捐书活动班长将本班44名学生捐书情况统计如下:捐书本数2345810捐书人数25122131该组数据捐书本数的众数和中位数分别为()A.5,5B.21,8C.10,4.5D.5,4.56.若x>y,则下列式子错误的是()A.x﹣3>y﹣3B.>C.﹣2x<﹣2y D.3﹣x>3﹣y 7.不等式2(x﹣2)≤x﹣1的非负整数解的个数为()A.1个B.2个C.3个D.4个8.如图,在△ABC中,DE∥BC,AD=8,DB=4,AE=6,则EC的长为()A.1B.2C.3D.49.如图,在菱形ABCD中,AE,AF分别垂直平分BC,CD,垂足分别为E,F,则∠EAF 的度数是()A.90°B.60°C.45°D.30°10.如图,由六个边长为1的小正方形组成的网格图中,△ABC的各个顶点都在格点上,则sin∠BAC的值是()A.2B.C.D.二.填空题(共7小题)11.扇形的半径为6cm,面积为2πcm2,则此扇形的圆心角为.12.分解因式:9m2﹣n2=.13.如图,在正方形网格中,∠1+∠2+∠3=.14.已知a m=22,b m=4,则(a2b)m=.15.已知+|b﹣1|=0,则a+1=.16.如图,在△ABC中,∠B=60°,∠BAC与∠BCA的三等分线分别交于点D、E两点,则∠ADC的度数是.17.如图,在四边形ABCD中,AD∥BC,AD<BC,∠ABC=90°,且AB=3,点E是边AB上的动点,当△ADE,△BCE,△CDE两两相似时,则AE=.三.解答题(共8小题)18.计算:3tan30°﹣2sin60°+cos245°.19.先化简,再求值:÷+3,其中x=﹣3.20.老师布置了一道题目,过直线l外一点P作直线l的垂线.(尺规作图)小明同学的作法如下①在直线l上任取两点A、B;②以A为圆心,AP长为半径画弧,以B为圆心,BP长为半径画弧,两弧交于点Q,如图所示;③作直线PQ.则直线PQ就是所要作的图形.(1)请你用另一种作法完成这道题;(保留作图痕迹,不写作法)(2)请你选择其中的一种作法加以证明.21.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数﹣1,2,﹣3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.22.如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E 处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.某剧院举办文艺演出.经调研,如果票价定为每张30元,那么1200张门票可以全部售出:如果票价毎增加1元,那么售出的门票就减少30张.(1)设每张票价增加x元,则现在可售出门票的张数为;(用含有x的代数式表示)(2)要使的门票收入达到36750元,票价应定为多少元?24.如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.参考答案与试题解析一.选择题(共10小题)1.下列计算正确的是()A.(x2)3=x5B.(x3)5=x15C.x4•x5=x20D.﹣(﹣x3)2=x6【分析】选项A与选项B根据幂的乘方运算法则判断;选项C根据同底数幂的乘法法则判断;选项D根据积的乘方运算法则判断.【解答】解:A.x2)3=x6,故本选项不合题意;B.(x3)5=x15,正确,故本选项符合题意;C.x4•x5=x9,故本选项不合题意;D.﹣(﹣x3)2=﹣x6,故本选项不合题意.故选:B.2.与是同类二次根式的是()A.B.C.D.【分析】根据同类二次根式的定义进行解答.【解答】解:的被开方数是2.A、原式=3,其被开方数是3,与的被开方数不同,它们不是同类二次根式,故本选项不符合题意.B、该二次根式的被开方数是6,与的被开方数不同,它们不是同类二次根式,故本选项不符合题意.C、原式=,其被开方数是3,与的被开方数不同,它们不是同类二次根式,故本选项不符合题意.D、原式=2,其被开方数是2,与的被开方数相同,它们是同类二次根式,故本选项符合题意.故选:D.3.如图所示的几何体是由3个大小完全一样的正方体组成,则从左面看这个几何体得到的平面图形是()A.B.C.D.【分析】从左面看得只有一列,据此判断即可.【解答】解:从左面看这个几何体只有一列,故选:C.4.据统计,2019年醴陵高铁站年客运进出量约为237000人次.将237000用科学记数法表示为()A.23.7×104B.2.37×105C.2.37×106D.23.7×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:237000=2.37×105,故选:B.5.为了建设“书香校园”,某班开展捐书活动班长将本班44名学生捐书情况统计如下:捐书本数2345810捐书人数25122131该组数据捐书本数的众数和中位数分别为()A.5,5B.21,8C.10,4.5D.5,4.5【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:由表可知,5出现次数最多,所以众数为5;由于一共调查了44人,所以中位数为排序后的第22和第23个数的平均数,即:5.故选:A.6.若x>y,则下列式子错误的是()A.x﹣3>y﹣3B.>C.﹣2x<﹣2y D.3﹣x>3﹣y 【分析】利用不等式的性质,即可解答.【解答】解:A、x>y,根据不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,x﹣3>y﹣3,正确,不符合题意;B、不等式两边乘(或除以)同一个数,不等号的方向不改变,故,正确,不符合题意;C、x>y,根据不等式的基本性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,故﹣2x<﹣2y,正确,不符合题意;D、不等式两边同时乘以﹣1,再加上3,不等号的方向改变,故3﹣x>3﹣y,错误,符合题意;故选:D.7.不等式2(x﹣2)≤x﹣1的非负整数解的个数为()A.1个B.2个C.3个D.4个【分析】先解出不等式,然后根据x的范围求出x的值.【解答】解:2x﹣4≤x﹣1x≤3∵x是非负整数,∴x=0,1,2,3故选:D.8.如图,在△ABC中,DE∥BC,AD=8,DB=4,AE=6,则EC的长为()A.1B.2C.3D.4【分析】根据本题平行线分线段成比例定理列出比例式,代入计算得到答案.【解答】解:∵DE∥BC,∴=,即=,解得,EC=3,故选:C.9.如图,在菱形ABCD中,AE,AF分别垂直平分BC,CD,垂足分别为E,F,则∠EAF 的度数是()A.90°B.60°C.45°D.30°【分析】根据垂直平分线的性质可得出△ABC、△ACD是等边三角形,从而先求得∠B =60°,∠C=120°,在四边形AECF中,利用四边形的内角和为360°可求出∠EAF 的度数.【解答】解:连接AC,∵AE垂直平分边BC,∴AB=AC,又∵四边形ABCD是菱形,∴AB=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠B=60°,∴∠BCD=120°,又∵AF垂直平分边CD,∴在四边形AECF中,∠EAF=360°﹣180°﹣120°=60°.故选:B.10.如图,由六个边长为1的小正方形组成的网格图中,△ABC的各个顶点都在格点上,则sin∠BAC的值是()A.2B.C.D.【分析】由勾股定理和勾股定理的逆定理证出△ABC是直角三角形,由三角函数定义即可得出答案.【解答】解:由勾股定理得:AB2=22+22=8,BC2=12+12=2,AC2=32+12=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,∴sin∠BAC===;故选:D.二.填空题(共7小题)11.扇形的半径为6cm,面积为2πcm2,则此扇形的圆心角为120°.【分析】设扇形的圆心角是n°,根据扇形的面积公式即可得到一个关于n的方程,解方程即可求解.【解答】解:设扇形的圆心角是n°,根据扇形的面积公式得2π=,解得n=120故答案为:120°12.分解因式:9m2﹣n2=(3m+n)(3m﹣n).【分析】直接利用平方差进行分解即可.【解答】解:原式=(3m)2﹣n2=(3m+n)(3m﹣n),故答案为:(3m+n)(3m﹣n).13.如图,在正方形网格中,∠1+∠2+∠3=135°.【分析】根据图形可得AB=AD,BC=DE,∠B=∠D,∠2=45°,然后判定△ABC≌△ADE,进而可得∠4=∠3,由∠1+∠4=90°可得∠3+∠1=90°,进而可得答案.【解答】解:∵在△ABC和△ADE中,∴△ABC≌△ADE(SAS),∴∠4=∠3,∵∠1+∠4=90°,∴∠3+∠1=90°,∵∠2=45°,∴∠1+∠2+∠3=135°,故答案为:135°.14.已知a m=22,b m=4,则(a2b)m=64.【分析】根据幂的乘方与积的乘方运算法则解答即可.【解答】解:∵a m=22=4,b m=4,∴(a2b)m=a2m•b m=(a m)2•b m=42×4=16×4=64.故答案为:64.15.已知+|b﹣1|=0,则a+1=2.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.16.如图,在△ABC中,∠B=60°,∠BAC与∠BCA的三等分线分别交于点D、E两点,则∠ADC的度数是100°.【分析】在△ABC中,利用三角形内角和定理可求出∠BAC+∠BCA=120°,结合角平分线定义可求出∠DAC+∠DCA=80°,再在△ADC中利用三角形内角和定理可求出∠ADC的度数.【解答】解:∵在△ABC中,∠B=60°,∴∠BAC+∠BCA=180°﹣∠B=120°.∵∠BAC与∠BCA的三等分线分别交于点D、E两点,∴∠DAC=∠BAC,∠DCA=∠BCA,∴∠DAC+∠DCA=(∠BAC+∠BCA)=80°,∴∠ADC=180°﹣(∠DAC+∠DCA)=180°﹣80°=100°.故答案为:100°.17.如图,在四边形ABCD中,AD∥BC,AD<BC,∠ABC=90°,且AB=3,点E是边AB上的动点,当△ADE,△BCE,△CDE两两相似时,则AE=或1.【分析】分情况讨论:∠CED=90°和∠CDE=90°,利用角平分线的性质和直角三角形30度角的性质分别可得AE的长.【解答】解:分两种情况:①当∠CED=90°时,如图1,过E作EF⊥CD于F,∵AD∥BC,AD<BC,∴AB与CD不平行,∴当△ADE、△BCE、△CDE两两相似时,∴∠BEC=∠CDE=∠ADE,∵∠A=∠B=∠CED=90°,∴∠BCE=∠DCE,∴AE=EF,EF=BE,∴AE=BE=AB=,②当∠CDE=90°时,如图2,∵当△ADE、△BCE、△CDE两两相似时,∴∠CEB=∠CED=∠AED=60°,∴∠BCE=∠DCE=30°,∵∠A=∠B=90°,∴BE=ED=2AE,∵AB=3,∴AE=1,综上,AE的值为或1.故答案为:或1.三.解答题(共8小题)18.计算:3tan30°﹣2sin60°+cos245°.【分析】把特殊角的三角函数值代入求值即可.【解答】解:3tan30°﹣2sin60°+cos245°=3×﹣2×+()2=﹣+=.19.先化简,再求值:÷+3,其中x=﹣3.【分析】首先把分式的除法变为分式的乘法,再约分化简后代入x的值即可.【解答】解:原式=•+3,=x+3.当x=﹣3时,原式=﹣3+3=0.20.老师布置了一道题目,过直线l外一点P作直线l的垂线.(尺规作图)小明同学的作法如下①在直线l上任取两点A、B;②以A为圆心,AP长为半径画弧,以B为圆心,BP长为半径画弧,两弧交于点Q,如图所示;③作直线PQ.则直线PQ就是所要作的图形.(1)请你用另一种作法完成这道题;(保留作图痕迹,不写作法)(2)请你选择其中的一种作法加以证明.【分析】(1)在直线l上取点E,以PE为半径,E点为圆心画弧交直线l于F,然后作EF的垂直平分线即可;(2)对小明的作法进行证明,由作法得AP=AQ,BP=BQ,然后根据线段垂直平分线的性质定理的逆定理可判断直线AB垂直平分PQ.【解答】解:(1)如图,PM为所作;(2)对小明的作法进行证明:由作法得AP=AQ,BP=BQ,∴点A在PQ的垂直平分线上.点B在PQ的垂直平分线上,∴直线AB垂直平分PQ,∴直线PQ就是直线l的垂线.21.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数﹣1,2,﹣3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,找出两次摸出的乒乓球球面上的数之和是正数的结果数,然后根据公式求解.【解答】解:(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率==;故答案为;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的乒乓球球面上的数之和是正数的结果数为8,所以两次摸出的乒乓球球面上的数之和是正数的概率==.22.如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E 处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.23.某剧院举办文艺演出.经调研,如果票价定为每张30元,那么1200张门票可以全部售出:如果票价毎增加1元,那么售出的门票就减少30张.(1)设每张票价增加x元,则现在可售出门票的张数为(1200﹣30x);(用含有x 的代数式表示)(2)要使的门票收入达到36750元,票价应定为多少元?【分析】(1)由票价毎增加1元则售出的门票就减少30张,即可得出当每张票价增加x 元时可售出的门票张数;(2)根据总价=单价×数量,即可得出关于x的一元二次方程,解之即可得出x的值,再将其代入30+x中即可求出结论.【解答】解:(1)可售出门票的张数为(1200﹣30x)张.故答案为:(1200﹣30x).(2)依题意,得:(30+x)(1200﹣30x)=36750,整理,得:x2﹣10x+25=0,解得:x1=x2=5,∴30+x=35.答:票价应定为35元.24.如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴∠OCE=60°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.先推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,∠DCE=∠EDC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①先表示出DN,BM,再判断出△BMD∽△DNE,即可得出结论;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:∵OA=2,OC=2,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DCE=∠EDC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC =∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①如图1,过点D作MN⊥AB交AB于M,交OC于N,∵A(0,2)和C(2,0),∴直线AC的解析式为y=﹣x+2,设D(a,﹣a+2),∴DN=﹣a+2,BM=2﹣a∵∠BDE=90°,∴∠BDM+∠NDE=90°,∠BDM+∠DBM=90°,∴∠DBM=∠EDN,∵∠BMD=∠DNE=90°,∴△BMD∽△DNE,∴==.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y=[]2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.。

相关文档
最新文档