沪科版数学八年级上册教案
沪科版数学八年级上册全册教案

沪科版八年级数学(上册)课题:11.1 平面上点的坐标(第1课时)[教材分析]1、本节教材的地位与作用:学生已学习了数轴,垂线和实数有关概念,本节课在此基础上进一步认识数与点的对应,为今后学习函数等知识埋下了伏笔.本节内容着重介绍了平面直角坐标系,教材从学生已有认知出发,从数轴入手,利用图形,给点在数轴上的坐标、点在平面内的坐标作了具体定义,使学生了解平面内点的坐标如何确定,进而引出各象限内点的坐标的特征。
2、教学重点:正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点3、教学难点:各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。
[教学目标]基于上述对教材地位与作用的分析,结合学生已有的认知水平的年龄特征,制定本节如下的教学目标:(1)知识与技能目标:1、通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系;观察、归纳象限内点的坐标特点。
(2)过程与方法目标:经历由实物到数对的过程,进一步渗透抽象的数学思想;经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;经历观察象限内三五个点的特征到联想所有点坐标特征的过程,进一步渗透观察、类比、特殊到一般的数学思想;(3)情感与态度目标:通过对问题的解决,使学生有成就感,树立学好数学的信心,培养学生的自主探究与合作交流的学习习惯.[教学思路]本节课按照“创设情境,引入新课”——“自学勤思,探求新知”——“例题选讲,巩固新知”——“合作交流,挑战自我”——“课堂小结,感悟反思”——“走出课堂,应用数学”的流程展开.[教学方法]自学、合作、探讨[教学过程]:(一)创设情境,引入新课:1、一个苹果、一头大象、一个算珠……小学时抽象出数字1,七年级时为了把实数形象地反映,学习了数轴。
第3课时 三角形中几条重要线段 教案2024-2025学年沪科版八年级数学上册

《13.1.3三角形中几条重要线段》教学设计教学内容分析本节内容着重介绍了三角形的三种特殊线段,已学过的过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识是学习本节新知识的基础,其中三角形的高学生从小学起已开始接触,教材从学生已有认知出发,从高入手,利用图形,给高作了具体定义,使学生了解三角形的高为线段,进而引出三角形的另外几种特殊线段——中线、角平分线。
本节内容是日后学习等腰三角形等特殊三角形的基础。
故学好本节内容是十分必要的。
因此,对三角的高、中线、角平分线定义的理解及画法的掌握是本节教学的重点,而三角形的高由于三角形的形状改变而使其位置呈现多样性,学生难以掌握,故在各类三角形中作出它们是本课的难点。
学习者分析学生对于三角形的高有一定的了解,但对于三角形的角平分线、中线还没有接触,因此及本课讲解时需要设计一些实际操作,让学生对这三条线的定义有清晰的印象.教学目标 1.了解并掌握三角形的高、中线和角平分线的概念,会用直尺、量角器等工具作出三角形的高、中线与角平分线;2.通过作图了解三角形的三条高、三条中线与三条角平分线分别交于一点的性质;3.明确重心的概念;4.经历作图的实践过程,认识三角形的高、中线与角平分线,帮助学生养成实事求是、具体问题具体分析的习惯;5.发展学生合情推理的能力,提高学生学习数学的兴趣,形成合作交流的意识。
教学重点理解三角形的高、中线与角平分线的概念及其画法.教学难点钝角三角形高线的画法.学习活动设计教师活动学生活动环节一:新知导入教师活动1:如图,在△ABC中,一动点D在BC边上移动,从点B沿着BC边移动到点C,观察移动过程中形学生活动1:学生观察图片,动脑思考,并积极回答.成的无数条线段中,有没有特殊位置的线段?今天,我们一起来认识三角形中几条特殊的线段!活动意图说明:通过展示图片,引发学生思考,引出这节课要学的内容,调动学生学习的积极性. 环节二:三角形中的特殊线段教师活动2:角平分线:三角形中,一个角的平分线与这个角对边相交,顶点与交点之间的线段叫做三角形的角平分线.如图,△ABC 中,∠1=∠2,线段AD就是△ABC一条角平分线中线:三角形中,连接一个顶点与它对边中点的线段叫做三角形的中线.如图,△ABC中,点E是BC的中点,线段AE 就是△ABC的一条中线.高线:学生活动2:学生听教师讲解,理解三角形中的特殊线段。
沪科版八年级上册数学全册教学设计

沪科版八年级上册数学全册教学设计单元一:代数表达式教学目标:1. 了解代数表达式的概念及基本性质,能够正确读写代数表达式。
2. 掌握分式的含义及其基本运算,能够进行基本运算并解决实际问题。
3. 能够应用代数表达式和分式解决实际问题。
教学重点:1. 代数表达式的概念及基本性质。
2. 分式的概念及基本运算。
3. 应用代数表达式和分式解决实际问题。
教学难点:1. 应用代数表达式和分式解决实际问题。
2. 倒数的概念和性质。
教学内容及安排:1. 代数表达式的概念及基本性质(2课时):1. 代数表达式的概念及简单实例的讲解。
2. 代数表达式的基本性质:同类项的加减、因式分解。
3. 代数表达式与数的关系。
4. 常见代数表达式的读写方法。
2. 分式的概念及基本运算(3课时):1. 分式的含义及简单实例的讲解。
2. 分式的基本运算:加减乘除。
3. 分式的约分和通分。
4. 分式的应用实例。
3. 应用代数表达式和分式解决实际问题(5课时):1. 代数表达式和分式在实际问题中的应用。
2. 利用代数表达式解决实际问题的方法和步骤。
3. 利用分式解决实际问题的方法和步骤。
4. 倒数的概念和性质(1课时):1. 倒数的概念及简单实例的讲解。
2. 倒数的性质及简单应用。
教学方法:1. 引导式教学法:通过发现问题、引导发问等方式,积极引导学生思考,提高学生的研究兴趣。
2. 演示法:通过实例演示和解析,帮助学生掌握相关知识和技能。
3. 讨论式教学法:鼓励学生提出自己的意见和看法,促进学生思维的活跃和创新。
课时安排:本单元共计11课时。
单元二:数与式的运算教学目标:1. 了解有理数、无理数的概念和性质,能够正确读写各种类型的数。
2. 掌握数的四则运算的基本概念、规律和方法,能够运用数的四则运算解决实际问题。
3. 应用有理数进行计算,能够解决实际问题。
教学重点:1. 数的概念和性质;2. 数的四则运算的基本概念、规律和方法;3. 应用有理数进行计算。
沪科版八年级数学上册教案《一次函数》

《一次函数》教学设计第1课时《正比例函数的图象和性质》1.认识正比例函数的意义,掌握正比例函数解析式的特点;2.理解和掌握正比例函数图象的性质,能利用所学知识解决相关实际问题;3.经历利用正比例函数图象直观分析正比例函数性质的过程,体会数形结合的思想方法和研究函数的方法,形成合作交流、独立思考的学习习惯.、教学重点:认识正比例函数的意义,掌握正比例函数解析式的特点。
教学难点:理解和掌握正比例函数图象的性质,能利用所学知识解决相关实际问题。
一、情境导入生活中,我们常常见到各式各样的钟表.时钟的秒针每旋转一圈,表示时间过了1min ;旋转两圈,表示时间过了2min ……~那么,秒针走过的圈数与经过的时间之间的关系如何表示呢二、合作探究探究点一:一次函数与正比例函数【类型一】 一次函数与正比例函数的识别下列函数关系式中,哪些是一次函数,哪些是正比例函数(1)y =-x -4; (2)y =5x 2-6;(3)y =2πx; (4)y =-x 2; (5)y =1x; (6)y =8x 2+x (1-8x ). -解析:首先看每个函数的表达式能否变形转化为y =kx +b (k ≠0,k 、b 是常数)的形式,如果x 的次数是1,则是一次函数,否则不是一次函数;在一次函数中,如果常数项b =0,那么它是正比例函数.解:(1)是一次函数,不是正比例函数;(2)不是一次函数,也不是正比例函数;(3)是一次函数,也是正比例函数;(4)是一次函数,也是正比例函数;(5)不是一次函数,也不是正比例函数;(6)是一次函数,也是正比例函数.方法总结:一个函数是一次函数的条件:自变量是一次整式,一次项系数不为零;判断一个函数是正比例函数的条件:自变量是一次整式,一次项系数不为零,常数项为零.#【类型二】根据一次函数与正比例函数的定义求字母的值已知函数y=(m-5)xm2-24+m+1.(1)若它是一次函数,求m的值;(2)若它是正比例函数,求m的值.解析:(1)要使函数是一次函数,根据一次函数的定义x的指数m2-24=1,且一次项系数m-5≠0;(2)要使函数是正比例函数,除了满足上述条件外,还需加上m+1=0这个条件.解:(1)因为y=(m-5)xm2-24+m+1是一次函数,所以m=±5且m≠5,所以m=-5.所以当m=-5时,函数y=(m-5)xm2-24+m+1是一次函数;(2)因为y=(m-5)xm2-24+m+1是一次函数,所以m2-24=1且m-5≠0且m+1=0.所以m=±5且m≠5且m=-1,这样的m不存在,所以函数y=(m-5)xm2-24+m+1不可能为正比例函数.方法总结:函数是一次函数,则k≠0,且自变量的次数为1.当b=0时,一次函数为正比例函数.~探究点二:正比例函数的图象和性质【类型一】正比例函数的图象已知正比例函数y=kx(k≠0),当x=-1时,y=-2,则它的图象大致是( )解析:将x=-1,y=-2代入正比例函数y=kx(k≠0)中,求出k的值为2,即可根据正比例函数的性质判断出函数的大致图象,故选C.方法总结:本题考查了正比例函数的图象,知道正比例函数的图象是过原点的直线,且当k>0时,图象过第一、三象限;当k<0时,图象过第二、四象限.【类型二】正比例函数的性质已知正比例函数y=-kx的图象经过第一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三点在函数y=(k-2)x的图象上,且x1>x3>x2,则y1,y2,y3的大小关系为( )-A.y1>y3>y2 B.y1>y2>y3C.y1<y3<y2 D.y3>y2>y1解析:由y=-kx的图象经过第一、三象限,可知-k>0即k<0,∴k-2<0.由正比例函数的性质可知,y=(k-2)x的函数值y随x的增大而减小,则由x1>x3>x2得y1<y3<y2.故选C.方法总结:正比例函数y=kx(k≠0)的函数值y随x的变化情况由k的符号决定.k>0时,y随x的增大而增大;k<0时,y随x的增大而减小.探究点三:两点法画正比例函数的图象画出函数y=-2x的图象.解析:当x=0时,y=0;当x=1时,y=-2.经过原点O(0,0)和点A(1,-2)作直线,则这条直线就是函数y=-2x的图象.解:如图所示.(方法总结:作函数图象的一般步骤:列表,描点,连线,正比例函数的图象是经过原点的直线,只需再另外找一点就可作出图象.三、板书设计正比例函数的图象和性质教学反思:本节内容第一次涉及一个具体的函数的学习和研究,要让学生体会研究函数的方法步骤和知识结构,因此,本课的教与学的活动,要学生有比较清醒的方案意识.教学中随着一环扣一环的提问、练习、点拨,突出教学目标.通过观察—比较—交流—归纳,利用图象和解析式的统一化抽象为具体,降低了难度,突破了正比例函数的性质这一难点.让学生进行课堂小结,不仅使学生从总体上把握知识,强化知识的理解和记忆,还培养了学生良好的个性和思维品质.第2课时《一次函数的图象和性质》教学设计:1.理解和掌握一次函数解析式的特点及意义,掌握一次函数y=kx+b(k、b为常数,k ≠0)的性质,能根据k与b的值说出函数的有关性质;2.会用描点法和平移的方法画一次函数图象,理解和掌握截距的概念;3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力;通过类比的方法学习一次函数,体会数学研究方法的多样性.教学重点:理解和掌握一次函数解析式的特点及意义,掌握一次函数y=kx+b(k、b为常数,k≠0)的性质,能根据k与b的值说出函数的有关性质。
15.1轴对称图形-沪科版八年级数学上册教案

15.1 轴对称图形-沪科版八年级数学上册教案教学目标1.理解轴对称的概念及相关术语2.熟练掌握判断轴对称图形的方法3.能够绘制轴对称图形教学重点与难点1.教学重点:轴对称图形的判断和绘制方法。
2.教学难点:通过绘制具有轴对称性的图形,理解轴对称的概念。
教学过程1. 导入新知1.教师通过探讨轴对称图形在日常生活中的运用,引导学生理解本节课的主要内容。
2.教师通过例题引出本节课的概念:“轴对称”和相关术语,如轴线、对称轴、对称中心等。
2. 讲解轴对称图形的判断方法1.教师通过具体的例子讲解轴对称图形的判断方法,(如对称轴的位置,对称中心,对称关系等)让学生快速掌握轴对称图形的判断方法。
2.教师通过多个例题,引导学生独立思考并判断轴对称图形。
3. 轴对称图形的绘制1.教师提醒学生需要多次尝试才能画出轴对称图形,根据以往的绘图经验或图形特征,确认应该如何选择对称轴。
2.教师通过示范,引导学生利用对称性,辅助绘制轴对称图形,并根据学生的情况指导学生完成相应的练习。
4. 小结与练习1.教师提醒学生需要重点掌握“轴对称”的概念及其判断方法。
2.教师通过多个例题辅导学生巩固所学知识,并鼓励学生自主探究和实践,通过练习深入了解轴对称图形的有关概念及应用方法。
教学效果本节课旨在让学生全面理解轴对称图形的基本概念和判断方法,同时熟练掌握绘制轴对称图形的技巧。
在教学过程中,教师通过多个例题和讲解,引导学生逐渐掌握了轴对称图形的相关知识,学生不断进行思考和实践,增强了他们的认知和技能,达到了预期的教学目标。
总结本节课主要讲解了轴对称图形的有关知识,包括:“轴对称”、“对称中心”、“对称轴”、“轴对称图形的判断方法”以及“轴对称图形的绘制方法”等方面。
在教学过程中,学生通过多次练习,掌握了轴对称图形的相关知识,提高了他们的判断与观察能力。
希望学生们能够在这门课程中,更好的理解数学的奥妙,掌握基础的数学技能,为日后的数学学习积累基础。
12.1 函数 教案-2024-2025学年沪科版八年级数学上册

《 12.1 函数》教学设计教学内容分析本节课是在学习了函数的表示方法的基础上学习的,让学生学会观察、分析函数图象信息,并能利用获取的信息解决实际问题,感受数形结合的数学思想,能在利用函数图象解决实际问题的过程中,获得自主观察、分析的能力,提高读图能力。
学习者分析学生已经学习了函数的表示法,对从图象中获得信息有一定的基础,有观察,分析,读图的能力,本节课的学习还是比较轻松的。
教学目标 1.能从函数图象中获取与函数有关的信息,解决函数中的问题;2.能通过函数间变量的关系,理解图象中的点或线段代表的实际意义;3.体会数形结合思想,提高解决问题的能力.教学重点学会观察、分析函数图象信息.教学难点利用从图象中获取的信息解决实际问题.学习活动设计教师活动学生活动环节一:新知导入教师活动1:下图是自动测温仪记录的图象,它反映了北京的春季某天气温T随时间t的变化而变化的情况.图象中包括了很多信息,比如一天中的最低温度与最高温度,你还能从中得到哪些信息?比如,温度呈下降趋势的时间段,温度呈上升趋势的时间段.本节课,我们一起来学习怎样从图象中获取信息. 学生活动1:学生动脑回忆思考,并积极回答.活动意图说明:引导学生观察图象,从图象中获得信息,调动学生学习的积极性,并通过提问激发学生的好奇心和求知欲,引出新课.环节二:从函数图象中获取信息教师活动2:思考1 如图是记录某人在24h内的体温变化情况的图象.图中纵轴上0~35一段省略了.(1)图中有哪两个变化的量?哪个变量是自变量?哪个变量是因变量?(2)在这天中此人的最高体温与最低体温各是多少?分别是在什么时刻达到的?(3)21:00时此人的体温是多少?(4)这天体温达到36.2℃时是在什么时刻?(5)此人体温在哪几段时间上升?在哪几段时间下降?在哪几段时间变化最小?解:(1)时间t与温度T,其中t是自变量,T 是因变量(2)最高温度为36.7℃,在18:00达到,最低温度为35.9℃,在4:00达到.(3)36.3℃学生活动2:学生观察图象,思考回答.(4)6:00或23:00.(5)体温上升的时间段:4:00~7:00、8:00~9:00、10:00~11:00、12:00~14:00、15:00~16:00、17:00~18:00.体温下降的时间段:2:00~4:00、7:00~8:00、9:00~10:00、11:00~12:00、14:00~15:00、16:00~17:00、18:00~24:00 .体温变化最小的时间段:0:00~2:00、9:00~11:00.函数关系用图象表示,直观、形象,容易从中了解函数的一些变化情况.横轴表示自变量,纵轴是因变量.最高点表示因变量的最大值,最低点表示因变量的最小值.水平线部分表示函数在相应区间内函数值不变.不同区间表示的函数意义不同.思考2 一艘轮船在甲港与乙港之间往返运输学生小组交流思考后,回答问题.[左图],只行驶一个来回,中间经过丙港,右图是这艘轮船离开甲港的距离随时间的变化曲线.(1)观察曲线回答下列问题:①从甲港(O)出发到达丙港(A),需用多长时间?②由丙港(A)到达乙港(C),需用多长时间?③图中CD段表示什么情况,船在乙港停留多长时间?返回时,多长时间到达丙港(B)?④从丙港(B)返回到出发点甲港(E),用多长时间?(2)你知道轮船从甲港前往乙港的平均行驶速度快,还是轮船返回的平均速度快呢?(3)如果轮船往返的机器速度是一样的,那么从甲港到乙港是顺水还是逆水?解:(1)①从甲港(O)出发到达丙港(A)用去1 h;②从丙港(A)出发到达乙港(C)用去2 h;③图中CD段表示船在乙港停留1 h,返回时4 h到达丙港(B);④从丙港(B)返回到甲港(E)用了2 h.(2)轮船往返行驶的路程一样,用的时间越少则平均速度越快.(3)若轮船往返的机器速度一样,那么顺水时速度快,逆水时速度慢.如何从图象中获得有用信息:1.明确“两轴”的含义通常横轴表示自变量,纵轴表示函数值.通过图象可明确自变量、函数值以及它们的取值范围.2.明确图象上的点的意义学生在教师的引导下总结.过一点分别向横轴和纵轴作垂线,两个垂足分别所表示的数就是自变量与函数值的一对对应值.3.弄清上升线、下降线和水平线上升(下降)线表示函数值随自变量的增大而增大(减小),水平线表示随自变量的变化函数值不变.活动意图说明:通过熟悉的例子,让学生认识函数图象的实际意义,并通过观察从函数图象中获取需要的信息,培养学生自主观察、分析的能力,提高读图能力.通过归纳明确如何从图象中获取有用的信息,培养学生的归纳概括能力.板书设计课题:12.1.4函数如何从图象中获得有用信息:(1)明确“两轴”的含义(2)明确图象上的点的意义(3)弄清上升线、下降线和水平线课堂练习【知识技能类作业】必做题:1.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是( D )A.前2分钟,乙的平均速度比甲快B.5分钟两人都跑了500米C.甲跑完800米的平均速度为100米/分D.甲乙两人8分钟各跑了800米2.某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.如图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是( A )A.小明修车花了15 minB.小明家距离学校1 100 mC.小明修好车后花了30 min到达学校D.小明修好车后骑行到学校的平均速度是3 m/s3.小明从家出发到商场购物后返回,如图表示的是小明离家的路程s(m)与时间t(min)之间的函数关系.已知小明购物用时30min,返回速度是去商场的速度的1.2倍,则a的值为( D )A.46B.48C.50D.524.汽车在行驶过程中,速度往往是变化的,下图表示一辆汽车的速度随时间变化而变化的情况.观察图象回答:(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在哪些时间段匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么?(4)用自己的语言大致描述这辆汽车的行驶情况.解:(1)24分钟,最高时速是90千米/时.(2)2~6分钟匀速行驶,时速为30千米/时,18~22分钟匀速行驶,时速为90千米/时.(3)汽车停下了.(4)汽车从0~2分钟加速,从2~6分钟匀速行驶,6~8分钟减速行驶,8~10停下了,10~18分又加速行驶,18~22分匀速行驶,22~24减速到停止.选做题:5. 向一个容器内均匀地注入水,液面升高的高度y与注水时间x满足如图所示的图象,则符合图象条件的容器为(A)6.如图,四个图象近似地刻画了两个变量之间的关系,请按图象顺序将下面四种情景与之对应,正确的排序为__③②④①__ . (填序号)①一辆汽车在公路.上匀速行驶(汽车行驶的路程与时间的关系);②向锥形瓶(上小下大)中匀速注水(水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系);④一杯越来越凉的水(水温与时间的关系).【综合拓展类作业】7.小红帮弟弟荡秋千(如图①),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图②所示.结合图象回答:(1)当t=0.7时,h的值是多少?并说明它的实际意义;(2)将秋千向后拉到最高点然后松开,秋千向前摆动,再向后返回到最高点,这叫做一个周期,秋千摆第二个周期需要多少时间?解:(1)由函数图象可知,当t=0. 7时,h=0. 5,它的实际意义是秋千摆动0.7 s时,离地面的高度是0.5 m;(2)从图象看,第一个周期用时2.8 s,后一个周期.用时5.4-2.8=2.6(s),故秋千摆第二个周期需要2.6 s.课堂总结如何从图象中获得有用信息:(1)明确“两轴”的含义(2)明确图象上的点的意义(3)弄清上升线、下降线和水平线作业设计【知识技能类作业】必做题:1.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是(B )2.如图所示的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是(D )A.4:00气温最低B.6:00气温为24 CC.14:00气温最高D.气温是30 C的时刻为16:003.如图是某汽车行驶的路程s(km)与时间t(min)的函数图象,汽车在前9min内的平均速度是80 km/h,汽车在中途停了7 min.选做题:4.如图所示的函数图象反映如下过程:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离家的距离,读图可知菜地离小徐家的距离为( A )A. 1.1千米B. 2千米C. 15千米D. 37千米5.甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离开出发地的距离s(千米)和行驶时间t(小时)之间的函数关系如图所示.根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)甲乙两人同时到达目的地.其中符合图象描述的说法有(C)A.1个B.2个C.3个D.4个【综合拓展类作业】6.如图是小明从学校到家里行进的路程s(m)与时间t(min)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000m;②小明用了20min到家;③小明前10min走了路程的一-半;④小明后10min比前10min走得快.其中,正确的有①②④ .(填序号)教学反思在这个信息充斥的时代,我们身边有很多信息载体,本节课带领学生去读信息,获取、分析图象上的信息,让学生去想问题和答案,调动学生的积极性,锻炼学生的分析能力和语言表达能力.。
2023八年级数学上册第14章全等三角形14.1全等三角形教案(新版)沪科版

发放预习材料,引导学生提前了解全等三角形的学习内容,标记出有疑问或不懂的地方。
设计预习问题,激发学生思考,为课堂学习全等三角形内容做好准备。
教师备课:
深入研究教材,明确全等三角形教学目标和全等三角形重难点。
准备教学用具和多媒体资源,确保全等三角形教学过程的顺利进行。
设计课堂互动环节,提高学生学习全等三角形的积极性。
2. 掌握全等三角形的性质:学习全等三角形对应边相等、对应角相等的性质,并能够运用这些性质解决实际问题。
3. 学会使用全等三角形解决几何问题:通过实际例题,引导学生运用全等三角形的性质解决几何问题,提高学生的几何思维能力和解决问题的能力。
4. 培养学生的合作学习和探究能力:在教学过程中,教师组织学生进行小组合作学习,引导学生主动探究全等三角形的性质和判定方法,培养学生的合作学习和探究能力。
5. 教学工具:准备投影仪、计算机、白板等教学工具,以便教师能够清晰地展示教学内容,并与学生进行互动。
6. 学习任务单:设计一份学习任务单,列出本节课的学习目标、任务和要求。学生可以通过完成学习任务单,巩固所学内容并进行自我评估。
7. 课堂练习题:准备一份课堂练习题,包括一些与全等三角形相关的实际问题。这些练习题应能够帮助学生巩固所学知识,并提高解决问题的能力。
3. 数学建模:培养学生运用全等三角形的性质解决实际问题的能力,提高学生的数学建模素养。
4. 数学交流:在小组合作学习和探究过程中,培养学生运用数学语言表达全等三角形的性质和判定方法,提高学生的数学交流能力。
5. 数学思维:通过解决几何问题,培养学生的数学思维能力,提高学生分析问题、解决问题的能力。
b. SAS(Side-Angle-Side):如果两个三角形有两组对应边和它们夹的对应角分别相等,那么这两个三角形全等;
沪科版八年级数学上册教案全集

第11章平面直角坐标系11.1平面上点的坐标第1课时平面上点的坐标(一)教学目标【知识与技能】1.知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等.2.理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标.已知点的坐标,能在平面直角坐标系中描出点.3.能在方格纸中建立适当的平面直角坐标系来描述点的位置.【过程与方法】1.结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用.2.学会用有序实数对和平面直角坐标系中的点来描述物体的位置.【情感、态度与价值观】通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值.重点难点【重点】认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点.【难点】理解坐标系中的坐标与坐标轴上的数字之间的关系.教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说?生甲:我在第3排第5个座位.生乙:我在第4行第7列.师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来.二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?生:3排5号.师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的.谁来说说我们应该怎样表示一个物体的位置呢?生:用一个有序的实数对来表示.师:对.我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢?生:可以.教师在黑板上作图:我们可以在平面内画两条互相垂直、原点重合的数轴.水平的数轴叫做x轴或横轴,取向右为正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点.这样就构成了平面直角坐标系,这个平面叫做坐标平面.师:有了平面直角坐标系,平面内的点就可以用一个有序实数对来表示了.现在请大家自己动手画一个平面直角坐标系.学生操作,教师巡视.教师指正学生易犯的错误.教师边操作边讲解:如图,由点P分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是5,我们就说P点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点P的坐标.在x轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向x轴作垂线,对应的坐标是0,所以它的横坐标就是0;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0).教师多媒体出示:师:如图,请同学们写出A、B、C、D这四点的坐标.生甲:A点的坐标是(-5,4).生乙:B点的坐标是(-3,-2).生丙:C点的坐标是(4,0).生丁:D点的坐标是(0,-6).师:很好!我们已经知道了怎样写出点的坐标,如果已知一点的坐标为(3,-2),怎样在平面直角坐标系中找到这个点呢?教师边操作边讲解:在x轴上找出横坐标是3的点,过这一点向x轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是-2的点,过这一点向y轴作垂线,纵坐标是-2的点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为-2,所以这就是坐标为(3,-2)的点.下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,-4),B(0,5),C(-2,-3),D(-5,6)这几个点.学生动手作图,教师巡视指导.三、深入探究,层层推进师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限和第四象限.注意:坐标轴不属于任何一个象限.在同一象限内的点,它们的横坐标的符号一样吗?纵坐标的符号一样吗?生:都一样.师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+.你能说出其他象限内点的坐标的符号吗?生:能.第二象限内的点的坐标的符号为(-,+),第三象限内的点的坐标的符号为(-,-),第四象限内的点的坐标的符号为(+,-).师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号.同样的,我们由点的坐标也能知道它所在的象限.一点的坐标的符号为(-,+),你能判断这点是在哪个象限吗?生:能,在第二象限.四、练习新知师:现在我给出几个点,你们判断一下它们分别在哪个象限.教师写出四个点的坐标:A(-5,-4),B(3,-1),C(0,4),D(5,0).生甲:A点在第三象限.生乙:B点在第四象限.生丙:C点不属于任何一个象限,它在y轴上.生丁:D点不属于任何一个象限,它在x轴上.师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点.学生作图,教师巡视,并予以指导.五、课堂小结师:本节课你学到了哪些新的知识?生:认识了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征.教师补充完善.教学反思物体位置的说法和表述物体的位置等问题,学生在实际生活中经常遇到,但可能没有想到这些问题与数学的联系.教师在这节课上引导学生去想到建立一个平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力.在教学中我让学生由生活中的实例与坐标的联系感受坐标的实用性,增强了学生学习数学的兴趣.第2课时平面上点的坐标(二)教学目标【知识与技能】进一步学习和应用平面直角坐标系,认识坐标系中的图形.【过程与方法】通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力.【情感、态度与价值观】培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法.重点难点【重点】理解平面上的点连接成的图形,计算围成的图形的面积.【难点】不规则图形面积的求法.教学过程一、创设情境,导入新知师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来.下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,-3)这三个点.学生作图.教师边操作边讲解:二、合作探究,获取新知师:现在我们把这三个点用线段连接起来,看一下得到的是什么图形?生甲:三角形.生乙:直角三角形.师:你能计算出它的面积吗?生:能.教师挑一名学生:你是怎样算的呢?生:AB的长是5-2=3,BC的长是1-(-3)=4,所以三角形ABC的面积是×3×4=6.师:很好!教师边操作边讲解:大家再描出四个点:A(-1,2),B(-2,-1),C(2,-1),D(3,2),并将它们依次连接起来看看形成的是什么图形?学生完成操作后回答:平行四边形.师:你能计算它的面积吗?生:能.教师挑一名学生:你是怎么计算的呢?生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是4×3=12.师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样一个连接成的图形:教师多媒体出示下图:师:如果我们取x轴正半轴上的点为起始点,按逆时针顺序,你能说出这个图形是由哪些点顺次连接成的吗?生:能.(6,0),(4,2),(4,4),(2,4),(0,6),(-2,4),(-4,4)……师:很好!你怎样向另一个同学描述这样一个八角星,让他画出来呢?生:在坐标系里画出点(6,0),(4,2),(4,4),(2,4),(0,6),(-2,4),(-4,4),……,然后把它们顺次连接成一个封闭的图形.三、练习新知师:我们现在已经建立了点与图形之间的联系,能用点来表示图形了.我们来看这样一个例子,已知△ABC三个顶点的坐标分别为A(-1,1),B(4,1),C(6,4),求△ABC的面积.教师找一名学生板演,其余学生在下面做,然后集体订正得到:由图可知,△ABC的面积S=×5×3=7.5.四、课堂小结师:我们今天学习了哪些新知识?有什么收获?生:我们今天学了由点连接成的图形,求封闭图形的面积.教师补充完善.教学反思本节课开始时我给出三点的坐标,让学生自己建立平面直角坐标系,并且在其中描出这些点,既复习了上节课的内容,又引出了本节课所要讲的知识.在画出三角形和平行四边形后,我引导学生去利用网格计算封闭图形的面积.通过八角星的例子引导学生自己去学习找点的位置和它们的坐标之间的关系,形成数形结合的思想,用数字特征去描述它们之间的关系.11.2图形在坐标系中的平移教学目标【知识与技能】研究在同一坐标系中,图形的平移与点的坐标变化之间的关系,发展学生的数形结合思想和意识.【过程与方法】经历图形的平移过程,探究图形的平移与点的坐标变化之间的关系.【情感、态度与价值观】让学生体验探究图形的平移与坐标变化之间的关系,感受数学与图形的平移、物体的运动等有实际意义的事情之间的关联,体会数学在现实生活中的用途.重点难点【重点】经历图形平移和坐标变化的过程,发展学生的数形结合思想和意识.【难点】归纳出图形平移与坐标变化之间的关系.教学过程一、创设情境,导入新知师:在上一节课,我们把平面直角坐标系中的点连接成了封闭的图形,现在已知A(-2,4),B(-4,3),C(1,1),用线段把这三点连接成一个封闭图形,是什么形状的图形?生:三角形.师:对.这节课我们把这个图形在同一坐标系中平移,探究平移后的顶点坐标与原顶点坐标之间的关系.教师板书课题.二、合作探究,获取新知教师边操作边讲解:我们把这个三角形在平面直角坐标系中向右平移2个单位,看看得到的图形与原图形的顶点坐标之间会有什么关系.生:横坐标增加了2,纵坐标不变.师:对.若是向左平移2个单位呢?坐标会有什么变化?生:横坐标减2,纵坐标不变.师:很好!若把这个三角形向上平移3个单位,这个三角形的顶点坐标又有什么改变?生:横坐标不变,纵坐标加3.师:对.向下平移3个单位呢?生:横坐标不变,纵坐标减3.师:同学们回答得很好!已知一个图形的顶点坐标和它发生的位移,即它移动的方向和距离,我们根据刚才得出的结论,可以写出它位移后的顶点的坐标,画出它位移后的图形.如果已知位移前的图形和位移后的图形,你能写出它的位移过程吗?教师边操作边讲解:已知平移前的三角形三个顶点的坐标分别是(-3,4),(-2,7),(1,2),平移后顶点的坐标是(0,2),(1,5),(4,0),请同学们写出它平移的过程.教师找一名学生板演,其余同学在下面写.师:我们可以分别看横、纵坐标的变化,横坐标都增加了3,所以在沿x轴方向上发生了怎样的位移?生:向右平移了3个单位.师:对,你们观察一下纵坐标的变化,说一说它在沿y轴方向上发生了怎样的位移?生:纵坐标减少了2,向下平移了2个单位.师:对.所以我们得出它位移的过程是先向右平移3个单位再向下平移2个单位,或者是先向下平移2个单位再向右平移3个单位.三、例题讲解【例】如图,将△ABC先向右平移6个单位,再向下平移2个单位得到△A1B1C1.写出各顶点变动前后的坐标.解:用箭头代表平移,则有:A(-2,6)→(4,6)→A1(4,4),B(-4,4)→(2,4)→B1(2,2),C(1,1)→(7,1)→C1(7,-1).教师多媒体出示:点(x,y)向平移a(a>0)个单位?平移后的坐标为师:任意一点(x,y)向某一个方向平移后点的坐标会是怎样的呢?请同学们思考以上四个小题.学生思考交流后,得到结论:点(x,y)向左平移a(a>0)个单位?平移后的坐标为(x-a,y);点(x,y)向右平移a(a>0)个单位?平移后的坐标为(x+a,y);点(x,y)向上平移a(a>0)个单位?平移后的坐标为(x,y+a);点(x,y)向下平移a(a>0)个单位?平移后的坐标为(x,y-a).四、练习新知师:我们现在来做一道题目,练习一下.教师多媒体出示:已知三角形ABC,它的三个顶点A、B、C的坐标分别为(-5,3),(-2,4),(0,2),它平移后的三角形为△A'B'C',A'点的坐标是(3,-1),求B'点和C'点的坐标.教师找一名学生板演,其他同学在下面做,然后集体订正得到:B'点的坐标为(6,0),C'的坐标为(8,-2).五、课堂小结师:你今天学习了哪些新知识?有什么收获?生:学习了图形的平移和位移变化之间的关系.师:你还有哪些疑问?学生提问,教师解答.教学反思图形由静到动,静时我们用顶点坐标来描述它,动后我们也可以描述这个过程.在学生的前置性学习部分,通过让学生观察把一个已知的三角形向右平移后得到新的三角形,并比较平移前后三个顶点的坐标的变化,使学生亲身经历了知识的形成过程,不但改变了学生死记硬背的学习方式,还培养了他们自主探究、合作交流等学习习惯,进一步激发了学生学习数学的兴趣.本节课是在学生学习了平移的概念和性质的基础上,探究图形在坐标系内平移的变化规律的.主要是引导学生运用分类思想,依次经过点和图形的平移的观察、画图、猜想、验证、归纳、比较、分析等活动,最终探究出点的坐标变化与点平移的关系以及图形上各个点的坐标变化与图形平移的关系.第12章一次函数12.1函数第1课时函数(一)教学目标【知识与技能】1.掌握常量、变量的概念.2.能辨别一个关系中的常量和变量、自变量和因变量.3.能识别一个关系式是不是函数.【过程与方法】1.经历观察、分析、思考、总结的过程,发展观察推理能力和清晰地表达自己观点的能力.2.感知变量对数学问题的描述、研究的作用.3.理解一个简单的实际应用问题的数学表达方式,使学生将实际问题和数学相联系.【情感、态度与价值观】1.通过让学生共同思考实际生活中的例子让学生参与到教学活动中来,培养学生的集体意识.2.让学生自己思考贴近生活的例子,激发学生的学习兴趣.3.让学生感受数学与生活息息相关.4.通过变量、常量概念的引入,让学生意识到数学是在不断发展的,意识到事物是不断发展变化的.重点难点【重点】理解常量、变量的概念,判断一个数量关系是否是函数.【难点】理解函数的概念.教学过程一、创设情境,导入新知师:你还记得汽车在匀速行驶时,路程和速度、时间之间的关系吗?生:记得,路程=速度×时间.师:好.我们现在来看这样一个问题.教师多媒体出示(问题1):汽车以50千米/时的速度匀速行驶,它行驶的路程用s表示,时间用t表示,根据刚才那个公式,你能得到s和t的什么数量关系?生:s=50t.师:对.这里面有哪些量?生:路程、速度和时间.师:这道题中,速度是具体的一个量,是多少呢?生:50.师:对.这里面有三个量:路程、50和时间.二、合作探究,获取新知学生思考后回答:两个.师:哪两个?生甲:时间.生乙:气球上升到达的海拔高度.师:同学们回答得很好!你们再观察一下,热气球在这个上升过程中,平均每分钟上升了多少米?生:30米.师:你能计算出当t=3min和t=6min时热气球到达的海拔高度吗?生:能,3分钟时为1890米,6分钟时为1980米.师:很好.教师多媒体出示(问题3):师:在这个问题中,有哪几个量?生:两个,时间和负荷.师:你能说出这一天中任意一个时刻的负荷是多少吗?如果能的话,4.5h时和20h时的负荷分别是多少?学生测量后回答:能.4.5h时是10×103兆瓦,20h时是17×103兆瓦.师:用科学记数法怎样表示?生:4.5h时是1.0×104兆瓦,20h时是1.7×104兆瓦.师:同学们回答得很好!你们是怎么找到对应的数据的呢?生:根据时间对应的负荷得到的.师:很好!这一天的用电高峰和用电低谷时的负荷分别是多少?它们各是在什么时刻达到的?学生测量后回答:用电高峰时的负荷是1.8×104兆瓦,在13.5h时达到;用电低谷时的负荷是1.0×104兆瓦,在4.5h时达到.师:我们再来看这样一个例子.教师多媒体出示(问题4):汽车在行驶过程中由于惯性的作用刹车后仍将滑行一段距离才能停住.某型号的汽车在路面上的刹车距离sm与车速vkm/h之间有下列经验公式:s=这个式子中涉及了哪几个量?生甲:刹车距离、车速.生乙:256.师:当车速为60km/h时的刹车距离是多少呢?结果保留一位小数.学生计算后回答:14.1km.师:在第一个问题中,速度一直是50千米/时,我们把不变的50称为常量;变化的s和t称为变量,其中t是自变量,s是随着时间t的变化而变化的,s是因变量.下面我们看看其他三个问题中,哪些是常量,哪些是自变量,哪些是因变量?生甲:第二个问题中,30是常量,时间是自变量,海拔高度是因变量.生乙:第三个问题中,没有常量,时间是自变量,负荷是因变量.生丙:第四个问题中,256是常量,车速是自变量,刹车距离是因变量.师:很好!自变量和因变量之间有没有对应的关系呢?生:有.师:由前面的探究,我们能得出自变量和因变量在数量上有怎样的对应关系?生:自变量取一个值,根据它们之间的关系,因变量就有相应的一个值.师:很好!教师板书并口述定义:一般地,设在一个变化过程中有两个变量x、y,如果对于x在它允许的取值范围内的每一个值,y都有唯一确定的值与它对应,那么就称x 是自变量,y是x函数.师:在这个定义中,我们要注意“唯一确定”这四个字,“唯一”要求只有一个,“确定”要求它们的关系是确定的,不能是未明确的、模糊的.根据函数的定义,你能说出以上四个问题中哪一个量是哪一个量的函数吗?生甲;问题1中行驶路程s是行驶时间t的函数.生乙:问题2中热气球到达的海拔高度h是时间t的函数.生丙:问题3中负荷y是时间t的函数.生丁:问题4中刹车距离s是车速v的函数.师:大家回答得很好!三、练习新知师:我们现在来看这样一个例子.教师多媒体出示并口述:下列等式中,y是x的函数的有.?①x+y=0;②y=;③y=x2;④x=y2;⑤y=|x|;⑥x=|y|;⑦y=;⑧y2=4x.学生思考后回答,然后集体订正.y是x的函数的有①②③⑤⑦.四、课堂小结师:你今天学习了哪些新知识?有什么收获?生:学习了常量、变量、自变量、因变量、函数.教师补充完善.教学反思课程改革的关键是教师观念的改变,重视学生的主体作用,强调让学生经历学习的过程,让学生真正成为学习的主人.教师不应该仅仅是课程的实施者,而且应该成为课程的创造者和开发者.通过让学生回顾小学学过的一个公式,引入本节课,同时带领学生更深入地认识两个量之间的关系,并引入常量、变量、自变量、因变量等概念.而函数是两个变量之间的关系,它们之间是怎样的一种关系呢?对自变量取的一个值,因变量有唯一确定的值与之对应.这点要向学生讲清楚,学生理解了就能判断一个变量是不是另一个变量的函数.第2课时函数(二)教学目标【知识与技能】1.会用列表法表示函数.2.会将一个简单的实际应用问题抽象成函数.3.会求函数自变量的取值范围.4.给定自变量,能求出函数值.【过程与方法】1.经历用列表法和解析法表示函数的过程.2.通过将一个简单的实际应用问题抽象成数学问题使学生将理论和实际相联系.【情感、态度与价值观】1.通过让学生选用合适的方法表示两个变量之间的关系,让学生发挥主观能动性,独立思考.2.让学生参与到教学活动中来,激发学生的参与感和集体意识.3.让学生观察、描述发现的问题,培养学生表述自己思想和归纳概括、收集信息的能力.4.让学生思考贴近生活的例子,激发学生的学习兴趣.重点难点【重点】用解析法表示函数,求函数自变量的取值范围.【难点】建立一个实际问题的数学模型.教学过程一、创设情境,导入新知师:上节课,我们学习了一个重要的概念——函数,同学们还记得它的内容吗?学生回答.师:大家说得很好,函数是一个重要的数学概念,这节课我们将更深入地研究它.二、合作探究,获取新知教师多媒体出示上节课的问题2:上节课我们在问题2中用表格表示热气球上升到的海拔高度与时间数值之间存在的关系,这种通过列出自变量的值与对应的函数值的表格来表示函数关系的方法叫做列表法.学生熟记.教师多媒体出示上节课的问题4.这是另一种表示函数的方法,是用s和v之间的函数关系式来表示的,这种用数学式子表示函数关系的方法叫做解析法.你从中读出了什么信息?你能把问题2中表格反映的情况用语言叙述一下吗?学生思考后回答:能.热气球的初始海拔高度是1800米,每分钟上升30米.师:很好!它是匀速上升的吗?生:是.教师多媒体出示上节课中的问题1.你能仿照这个匀速运动的例子写出热气球到达的海拔高度h和时间t之间的关系吗?注意:这里h是初始高度和上升高度的和,上升高度相当于热气球上升的路程.学生思考后回答:能.h=1800+30t.师:很好!一般地,我们按自变量的降幂排列,就是写成h=30t+1800.这说明同样一个问题,它的描述方式可以不止一种,我们可以选用适当的方式来表示,也可以把一种表示方式描述的问题用另一种表示方式来写.教师多媒体出示上节课介绍的函数的定义:一般地,设在一个变化过程中有两个变量x、y,如果对于x在它允许取值范围内的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数.师:同学们,这里要求在自变量的允许范围内,就是说自变量是有范围的,在哪些情况下自变量不是所有实数都可以取呢?谁能说说我们学习过的式子中哪些式子的取值有限制?生:分母不能为零,开平方时被开方数应该大于等于零.师:对.所以我们在用解析法表示时,要考虑自变量的取值范围.在实际应用中,除了要保证这个式子有意义,还要求它有实际意义.三、练习新知教师多媒体出示:【例1】求下列函数中自变量x的取值范围:(1)y=2x+4;(2)y=-2x2;(3)y=; (4)y=.解:(1)x为全实体实数.(2)x为全实体实数.(3)x≠2.(4)x≥3.【例2】当x=3时,求下列函数的函数值:(1)y=2x+4; (2)y=-2x2;(3)y=; (4)y=.解:(1)当x=3时,y=2x+4=2×3+4=10.(2)当x=3时,y=-2x2=-2×32=-18.(3)当x=3时,y===1.(4)当x=3时,y===0.【例3】一个游泳池内有水300m3,现打开排水管以每小时25m3的排出量排水.(1)写出游泳池内剩余水量Qm3与排水时间th间的函数关系式;(2)写出自变量t的取值范围;(3)开始排水后的第5h末,游泳池中还有多少水?(4)当游泳池中还剩150m3时,已经排水多少小时?解:(1)排水后的剩水量Q是排水时间t的函数,有Q=300-25t=-25t+300.(2)由于池中共有300m3水,每小时排25m3,全部排完只需300÷25=12(h),故自变量t的取值范围是0≤t≤12.(3)当t=5时,代入上式,得Q=-5×25+300=175(m3),即第5h末,池中还有水175m3.(4)当Q=150时,由150=-25t+300,得t=6(h),池中还剩水150m3时,已经排水6小时.四、课堂小结师:今天你学习了什么新的内容?生:学习了函数的两种表示方法、自变量的取值范围、求函数值.教师补充完善.教学反思本节课通过让学生回顾上节课的两个例子,向学生介绍函数的两种表示方法:列表法和解析法.在解析法中强调了不是所有函数的自变量都可以取全体实数,特别是在应用题中,要考虑自变量的取值范围.还学习了已知自变量的一个值求相应的函数值.需要注意的是自变量取值范围的限制主要有分母不能为零和开平方时被开方数不能为负两种情况,有时两种情况会同时出现,这两个条件都要满足.教学设计中,始终把对知识的学习与师生的共同活动、交流相结合,把对知识的理解放置在具体情景中,采用了多种形式的学习活动,给学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章平面直角坐标系11、1 平面上点得坐标第1课时平面上点得坐标(一)教学目标【知识与技能】1、知道有序实数对得概念,认识平面直角坐标系得相关知识,如平面直角坐标系得构成:横轴、纵轴、原点等、2、理解坐标平面内得点与有序实数对得一一对应关系,能写出给定得平面直角坐标系中某一点得坐标、已知点得坐标,能在平面直角坐标系中描出点、3、能在方格纸中建立适当得平面直角坐标系来描述点得位置、【过程与方法】1、结合现实生活中表示物体位置得例子,理解有序实数对与平面直角坐标系得作用、2、学会用有序实数对与平面直角坐标系中得点来描述物体得位置、【情感、态度与价值观】通过引入有序实数对、平面直角坐标系让学生体会到现实生活中得问题得解决与数学得发展之间有联系,感受到数学得价值、重点难点【重点】认识平面直角坐标系,写出坐标平面内点得坐标,已知坐标能在坐标平面内描出点、【难点】理解坐标系中得坐标与坐标轴上得数字之间得关系、教学过程一、创设情境、导入新知师:如果让您描述自己在班级中得位置,您会怎么说?生甲:我在第3排第5个座位、生乙:我在第4行第7列、师:很好!我们买得电影票上写着几排几号,就是对应某一个座位,也就就是这个座位可以用排号与列号两个数字确定下来、二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直得方向上得数量来表示这个物体得位置,这两个数量我们可以用一个实数对来表示,但就是,如果(5,3)表示5排3号得话,那么(3,5)表示什么呢?生:3排5号、师:对,它们对应得不就是同一个位置,所以要求表示物体位置得这个实数对就是有序得、谁来说说我们应该怎样表示一个物体得位置呢?生:用一个有序得实数对来表示、师:对、我们学过实数与数轴上得点就是一一对应得,有序实数对就是不就是也可以与一个点对应起来呢?生:可以、教师在黑板上作图:我们可以在平面内画两条互相垂直、原点重合得数轴、水平得数轴叫做x轴或横轴,取向右为正方向;竖直得数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点、这样就构成了平面直角坐标系,这个平面叫做坐标平面、师:有了平面直角坐标系,平面内得点就可以用一个有序实数对来表示了、现在请大家自己动手画一个平面直角坐标系、学生操作,教师巡视、教师指正学生易犯得错误、教师边操作边讲解:如图,由点P分别向x轴与y轴作垂线,垂足M在x轴上得坐标就是3,垂足N在y轴上得坐标就是5,我们就说P点得横坐标就是3,纵坐标就是5,我们把横坐标写在前,纵坐标写在后,(3,5)就就是点P得坐标、在x轴上得点,过这点向y轴作垂线,对应得坐标就是0,所以它得纵坐标就就是0;在y轴上得点,过这点向x轴作垂线,对应得坐标就是0,所以它得横坐标就就是0;原点得横坐标与纵坐标都就是0,即原点得坐标就是(0,0)、教师多媒体出示:师:如图,请同学们写出A、B、C、D这四点得坐标、生甲:A点得坐标就是(-5,4)、生乙:B点得坐标就是(-3,-2)、生丙:C点得坐标就是(4,0)、生丁:D点得坐标就是(0,-6)、师:很好!我们已经知道了怎样写出点得坐标,如果已知一点得坐标为(3,-2),怎样在平面直角坐标系中找到这个点呢?教师边操作边讲解:在x轴上找出横坐标就是3得点,过这一点向x轴作垂线,横坐标就是3得点都在这条直线上;在y轴上找出纵坐标就是-2得点,过这一点向y轴作垂线,纵坐标就是-2得点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为-2,所以这就就是坐标为(3,-2)得点、下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,-4),B(0,5),C(-2,-3),D(-5,6)这几个点、学生动手作图,教师巡视指导、三、深入探究,层层推进师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限与第四象限、注意:坐标轴不属于任何一个象限、在同一象限内得点,它们得横坐标得符号一样吗?纵坐标得符号一样吗?生:都一样、师:对,由作垂线求坐标得过程,我们知道第一象限内得点得横坐标得符号为+,纵坐标得符号也为+、您能说出其她象限内点得坐标得符号吗?生:能、第二象限内得点得坐标得符号为(-,+),第三象限内得点得坐标得符号为(-,-),第四象限内得点得坐标得符号为(+,-)、师:很好!我们知道了一点所在得象限,就能知道它得坐标得符号、同样得,我们由点得坐标也能知道它所在得象限、一点得坐标得符号为(-,+),您能判断这点就是在哪个象限吗?生:能,在第二象限、四、练习新知师:现在我给出几个点,您们判断一下它们分别在哪个象限、教师写出四个点得坐标:A(-5,-4),B(3,-1),C(0,4),D(5,0)、生甲:A点在第三象限、生乙:B点在第四象限、生丙:C点不属于任何一个象限,它在y轴上、生丁:D点不属于任何一个象限,它在x轴上、师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点、学生作图,教师巡视,并予以指导、五、课堂小结师:本节课您学到了哪些新得知识?生:认识了平面直角坐标系,会写出坐标平面内点得坐标,已知坐标能描点,知道了四个象限以及四个象限内点得符号特征、教师补充完善、教学反思物体位置得说法与表述物体得位置等问题,学生在实际生活中经常遇到,但可能没有想到这些问题与数学得联系、教师在这节课上引导学生去想到建立一个平面直角坐标系来表示物体得位置,让学生参与到探索获取新知得活动中,主动学习思考,感受数学得魅力、在教学中我让学生由生活中得实例与坐标得联系感受坐标得实用性,增强了学生学习数学得兴趣、第2课时平面上点得坐标(二)教学目标【知识与技能】进一步学习与应用平面直角坐标系,认识坐标系中得图形、【过程与方法】通过探索平面上得点连接成得图形,形成二维平面图形得概念,发展抽象思维能力、【情感、态度与价值观】培养学生得合作交流意识与探索精神,体验通过二维坐标来描述图形顶点,从而描述图形得方法、重点难点【重点】理解平面上得点连接成得图形,计算围成得图形得面积、【难点】不规则图形面积得求法、教学过程一、创设情境,导入新知师:上节课我们学习了平面直角坐标系得概念,也学习了已知点得坐标,怎样在平面直角坐标系中把这个点表示出来、下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,-3)这三个点、学生作图、教师边操作边讲解:二、合作探究,获取新知师:现在我们把这三个点用线段连接起来,瞧一下得到得就是什么图形?生甲:三角形、生乙:直角三角形、师:您能计算出它得面积吗?生:能、教师挑一名学生:您就是怎样算得呢?生:AB得长就是5-2=3,BC得长就是1-(-3)=4,所以三角形ABC得面积就是×3×4=6、师:很好!教师边操作边讲解:大家再描出四个点:A(-1,2),B(-2,-1),C(2,-1),D(3,2),并将它们依次连接起来瞧瞧形成得就是什么图形?学生完成操作后回答:平行四边形、师:您能计算它得面积吗?生:能、教师挑一名学生:您就是怎么计算得呢?生:以BC为底,A到BC得垂线段AE为高,BC得长为4,AE得长为3,平行四边形得面积就就是4×3=12、师:很好!刚才就是已知点,我们将它们顺次连接形成图形,下面我们来瞧这样一个连接成得图形:教师多媒体出示下图:师:如果我们取x轴正半轴上得点为起始点,按逆时针顺序,您能说出这个图形就是由哪些点顺次连接成得吗?生:能、(6,0),(4,2),(4,4),(2,4),(0,6),(-2,4),(-4,4)……师:很好!您怎样向另一个同学描述这样一个八角星,让她画出来呢?生:在坐标系里画出点(6,0),(4,2),(4,4),(2,4),(0,6),(-2,4),(-4,4),……,然后把它们顺次连接成一个封闭得图形、三、练习新知师:我们现在已经建立了点与图形之间得联系,能用点来表示图形了、我们来瞧这样一个例子,已知△ABC 三个顶点得坐标分别为A(-1,1),B(4,1),C(6,4),求△ABC得面积、教师找一名学生板演,其余学生在下面做,然后集体订正得到:由图可知,△ABC得面积S=×5×3=7、5、四、课堂小结师:我们今天学习了哪些新知识?有什么收获?生:我们今天学了由点连接成得图形,求封闭图形得面积、教师补充完善、教学反思本节课开始时我给出三点得坐标,让学生自己建立平面直角坐标系,并且在其中描出这些点,既复习了上节课得内容,又引出了本节课所要讲得知识、在画出三角形与平行四边形后,我引导学生去利用网格计算封闭图形得面积、通过八角星得例子引导学生自己去学习找点得位置与它们得坐标之间得关系,形成数形结合得思想,用数字特征去描述它们之间得关系、11、2 图形在坐标系中得平移教学目标【知识与技能】研究在同一坐标系中,图形得平移与点得坐标变化之间得关系,发展学生得数形结合思想与意识、【过程与方法】经历图形得平移过程,探究图形得平移与点得坐标变化之间得关系、【情感、态度与价值观】让学生体验探究图形得平移与坐标变化之间得关系,感受数学与图形得平移、物体得运动等有实际意义得事情之间得关联,体会数学在现实生活中得用途、重点难点【重点】经历图形平移与坐标变化得过程,发展学生得数形结合思想与意识、【难点】归纳出图形平移与坐标变化之间得关系、教学过程一、创设情境,导入新知师:在上一节课,我们把平面直角坐标系中得点连接成了封闭得图形,现在已知A(-2,4),B(-4,3),C(1,1),用线段把这三点连接成一个封闭图形,就是什么形状得图形?生:三角形、师:对、这节课我们把这个图形在同一坐标系中平移,探究平移后得顶点坐标与原顶点坐标之间得关系、教师板书课题、二、合作探究,获取新知教师边操作边讲解:我们把这个三角形在平面直角坐标系中向右平移2个单位,瞧瞧得到得图形与原图形得顶点坐标之间会有什么关系、生:横坐标增加了2,纵坐标不变、师:对、若就是向左平移2个单位呢?坐标会有什么变化?生:横坐标减2,纵坐标不变、师:很好!若把这个三角形向上平移3个单位,这个三角形得顶点坐标又有什么改变?生:横坐标不变,纵坐标加3、师:对、向下平移3个单位呢?生:横坐标不变,纵坐标减3、师:同学们回答得很好!已知一个图形得顶点坐标与它发生得位移,即它移动得方向与距离,我们根据刚才得出得结论,可以写出它位移后得顶点得坐标,画出它位移后得图形、如果已知位移前得图形与位移后得图形,您能写出它得位移过程吗?教师边操作边讲解:已知平移前得三角形三个顶点得坐标分别就是(-3,4),(-2,7),(1,2),平移后顶点得坐标就是(0,2),(1,5),(4,0),请同学们写出它平移得过程、教师找一名学生板演,其余同学在下面写、师:我们可以分别瞧横、纵坐标得变化,横坐标都增加了3,所以在沿x轴方向上发生了怎样得位移?生:向右平移了3个单位、师:对,您们观察一下纵坐标得变化,说一说它在沿y轴方向上发生了怎样得位移?生:纵坐标减少了2,向下平移了2个单位、师:对、所以我们得出它位移得过程就是先向右平移3个单位再向下平移2个单位,或者就是先向下平移2个单位再向右平移3个单位、三、例题讲解【例】如图,将△ABC先向右平移6个单位,再向下平移2个单位得到△A1B1C1、写出各顶点变动前后得坐标、解:用箭头代表平移,则有:A(-2,6)→(4,6)→A1(4,4),B(-4,4)→(2,4)→B1(2,2),C(1,1)→(7,1)→C1(7,-1)、教师多媒体出示:点(x,y)向平移a(a>0)个单位⇔平移后得坐标为师:任意一点(x,y)向某一个方向平移后点得坐标会就是怎样得呢?请同学们思考以上四个小题、学生思考交流后,得到结论:点(x,y)向左平移a(a>0)个单位⇔平移后得坐标为(x-a,y);点(x,y)向右平移a(a>0)个单位⇔平移后得坐标为(x+a,y);点(x,y)向上平移a(a>0)个单位⇔平移后得坐标为(x,y+a);点(x,y)向下平移a(a>0)个单位⇔平移后得坐标为(x,y-a)、四、练习新知师:我们现在来做一道题目,练习一下、教师多媒体出示:已知三角形ABC,它得三个顶点A、B、C得坐标分别为(-5,3),(-2,4),(0,2),它平移后得三角形为△A'B'C',A'点得坐标就是(3,-1),求B'点与C'点得坐标、教师找一名学生板演,其她同学在下面做,然后集体订正得到:B'点得坐标为(6,0),C'得坐标为(8,-2)、五、课堂小结师:您今天学习了哪些新知识?有什么收获?生:学习了图形得平移与位移变化之间得关系、师:您还有哪些疑问?学生提问,教师解答、教学反思图形由静到动,静时我们用顶点坐标来描述它,动后我们也可以描述这个过程、在学生得前置性学习部分,通过让学生观察把一个已知得三角形向右平移后得到新得三角形,并比较平移前后三个顶点得坐标得变化,使学生亲身经历了知识得形成过程,不但改变了学生死记硬背得学习方式,还培养了她们自主探究、合作交流等学习习惯,进一步激发了学生学习数学得兴趣、本节课就是在学生学习了平移得概念与性质得基础上,探究图形在坐标系内平移得变化规律得、主要就是引导学生运用分类思想,依次经过点与图形得平移得观察、画图、猜想、验证、归纳、比较、分析等活动,最终探究出点得坐标变化与点平移得关系以及图形上各个点得坐标变化与图形平移得关系、第12章一次函数12、1 函数第1课时函数(一)教学目标【知识与技能】1、掌握常量、变量得概念、2、能辨别一个关系中得常量与变量、自变量与因变量、3、能识别一个关系式就是不就是函数、【过程与方法】1、经历观察、分析、思考、总结得过程,发展观察推理能力与清晰地表达自己观点得能力、2、感知变量对数学问题得描述、研究得作用、3、理解一个简单得实际应用问题得数学表达方式,使学生将实际问题与数学相联系、【情感、态度与价值观】1、通过让学生共同思考实际生活中得例子让学生参与到教学活动中来,培养学生得集体意识、2、让学生自己思考贴近生活得例子,激发学生得学习兴趣、3、让学生感受数学与生活息息相关、4、通过变量、常量概念得引入,让学生意识到数学就是在不断发展得,意识到事物就是不断发展变化得、重点难点【重点】理解常量、变量得概念,判断一个数量关系就是否就是函数、【难点】理解函数得概念、教学过程一、创设情境,导入新知师:您还记得汽车在匀速行驶时,路程与速度、时间之间得关系吗?生:记得,路程=速度×时间、师:好、我们现在来瞧这样一个问题、教师多媒体出示(问题1):汽车以50千米/时得速度匀速行驶,它行驶得路程用s表示,时间用t表示,根据刚才那个公式,您能得到s与t得什么数量关系?生:s=50t、师:对、这里面有哪些量?生:路程、速度与时间、师:这道题中,速度就是具体得一个量,就是多少呢?生:50、师:对、这里面有三个量:路程、50与时间、二、合作探究,获取新知教师多媒体出示(问题2):时间t/min01234567…海拔高度18001830186018901920195019802010…h/m同学们瞧这个图与相应得表格,上面反映得有几个量?学生思考后回答:两个、师:哪两个?生甲:时间、生乙:气球上升到达得海拔高度、师:同学们回答得很好!您们再观察一下,热气球在这个上升过程中,平均每分钟上升了多少米?生:30米、师:您能计算出当t=3min与t=6min时热气球到达得海拔高度吗?生:能,3分钟时为1 890米,6分钟时为1 980米、师:很好、教师多媒体出示(问题3):师:在这个问题中,有哪几个量?生:两个,时间与负荷、师:您能说出这一天中任意一个时刻得负荷就是多少吗?如果能得话,4、5h时与20h时得负荷分别就是多少?学生测量后回答:能、4、5h时就是10×103兆瓦,20h时就是17×103兆瓦、师:用科学记数法怎样表示?生:4、5h时就是1、0×104兆瓦,20h时就是1、7×104兆瓦、师:同学们回答得很好!您们就是怎么找到对应得数据得呢?生:根据时间对应得负荷得到得、师:很好!这一天得用电高峰与用电低谷时得负荷分别就是多少?它们各就是在什么时刻达到得?学生测量后回答:用电高峰时得负荷就是1、8×104兆瓦,在13、5h时达到;用电低谷时得负荷就是1、0×104兆瓦,在4、5h时达到、师:我们再来瞧这样一个例子、教师多媒体出示(问题4):汽车在行驶过程中由于惯性得作用刹车后仍将滑行一段距离才能停住、某型号得汽车在路面上得刹车距离sm与车速vkm/h之间有下列经验公式:s=这个式子中涉及了哪几个量?生甲:刹车距离、车速、生乙:256、师:当车速为60km/h时得刹车距离就是多少呢?结果保留一位小数、学生计算后回答:14、1km、师:在第一个问题中,速度一直就是50千米/时,我们把不变得50称为常量;变化得s与t称为变量,其中t就是自变量,s就是随着时间t得变化而变化得,s就是因变量、下面我们瞧瞧其她三个问题中,哪些就是常量,哪些就是自变量,哪些就是因变量?生甲:第二个问题中,30就是常量,时间就是自变量,海拔高度就是因变量、生乙:第三个问题中,没有常量,时间就是自变量,负荷就是因变量、生丙:第四个问题中,256就是常量,车速就是自变量,刹车距离就是因变量、师:很好!自变量与因变量之间有没有对应得关系呢?生:有、师:由前面得探究,我们能得出自变量与因变量在数量上有怎样得对应关系?生:自变量取一个值,根据它们之间得关系,因变量就有相应得一个值、师:很好!教师板书并口述定义:一般地,设在一个变化过程中有两个变量x、y,如果对于x在它允许得取值范围内得每一个值,y都有唯一确定得值与它对应,那么就称x就是自变量,y就是x函数、师:在这个定义中,我们要注意“唯一确定”这四个字,“唯一”要求只有一个,“确定”要求它们得关系就是确定得,不能就是未明确得、模糊得、根据函数得定义,您能说出以上四个问题中哪一个量就是哪一个量得函数吗?生甲;问题1中行驶路程s就是行驶时间t得函数、生乙:问题2中热气球到达得海拔高度h就是时间t得函数、生丙:问题3中负荷y就是时间t得函数、生丁:问题4中刹车距离s就是车速v得函数、师:大家回答得很好!三、练习新知师:我们现在来瞧这样一个例子、教师多媒体出示并口述:下列等式中,y就是x得函数得有、①x+y=0;②y=;③y=x2;④x=y2;⑤y=|x|;⑥ x=|y|;⑦y=;⑧y2=4x、学生思考后回答,然后集体订正、y就是x得函数得有①②③⑤⑦、四、课堂小结师:您今天学习了哪些新知识?有什么收获?生:学习了常量、变量、自变量、因变量、函数、教师补充完善、教学反思课程改革得关键就是教师观念得改变,重视学生得主体作用,强调让学生经历学习得过程,让学生真正成为学习得主人、教师不应该仅仅就是课程得实施者,而且应该成为课程得创造者与开发者、通过让学生回顾小学学过得一个公式,引入本节课,同时带领学生更深入地认识两个量之间得关系,并引入常量、变量、自变量、因变量等概念、而函数就是两个变量之间得关系,它们之间就是怎样得一种关系呢?对自变量取得一个值,因变量有唯一确定得值与之对应、这点要向学生讲清楚,学生理解了就能判断一个变量就是不就是另一个变量得函数、第2课时函数(二)教学目标【知识与技能】1、会用列表法表示函数、2、会将一个简单得实际应用问题抽象成函数、3、会求函数自变量得取值范围、4、给定自变量,能求出函数值、【过程与方法】1、经历用列表法与解析法表示函数得过程、2、通过将一个简单得实际应用问题抽象成数学问题使学生将理论与实际相联系、【情感、态度与价值观】1、通过让学生选用合适得方法表示两个变量之间得关系,让学生发挥主观能动性,独立思考、2、让学生参与到教学活动中来,激发学生得参与感与集体意识、3、让学生观察、描述发现得问题,培养学生表述自己思想与归纳概括、收集信息得能力、4、让学生思考贴近生活得例子,激发学生得学习兴趣、重点难点【重点】用解析法表示函数,求函数自变量得取值范围、【难点】建立一个实际问题得数学模型、教学过程一、创设情境,导入新知师:上节课,我们学习了一个重要得概念——函数,同学们还记得它得内容吗?学生回答、师:大家说得很好,函数就是一个重要得数学概念,这节课我们将更深入地研究它、二、合作探究,获取新知教师多媒体出示上节课得问题2:上节课我们在问题2中用表格表示热气球上升到得海拔高度与时间数值之间存在得关系,这种通过列出自变量得值与对应得函数值得表格来表示函数关系得方法叫做列表法、学生熟记、教师多媒体出示上节课得问题4、这就是另一种表示函数得方法,就是用s与v之间得函数关系式来表示得,这种用数学式子表示函数关系得方法叫做解析法、您从中读出了什么信息?您能把问题2中表格反映得情况用语言叙述一下吗?学生思考后回答:能、热气球得初始海拔高度就是1 800米,每分钟上升30米、师:很好!它就是匀速上升得吗?生:就是、教师多媒体出示上节课中得问题1、您能仿照这个匀速运动得例子写出热气球到达得海拔高度h与时间t之间得关系吗?注意:这里h就是初始高度与上升高度得与,上升高度相当于热气球上升得路程、学生思考后回答:能、h=1 800+30t、师:很好!一般地,我们按自变量得降幂排列,就就是写成h=30t+1 800、这说明同样一个问题,它得描述方式可以不止一种,我们可以选用适当得方式来表示,也可以把一种表示方式描述得问题用另一种表示方式来写、教师多媒体出示上节课介绍得函数得定义:一般地,设在一个变化过程中有两个变量x、y,如果对于x在它允许取值范围内得每一个值,y都有唯一确定得值与它对应,那么就说x就是自变量,y就是x得函数、师:同学们,这里要求在自变量得允许范围内,就就是说自变量就是有范围得,在哪些情况下自变量不就是所有实数都可以取呢?谁能说说我们学习过得式子中哪些式子得取值有限制?生:分母不能为零,开平方时被开方数应该大于等于零、师:对、所以我们在用解析法表示时,要考虑自变量得取值范围、在实际应用中,除了要保证这个式子有意义,还要求它有实际意义、三、练习新知教师多媒体出示:【例1】求下列函数中自变量x得取值范围:(1)y=2x+4; (2)y=-2x2;(3)y=; (4)y=、解:(1)x为全实体实数、(2)x为全实体实数、(3)x≠2、(4)x≥3、【例2】当x=3时,求下列函数得函数值:(1)y=2x+4; (2)y=-2x2;(3)y=; (4)y=、解:(1)当x=3时,y=2x+4=2×3+4=10、(2)当x=3时,y=-2x2=-2×32=-18、(3)当x=3时,y===1、(4)当x=3时,y===0、。