统计分析实验报告
多元统计分析 实验报告

多元统计分析实验报告1. 引言多元统计分析是一种用于研究多个变量之间关系的统计方法。
在实验中,我们使用了多元统计分析方法来探索一组数据中的变量之间的关系。
本报告将介绍我们的实验设计、数据收集和分析方法以及结果和讨论。
2. 实验设计为了进行多元统计分析,我们设计了一个实验,收集了一组相关变量的数据。
我们选择了X、Y和Z这三个变量作为我们的研究对象。
为了获得准确的结果,我们采用了以下实验设计:1.确定研究目的:我们的目标是探索X、Y和Z之间的关系,并确定它们之间是否存在任何相关性。
2.数据收集:我们通过调查问卷的方式收集了一组数据。
我们请参与者回答与X、Y和Z相关的问题,以获得关于这些变量的定量数据。
3.数据整理:在收集完数据后,我们将数据进行整理,将其转化为适合多元统计分析的格式。
我们使用Excel等工具进行数据整理和清洗。
4.数据验证:为了确保数据的准确性,我们对数据进行验证。
我们检查数据的有效性,比较数据之间的一致性,并排除任何异常值。
3. 数据分析在数据收集和整理完毕后,我们使用了一些常见的多元统计分析方法来分析我们的数据。
以下是我们使用的方法和步骤:1.描述统计分析:我们首先对数据进行了描述性统计分析。
我们计算了X、Y和Z的均值、标准差、最大值和最小值等。
这些统计量帮助我们了解数据的基本特征。
2.相关性分析:接下来,我们进行了相关性分析,以确定X、Y和Z之间是否存在相关关系。
我们计算了变量之间的相关系数,并绘制了相关系数矩阵。
这帮助我们确定变量之间的线性关系。
3.回归分析:为了更进一步地研究X、Y和Z之间的关系,我们进行了回归分析。
我们建立了一个多元回归模型,通过回归方程来预测因变量。
同时,我们还计算了回归系数和R方值,以评估模型的拟合度和预测能力。
4. 结果和讨论根据我们的实验设计和数据分析,我们得出了以下结果和讨论:1.描述统计分析结果显示,X的平均值为x,标准差为s;Y的平均值为y,标准差为s;Z的平均值为z,标准差为s。
统计学课内实验报告(详解+心得)1

一.实验目的与要求(一)目的实验一: EXCEL的数据整理与显示1. 了解EXCEL的基本命令与操作、熟悉EXCEL数据输入、输出与编辑方法;2. 熟悉EXCEL用于预处理的基本菜单操作与命令;3. 熟悉EXCEL用于整理与显示的基本菜单操作与命令。
实验二: EXCEL的数据特征描述、抽样推断熟悉EXCEL用于数据描述统计、抽样推断实验三: 时间序列分析掌握EXCEL用于移动平均、线性趋势分析的基本菜单操作与命令。
实验四: 一元线性回归分析掌握EXCEL用于相关与回归分析的基本操作与命令。
(二)要求1.按要求认真完成实验任务中规定的所有练习;2.实验结束后要撰写格式规范的实验报告, 正文统一用小四号字, 必须有页码;3、实验报告中的图表制作要规范, 图表必须有名称和序号;4、实验结果分析既要简明扼要, 又要能说明问题。
二、实验任务实验一根据下面的数据。
1.1用Excel制作一张组距式次数分布表, 并绘制一张条形图(或柱状图), 反映工人加工零件的人数分布情况。
从某企业中按随即抽样的原则抽出50名工人, 以了解该企业工人生产状况(日加工零件数):117 108 110 112 137 122 131 118 134 114 124 125 123127 120 129 117 126 123 128 139 122 133 119 124 107133 134 113 115 117 126 127 120 139 130 122 123 123128 122 118 118 127 124 125 108 112 135 5091.2整理成频数分布表, 并绘制直方图。
1.3 假设日加工零件数大于等于130为优秀。
实验二百货公司6月份各天的销售额数据如下(单位:万元)257 276 297 252 238 310 240 236 265 278271 292 261 281 301 274 267 280 291 258272 284 268 303 273 263 322 249 269295(1)计算该百货公司日销售额的均值、众数、中位数;(2)计算该百货公司日销售额的极差、标准差;(3)计算日销售额分布的偏态系数和峰度系数。
统计案例分析实验报告

一、实验背景随着大数据时代的到来,统计学在各个领域中的应用越来越广泛。
为了提高学生对统计学原理和方法的理解,本实验选取了一个具体的案例,通过实际操作,让学生掌握统计学的基本原理和方法,并学会运用统计软件进行数据处理和分析。
二、实验目的1. 理解统计学的基本原理和方法;2. 掌握统计软件(如SPSS、R等)的基本操作;3. 学会运用统计学方法对实际问题进行建模和分析;4. 培养学生严谨的实验态度和科学的研究方法。
三、实验案例本次实验选取的案例为:某企业员工满意度调查。
四、实验内容1. 数据收集通过问卷调查的方式,收集某企业员工的满意度数据,包括员工基本信息、工作满意度、薪酬满意度、福利满意度等。
2. 数据整理将收集到的数据进行整理,包括数据清洗、缺失值处理、异常值处理等。
3. 描述性统计分析对整理后的数据进行描述性统计分析,包括均值、标准差、频率分布等。
4. 相关性分析运用相关系数、回归分析等方法,分析员工满意度与各个影响因素之间的关系。
5. 因子分析运用因子分析方法,提取影响员工满意度的关键因素。
6. 交叉分析运用交叉分析,研究不同群体在满意度方面的差异。
五、实验结果与分析1. 描述性统计分析根据调查数据,员工工作满意度均值为 3.5(1-5分制),薪酬满意度均值为 3.2,福利满意度均值为3.0。
2. 相关性分析通过相关性分析,发现员工满意度与工作满意度、薪酬满意度、福利满意度之间存在显著的正相关关系。
3. 因子分析通过因子分析,提取出三个关键因素:工作环境、薪酬福利、企业文化。
4. 交叉分析通过交叉分析,发现不同性别、年龄、岗位的员工在满意度方面存在显著差异。
六、实验结论1. 员工满意度与工作满意度、薪酬满意度、福利满意度之间存在显著的正相关关系;2. 工作环境、薪酬福利、企业文化是影响员工满意度的关键因素;3. 不同性别、年龄、岗位的员工在满意度方面存在显著差异。
七、实验反思1. 在实验过程中,要注意数据收集的全面性和准确性,以保证实验结果的可靠性;2. 在数据分析过程中,要熟练运用统计软件,提高数据分析效率;3. 在实验报告中,要清晰阐述实验目的、方法、结果和结论,使读者易于理解。
统计分析实验报告

统计分析综合实验报告学院:专业:姓名:学号:统计分析综合实验考题一.样本数据特征分析:要求收集国家统计局2011年全国人口普查与2000年全国人口普查相关数据,进行二者的比较,然后写出有说明解释的数据统计分析报告,具体要求如下:1.报告必须包含所收集的公开数据表,至少包括总人口,流动人口,城乡、性别、年龄、民族构成,教育程度,家庭户人口八大指标;2.报告中必须有针对某些指标的条形图,饼图,直方图,茎叶图以及累计频率条形图;(注:不同图形针对不同的指标)3.采用适当方式检验二次调查得到的人口年龄比例以及教育程度这两个指标是否有显著不同,写明检验过程及结论。
4.报告文字通顺,通过数据说明问题,重点突出。
二.线性回归模型分析:自选某个实际问题通过建立线性回归模型进行研究,要求:1.自行搜集问题所需的相关数据并且建立线性回归模型;2.通过SPSS软件进行回归系数的计算和模型检验;3.如果回归模型通过检验,对回归系数以及模型的意义进行解释并且作出散点图一、样本数据特征分析2010年全国人口普查与2000年全国人口普查相关数据分析报告2011年第六次全国人口普查数据显示,总人口数为1370536875,比2000年的第五次人口普查的1265825048人次,总人口数增加73899804人,增长5.84%,平均年增长率为0.57%。
做茎叶图分析:描述年份统计量标准误人口数量2000年均值40084265.35 4698126.750 均值的 95% 置信区间下限30489410.50上限49679120.215% 修整均值39305445.50中值35365072.00方差684244243725744.400标准差26158062.691极小值2616329极大值91236854范围88620525四分位距41049359偏度.503 .421 峰度-.652 .8212011年均值42992737.65 4963014.104 均值的 95% 置信区间下限32856910.64上限53128564.655% 修整均值41924325.67中值37327378.00方差763576778787588.500标准差27632893.059极小值3002166极大值104303132范围101300966四分位距36481362偏度.625 .421 峰度-.332 .821茎叶图箱形图:(二)流动人口2011年人口普查数据中,居住地与户口登记地所在的乡镇街道不一致且离开户口登记地半年以上的人口为261386075人,同2000年第五次全国人口普查相比,居住地与户口登记地所在的乡镇街道不一致且离开户口登记地半年以上的人口增加116995327人,增长81.03%。
加工误差统计分析实验报告

加工误差统计分析实验报告一、实验目的通过统计分析加工误差数据,探究加工工艺对产品加工误差的影响,并提出相应的改进措施。
二、实验原理加工误差是指产品实际尺寸与设计尺寸之间的差异,主要受到原材料、加工设备、操作工艺等因素的影响。
统计分析可以通过数学模型和数据处理方法,定量地描述和评估加工误差的分布情况,为加工工艺改进提供依据。
三、实验步骤1.随机选择一批相同产品进行加工,保持其他加工条件不变。
2.测量每个产品的实际尺寸,记录数据并整理成表格。
3.统计每组数据的平均值、方差以及标准差。
4.构建加工误差的概率分布函数,通过正态性检验和偏度、峰度检验判断数据是否符合正态分布。
5.进行加工误差数据的t检验,分析不同因素对加工误差的影响程度。
四、实验数据产品编号,实际尺寸 (mm)--------,--------------1,10.012,10.02...,...100,10.08五、数据处理及分析1.计算平均值、方差和标准差:平均值μ=(10.01+10.02+...+10.08)/100=10.05方差s^2=((10.01-10.05)^2+(10.02-10.05)^2+...+(10.08-10.05)^2)/99标准差s=√s^22.正态性检验:根据实验数据计算样本均值和样本标准差,绘制加工误差的概率密度分布曲线。
通过观察曲线形状以及进行偏度、峰度检验,判断数据是否符合正态分布。
3.t检验:根据产品加工误差数据,进行t检验来分析不同因素对加工误差的影响程度。
比如,可以比较不同机器加工出的产品误差是否有显著性差异。
六、实验结果分析1.样本加工误差符合正态分布,数据较为集中,无明显偏离。
2.通过t检验发现:不同机器加工出的产品误差差异不显著,说明机器之间的加工稳定性较好。
3.根据样本数据及数据处理结果,可以得到加工误差的基本分布情况,对加工工艺的控制和改进提供依据。
例如,可以调整机器参数、改进操作工艺等。
spss统计分析报告

Spss统计分析实验报告一.实验目的:通过统计分析检验贫血患儿在接受新药物与常规药物之后血红蛋白增加量的情况,得出两者疗效是否存在差异,并且可以判断那种药物疗效好。
二.实验步骤例题:某医院用某种新药与常规药物治疗婴幼儿贫血,将20名贫血患儿随机等分为2 组,分别接受两种药物治疗,测得血红蛋白增加量(g/L)如下,问新药与常规药物的疗效有别差别?新药24 36 25 14 26 34 23 20 15 19 组常规14 18 20 15 22 24 21 25 27 23 药物组解题:1)根据题意,我们采用独立样本T检验的方法进行统计分析。
提出:无效假设H0:新药物与常规药物的疗效没有差别。
备择假设HA:新药物与常规药物的疗效有差别。
2)在spss中的“变量视图”中定义变量“药组”,“血红蛋白增加量”,之后在数据视图中输入数据,其中新药组定义为组1,常规药物组定义为组 2. 保存数据。
3)在spss软件上操作分析过程如下:分析——比较变量——独立样本T检验——将“血红蛋白增加量变量”导入“检验变量”,——将“药组变量”导入“分组变量”——定义组1为新药组,组2为常规药物组——单击选项将置信度区间设为95%,输出分析数据如下:表1:组统计量药组N 均值标准差均值的标准误血红蛋白增加量新药组10 23.6000 7.22957 2.28619常规药组10 20.9000 4.22821 1.33708表2:独立样本检验方差方程的 Levene 检验均值方程的 t 检验F Sig. t df Sig.(双侧) 均值差值标准误血红蛋白增加量假设方差相等 1.697 .209 1.019 18 .321 2.70000 2假设方差不相等 1.019 14.512 .325 2.70000 24)输出结果分析由上述输出表格分析知:接受新药物组和常规药物组的均值分别为23.6000,20.900,接受新药物增加的血红蛋白量的均值大于接受常规药物的,所以说新药物的疗效可能比常规药物好。
统计学四篇实验报告

《统计学》四篇实验报告实验一:用Excel构建指数分布、绘制指数分布图图1-2:指数分布在日常生活中极为常见,一般的电子产品寿命均服从指数分布。
在一些可靠性研究中指数分布显得尤为重要。
所以我们应该学会利用计算机分析指数分布、掌握EXPONDIST函数的应用技巧。
指数函数还有一个重要特征是无记忆性。
在此次实验中我们还学会了产生“填充数组原理”。
这对我们今后的工作学习中快捷地生成一组有规律的数组有很大的帮助。
实验二:用Excel计算置信区间一、实验目的及要求1、掌握总体均值的区间估计2、学习CONFIDENCE函数的应用技巧二、实验设备(环境)及要求1、实验软件:Excel 20072、实验数据:自选某市卫生监督部门对当地企业进行检查,随机抽取当地100家企业,平均得分95,已知当地卫生情况的标准差是30,置信水平0.5,试求当地企业得分的置信区间及置信上下限。
三、实验内容与步骤某市卫生监督部门对当地企业进行检查,随机抽取当地100家企业,平均得分95,已知当地卫生情况的标准差是30,置信水平0.5,试求当地企业得分的置信区间及置信上下限。
第1步:打开Excel2007新建一张新的Excel表;第2步:分别在A1、A2、A3、A4、A6、A7、A8输入“样本均值”“总体标准差”“样本容量”“显著性水平”“置信区间”“置信上限”“置信下限”;在B1、B2、B3、B4输入“90”“30”“100”“0.5”第3步:在B6单元格中输入“=CONFIDENCE(B4,B2,B3)”,然后按Enter键;第4步:在B7单元格中输入“=B1+B6”,然后按Enter键;第5步:同样在B8单元格中输入“=B1-B6”,然后按Enter键;计算结果如图2-1四、实验结果或数据处理图2-1:实验二:用Excel产生随机数见图3-1实验二:正态分布第1步:同均匀分布的第1步;第2步:在弹出“随机数发生器”对话框,首先在“分布”下拉列表框中选择“正态”选项,并设置“变量个数”数值为1,设置“随机数个数”数值为20,在“参数”选区中平均值、标准差分别设置数值为30和20,在“输出选项”选区中单击“输出区域”单选按钮,并设置为D2 单元格,单击“确定”按钮完成设置。
统计学实验报告心得(精选5篇)

统计学实验报告心得(精选5篇)统计学实验报告心得篇1统计学实验报告心得一、背景和目的本次实验旨在通过实际操作,深入理解统计学的原理和应用,提高数据处理和分析的能力。
在实验过程中,我们通过收集数据、整理数据、分析数据,最终得出结论,并对结果进行解释和讨论。
二、实验内容和方法1.实验内容本次实验主要包括数据收集、整理、描述性统计和推论统计等部分。
数据收集部分采用随机抽样的方式,选择了不同年龄、性别、学历、职业等群体。
整理部分采用了Excel等工具进行数据的清洗、排序和分组。
描述性统计部分使用了集中趋势、离散程度、分布形态等方法进行描述。
推论统计部分进行了t检验和方差分析等推断统计。
2.实验方法在实验过程中,我们采用了随机抽样的方法收集数据,并运用Excel进行数据整理和统计分析。
同时,我们还使用了SPSS软件进行t检验和方差分析等推论统计。
三、实验结果与分析1.实验结果实验数据表明,不同年龄、性别、学历、职业群体的统计特征存在显著差异。
集中趋势方面,中位数和众数可以反映数据的中心位置。
离散程度方面,方差和标准差可以反映数据的离散程度。
分布形态方面,正态分布可以描述多数数据的分布情况。
推论统计方面,t检验和方差分析可以推断不同群体之间是否存在显著差异。
2.结果分析根据实验结果,我们发现不同群体在年龄、性别、学历、职业等特征方面存在显著差异。
这可能与不同群体的生活环境、社会地位、职业特点等因素有关。
同时,集中趋势、离散程度和分布形态等方面的分析也帮助我们更全面地了解数据的特征。
四、实验结论与总结1.实验结论通过本次实验,我们深刻认识到统计学在数据处理和分析中的重要作用。
掌握了统计学的基本原理和方法,提高了数据处理和分析的能力。
同时,实验结果也表明,统计学方法在研究群体特征、推断差异等方面具有重要意义。
2.总结本次实验总结了以下几个方面的内容:(1)统计学实验有助于深入理解统计学的原理和应用。
(2)实验中,我们掌握了数据收集、整理、描述性统计和推论统计等方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计分析综合实验报告学院:专业:姓名:学号:统计分析综合实验考题一.样本数据特征分析:要求收集国家统计局2011年全国人口普查与2000年全国人口普查相关数据,进行二者的比较,然后写出有说明解释的数据统计分析报告,具体要求如下:1.报告必须包含所收集的公开数据表,至少包括总人口,流动人口,城乡、性别、年龄、民族构成,教育程度,家庭户人口八大指标;2.报告中必须有针对某些指标的条形图,饼图,直方图,茎叶图以及累计频率条形图;(注:不同图形针对不同的指标)3.采用适当方式检验二次调查得到的人口年龄比例以及教育程度这两个指标是否有显著不同,写明检验过程及结论。
4.报告文字通顺,通过数据说明问题,重点突出。
二.线性回归模型分析:自选某个实际问题通过建立线性回归模型进行研究,要求:1.自行搜集问题所需的相关数据并且建立线性回归模型;2.通过SPSS软件进行回归系数的计算和模型检验;3.如果回归模型通过检验,对回归系数以及模型的意义进行解释并且作出散点图一、样本数据特征分析2010年全国人口普查与2000年全国人口普查相关数据分析报告2011年第六次全国人口普查数据显示,总人口数为1370536875,比2000年的第五次人口普查的1265825048人次,总人口数增加73899804人,增长5.84%,平均年增长率为0.57%。
做茎叶图分析:描述年份统计量标准误人口数量2000年均值40084265.35 4698126.750 均值的 95% 置信区间下限30489410.50上限49679120.215% 修整均值39305445.50中值35365072.00方差684244243725744.400标准差26158062.691极小值2616329极大值91236854范围88620525四分位距41049359偏度.503 .421 峰度-.652 .8212011年均值42992737.65 4963014.104 均值的 95% 置信区间下限32856910.64上限53128564.655% 修整均值41924325.67中值37327378.00方差763576778787588.500标准差27632893.059极小值3002166极大值104303132范围101300966四分位距36481362偏度.625 .421 峰度-.332 .821茎叶图箱形图:(二)流动人口2011年人口普查数据中,居住地与户口登记地所在的乡镇街道不一致且离开户口登记地半年以上的人口为261386075人,同2000年第五次全国人口普查相比,居住地与户口登记地所在的乡镇街道不一致且离开户口登记地半年以上的人口增加116995327人,增长81.03%。
(三)城乡构成2011年人口普查显示居住在城镇的人口为665575306人,占49.68%;居住在乡村的人口为674149546人,占50.32%。
2000年农村居民人口数为783841243人,占63.08%;城镇居民则有458770983人,占36.92%。
同2000年第五次全国人口普查相比,城镇人口增加207137093人,乡村人口减少133237289人,城镇人口比重上升13.46个百分点。
通过下面的条形图可以清楚的看到2000年—2011年十年间,农村居民减少而城镇居民增加。
(四)性别构成2000年第五次人口普查男性人口为640275969人占51.53%;女性人口为602336257人,占48.47%。
2011年第六次人口普查显示男性人口为686852572人,占51.27%;女性人口为652872280人,占48.73%。
通过下面的饼图可以放大百分比上些微的变化(两个年份左边较小的部分均为女性人口数),总人口性别比(以女性为100,男性对女性的比例)由2000年第五次全国人口普查的106.74下降为105.20。
(五)年龄构成2000年人口普查:0-14岁人口为284527594人,占22.90%;15-59岁人口为828106762人,占66.64%;60岁及以上人口为129977870人,占10.46%。
2011年人口普查:0-14岁人口为222459737人,占16.60%;15-59岁人口为939616410人,占70.14%;60岁及以上人口为177648705人,占13.26%。
同2000年第五次全国人口普查相比,0-14岁人口的比重下降6.29个百分点,15-59岁人口的比重上升3.36个百分点,60岁及以上人口的比重上升2.93个百分点,65为了进一步分析各年龄段,根据联合国卫生组织的新划分标准将年龄进一步细分,用直方图进行分析。
原始数据整理如下:两次人口普查年龄数据单位(人)年龄段2000年2011年少儿(0~14岁)284527594 221322621青年(15~44岁)632911142 668233610中年(45~59岁)195195620 265660198年轻老年人(60~74岁)102058457 132752961老年人(75~89岁)26948186 42857259长寿老人(90岁及以上)971227 1984220利用SPSS软件将六个年龄段分别赋值,1=“少年”,2=“青年”,3=“中年”,4=“年轻老年人”,5=“老年人”,6=“长寿老人”。
然后将描述统计量以1300万为一单位分为个体数据,通过直方图显示其分布频数。
通过直方图的分布可以得出,两次统计结果显示了相似的正态分布。
青年人口数量占有绝对较高的比例。
具体看到各个年龄段的人口变化(为了方便陈述,以数值代指各年龄段),年龄段1有较明显的人口数量减少,年龄段2、3、4、5在其原有基础上缓慢增长,年龄段3取代年龄段1变为人口数第二的年龄段。
由于年龄段6人口数始终较少,在处理数据过程中其特征无法被放大,2000年年龄段6的频数为0.242,2011年增长到0.496,其增长比例是最为显著的,说明随着社会经济的发展高龄老年人数量逐渐增多。
(六)民族构成2000年普查,汉族人口为1137386112人,占91.53%;少数民族人口为105226114人,占8.47%。
2011年普查,汉族人口为1225932641人,占91.51%;各少数民族人口为113792211人,占8.49%。
同2000年第五次全国人口普查相比,汉族人口增加66537177人,增长5.74%;各少数民族人口增加7362627人,增长6.92%。
(七)教育程度2000年人口普查时,具有大学(大专及以上)文化程度的人口为44020145人;具有高中(含中专)文化程度的人口为138283459人;具有初中文化程度的人口为422386607人;具有小学文化程度的人口为441613351人,文盲人口(15岁及以上不识字的人)为85069667人。
2011年,具有大学(大专及以上)文化程度的人口为119636790人;具有高中(含中专)文化程度的人口为187985979人;具有初中文化程度的人口为519656445人;具有小学文化程度的人口为358764003人,文盲人口(15岁及以上不识字的人)为54656573人。
同2000年第五次全国人口普查相比,每10万人中具有大学文化程度的由3611人上升为8930人;具有高中文化程度的由11146人上升为14032人;具有初中文化程度的由33961人上升为38788人;具有小学文化程度的由35701人下降为26779人。
用累计频率条形图对教育程度进行进一步分析,类似于年龄构成的数据处理方法,以1000万为单位对各个文化段的人口数进行调整,得出具体的个体值,再利用SPSS软件分别作出两次普查教育程度的累计频率条形图。
从上图可以看到大学(大专及以上)文化程度的人口占比特别低。
累计高中以上文化程度为20%不到,累计初中以上文化程度为50%多,累计小学以上文化程度为90%左右。
通过简单的相减可以得出结论,占比最大的文化段应该在小学文化程度。
另外注意到小学文化程度过后的文盲,占比约有10%。
根据2011年人口普查的数据,首先,大学(大专文化及以上)程度人口有显著增长,接近翻倍。
其他文化程度(除文盲)也都有所增长,其中累计高中以上文化程度频率约为25%,累计初中以上文化程度频率约65%,累计小学以上文化程度频率约95%。
同样可以直观的了解到,占比最大的文化段由小学文化程度移至初中文化程度。
最后看到文盲所占比重,相比较十年前,削减了近二分之一。
总的来说,对比两次普查,可以很肯定的说十年间我国教育事业取得了较为显著的成绩,国民受教育水平有较大提升。
(八)家庭户人口2000年人口普查家庭户人口数共有1178271219人,有家庭户340491197,平均每个家庭3.44人。
2011年增长到1244608395人,平均每个家庭户的人口为3.10人,比2000年减少0.34人。
(九)对两次普查人口年龄比例这一指标是否有显著不同的检验。
采用配对样本T检验,表1-3和表1-4给出了各自的的均值、标准差、均值标准误差以及两次数据的相关系数,可以看出前后两次统计并没有发生显著的变化。
根据表1-5配对样本T检验的最后结果(p=0.588>0.05)显示:第六次人口普查和第五次人口普查在人口年龄比例这一指标上没有显著差异。
表1-3:表1-4:两次人口普查三个年龄段(0—14岁,15—59岁,60岁及以上)数据的相关系数成对样本相关系数N 相关系数Sig.对 1 第五次人口普查 & 第六次人口普查3 .987 .102表1-5:(十)对两次普查人口教育程度这一指标是否有显著不同的检验。
采用配对样本T检验,表1-6和表1-7给出了各自的的均值、标准差、均值标准误差以及两次数据的相关系数,可以看出前后两次统计并没有发生显著的变化。
根据表1-8配对样本T检验的最后结果(p=0.555>0.05)显示:第六次人口普查和第五次人口普查在教育程度这一指标上没有显著差异。
两次人口普查教育程度的描述统计量表1-6:成对样本统计量均值 N标准差 均值的标准误 对 1第五次人口普查226274645.805190872115.13085360604.888第六次人口普查248139958.005189424303.93984713124.040表1-7:成对样本相关系数N相关系数Sig. 对 1第五次人口普查 & 第六次人口普查5.920.027表1-8:配对样本T 检验结果 成对样本检验成对差分 t df Sig. (双侧)均值标准差均值的标准误差分95%置信区间下限上限对 1第五次人口普查 – 第六次人口普查 -21865312.20 75908086.27 33947128.19 -116117650.172387025.69 -.644 4 .555二、一元线性回归分析北京市1995-2015年城镇居民消费性支出与可支配收入的关系1. 问题背景:随着中国经济的高速持续增长,人们生活水平日益提高,作为我国经济文化中心,且经济发展水平位居前列的首都北京,其城镇居民消费水平在这中国经济崛起的二十多年里亦是有着翻天覆地的变化。