高分子物理第一章绪论

合集下载

高分子物理与化学习题答案(精品文档)

高分子物理与化学习题答案(精品文档)
-1.05
0.6
0.065710
3
苯乙烯
-1.05
8
0.939413
6
马来酸酐
-1.05
2.25
0.000019
1
乙酸乙烯酯
-1.05
-0.22
0.502128
5
丙烯腈
-1.05
1.2
0.006330
2
注:r1r2越小,越有利于交替共聚(P111)
第七章高分子的结构
3.(P186)名词解释:参见教材
(1)PE, PP,PVC, PS(无规)
(2)聚对苯二甲酸乙二醇酯,聚间苯二甲酸乙二醇酯,聚己二酸己二酯
(3)尼龙6,尼龙66,尼龙101
答:结晶的充分条件:适当的温度和时间
结晶的必要条件:结构规整性
(1)PE>PP>PVC>PS
(2)聚己二酸己二酯>聚对苯二甲酸乙二醇酯>聚间苯二甲酸乙二醇酯
(3)尼龙66>尼龙6>尼龙1010

lg(η(Tg))=lg(8.0x1012)+9.3763=22.2794
求得:η(Tg)=1.9x1022Pa·s.
K12>k22,k21<k11自由基(St·)活性大于丁二烯自由基(Bd·)的活性
(3)两种单体共聚属无恒比点的非理想共聚,共聚物组成方程为F1=( r1f12+f1f2)/(r1f12+2f1f2+r2f22),代入r1和r2值,作图如下
(4)欲得组成均匀的共聚物,可按组成要求计算投料比,且在反应过程中不断补加丁二烯单体,以保证原配比基本保持恒定。从而获得较均一组成的共聚物。
问题点解:单体活性的比较看1/r1,1/r1>1,表明单体M2活定大,反之,单体M1活性大。

高分子复习总结

高分子复习总结
15
当p=0.999时,
X n 1 1 r r 2 r p 1 0 .91 8 2 0 * .0 9 5 .98 * 8 0 .9 5 5 9 19 .9 18 6
16
• 13. 邻苯二甲酸酐与甘油或季戊四醇缩 聚,两种基团数相等,试求:
• a. 平均官能度 b. 按Carothers法求凝 胶点 c. 按统计法求凝胶点 解:a、平均官能度: 1)甘油: f 3*22*32.4
偶合终止
11
[I] [S]
Xn2CMCI[M ]CS[M ]
22
真正终止 (歧化终止)
链转移终止
以歧化终止为 例,链转移反 应对平均聚合 度影响的定量 关系式。
:无链转移反应的聚合度(歧化终止)
23
第三章 练习题
1.凝胶效应现象就是(

A.凝胶化 B. 自动加速现象 C. 凝固化 D. 胶体化
密闭体系
Xn K1
非密闭体系
X

n
K pn
W
6
分子量影响因素
分子量控制方法
计算公式
p、K、nW
端基封锁
原料非等摩尔 或加单官能团
Xn 1r 1r 2rp
r Na Nb
r

Na Nb+2Nb'
注意:Na和Nb分别是基团A和B的物质的量。
7
第二章
Carothers法计算线形缩聚物的聚合度
28
7 已知过氧化二苯甲酰在60 ℃ 的半衰期为48 小时,甲基丙烯酸甲酯在60 ℃的kp2 / kt=1×10-2l ( mol . s )。如果起始投料量为 每100ml 溶液(溶剂为惰性)中含20克甲基 丙烯酸甲酯和0.1克过氧化苯甲酰,试求 (1)甲基丙烯酸甲酯在60℃下的聚合速度? (2)反应初期生成的聚合物的数均聚合度 (60 ℃ 下85 %歧化终止,15%偶合终止, f 按1 计算)。

绪论-分子光谱习题参考答案

绪论-分子光谱习题参考答案

第一章 绪 论⒈ 解释下列名词⑴仪器分析与化学分析; ⑵标准曲线与线性范围;⑶灵敏度﹑精密度﹑准确度和检出限。

解:⑴化学分析是以物质的化学反应为基础的分析方法。

仪器分析是以物质的物理性质和物理化学性质(光﹑电﹑热﹑磁等)为基础的分析方法,这类方法一般需要使用比较复杂的仪器。

⑵标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线。

标准曲线的直线部分所对应的被测物质浓度(或含量)的范围称该方法的线性范围。

⑶物质单位浓度或单位质量的变化引起响应信号值变化的程度,称该方法的灵敏度。

精密度是指使用同一方法,对同一试样进行多次测定所得结果的抑制程度。

试液含量的测定值与试液含量的真实值(或标准值)相符合的程度称为准确度。

某一方法在给定的置信水平可以检出被测物质的最小浓度或最小质量,称为这种方法对该物质的检出限。

⒉ 对试样中某一成分进行5次测定,所得的测量结果(单位µg ﹒mL -1)分别为0.36,0.38,0.35,0.37,0.39.⑴ 计算测定结果的相对标准偏差;⑵ 如果试样中该成分的真实值含量是0.38µg ﹒L -1,试计算测定结果的相对误差解:⑴ x =n1(x 1+x 2+…+x n )=0.37; S=1)(12--∑=n x x n i i =0.0158; r s =x s ×100℅=4.27℅。

⑵ E r =μμ-x ×100℅=-2.63℅。

⒊ 用次甲基蓝–二氯乙烷光度法测定试样中硼时,为制作标准曲线,配制一系列质量浓度ρB (单位mg ﹒L -1)分别为0.5,1.0,2.0,3.0,4.0,5.0的标准溶液,测得吸光度A 分别为0.140,0.160,0.280,0.380,0.410和0.540。

试写出该标准曲线的一元线性回归方程,并求出相关系数。

解:b=∑∑==---n i i n i i i x xy y x x 121)())((=0.0878; a=y -b x = 0.0914;所以该标准曲线的一元线性回归方程为: A=0.0914+0.0878ρB r=2111221)()())((⎥⎦⎤⎢⎣⎡----±∑∑∑===n i n i i i n i i i y y x x y y x x = 0.9911。

高分子化学第一章 绪论

高分子化学第一章 绪论

高分子化学的定义
高分子化学是研究高分子化合物合成和反应的一门科学
合成(Synthesis): 由小分子化合物经过聚合反应形成高分子化 合物的过程 例
n H2C CH X CH2 CH X n
反应(Reaction):以高分子为反应物进行的化学反应

分子结构
形态形状
小分子化合物
高分子化合物
制品
使 用 性 能
Xw Mw d 或d Xn Mn
举例:一聚合物样品中的分子量为104 的分子有10mol,分子量 为105的分子有5mol,即M1=104, n1 = 10 mol, M2 = 105, n2 = 5 mol, 则:
Mn
niMi n M NiMi n ni
1
1
n2 M 2 10 104 5 105 4 104 10 5 1 n2
也称 链式 反应,反应需要活性中心。 反应中一旦形成单体活性中心,就能很快传递下去,瞬间形 成高分子。平均每个大分子的生成时间很短(零点几秒到几秒)
连锁聚合反应的特征:

聚合过程由链引发、链增长和链终止几步基元反应组成, 各步反应速率和活化能差别很大 反应体系中只存在单体、聚合物和微量引发剂




缩聚反应通常是官能团间的聚合反应 反应中有低分子副产物产生,如水、醇、胺等 缩聚物中往往留有官能团的结构特征,如 -OCO- -NHCO-, 故大部分缩聚物都是杂链聚合物 缩聚物的结构单元比其单体少若干原子,故分子量不再 是单体分子量的整数倍

1.3.2 按反应机理分类
连锁聚合反应(Chain Polymerization)
塑 料
以聚合物为基础,加入(或不加)各种助剂 和填料,经加工形成的塑性材料或刚性材料。 纤细而柔软的丝状物,长度至少为直径的100 倍。 具有可逆形变的高弹性材料。 涂布于物体表面能成坚韧的薄膜、起装饰和 保护作用的聚合物材料 能通过粘合的方法将两种以上的物体连接在 一起的聚合物材料 具有特殊功能与用途的精细高分子材料

何曼君第三版高分子第一章PPT

何曼君第三版高分子第一章PPT
Lord Todd, president of the Royal Society of London, quoted in Chem. Eng. News1980,58(40), 29, in answer to the question, What do you think has been chemistry’s biggest contribution to science, to society?
8
第一章:绪论
9
第一章:绪论
一 .高分子及其应用
高分子(macromolecule、polymer)
由许多结构相同的单元通过共价键重复连接而 成的相对分子量很大的化合物 天然高分子 合成高分子:塑料、橡胶、纤维、胶粘剂、 涂料、功能高分子等 高分子材料具有基本性质: 比重小,比强度 高,韧性、可塑性,高弹性、耐磨性,绝缘 性,耐腐蚀性,抗射线。
27
第一章:绪论
Wallace Carothers (1896 – 1937) 尼龙、氯丁橡胶的发明者 1924-1926 University of Illinois instructor in organic chemistry
1926-1928 Harvard University instructor in organic chemistry
防腐工程:耐腐蚀性,防腐结构材料。
(水管阀门)PTFE:230~260℃长期工作,适合温度高腐蚀严重的产品。
14
第一章:绪论
高分子材料的消耗率
15
第一章:绪论
功能高分子Functional Polymer
• • • • • • 液晶高分子: 降解高分子聚二氧化碳树脂、Kevlar纤维 导电高分子: 电致发光高分子聚苯胺、塑料电池 医用高分子:人工心脏、脏器、人工肾(PU)、人工肌肉 高吸水性树脂 智能高分子:汽车的抗磨损涂层等 高分子在IT的应用:聚合物发光二极管(OLED)柔性显示器 、塑料芯片等

高分子科学导论参考详细标准答案

高分子科学导论参考详细标准答案

⾼分⼦科学导论参考详细标准答案第⼀章绪论1.在酯化反应中丙三醇、乳酸、均苯四甲酸⼆酐中分别有⼏个功能团?-CH-CH2OHCH(CH3)COOHOH OH3个、2个、4个2.交联聚合物具有什么样地特性?答:线型或⽀链型⾼分⼦链间以共价键连接成⽹状或体形⾼分⼦地过程称为交联.线型聚合物经适度交联后,其⼒学强度、弹性、尺⼨稳定性、耐溶剂性等均有改善.交联聚合物通常没有熔点也不能溶于溶剂,即具有不熔不溶地特点.3.分⼦量为10000地线形聚⼄烯(CH2-CH2)、聚丙烯(CH2-CHCH3)、聚氯⼄烯(CH2-CHCl)、聚苯⼄烯(CH2-CHC6H5)地聚合度D p分别为多少?聚⼄烯:357,聚丙烯:238,聚氯⼄烯:160,聚苯⼄烯:964.下列那些聚合物是热塑性地:硫化橡胶,尼龙、酚醛树脂,聚氯⼄烯,聚苯⼄烯?答:尼龙,聚氯⼄烯,聚苯⼄烯.5.PBS是丁⼆醇与丁⼆酸地缩聚产物,其可能地端基结构是什么?羟基和羧基,即:HO-(….)-OH, HOOC-(….)-COOH, HO-(….)-COOH6.PVA(聚⼄烯醇)地结构式如下所⽰,请按标准命名法加以命名.( CH2-CH )nOH答:聚(1-羟基⼄烯)7.谈谈⾃⼰对⾼分⼦地认识主观题(略)第⼆章⾼分⼦合成与化学反应端基分别为酰氯(-COCl)和羟基(-OH)地单体可以发⽣缩聚反应⽣成聚酯,这个反应放出地⼩分⼦副产物是什么?答:氯化氢2.连锁聚合中包含哪些基元反应?答:包括链引发,链增长,链终⽌等基元反应,此外还有链转移基元反应.连锁聚合需要活性中⼼,活性中⼼可以是⾃由基“free radical”、阳离⼦“cation”或阴离⼦“anion”,因此⼜可分为⾃由基聚合、阳离⼦聚合和阴离⼦聚合.以⾃由基聚合为例:链引发(chain initiation):I → R*链增长(chain propagation):R* + M → RM*RM* + M → RM2*RM2* + M → RM3*-------------------------RM(n-1)* + M → RM n*链终⽌(chain termination):RM n* →死聚合物3.偶合终⽌与歧化终⽌地聚合产物在分⼦量上有什么区别?答:偶合终⽌:⼤分⼦地聚合度为链⾃由基重复单元数地两倍.歧化终⽌:⼤分⼦地聚合度与链⾃由基地单元数相同.4.从纤维素制备醋酸纤维素,产物地分⼦量和聚合度与原料相⽐有什么样地变化趋势?答:Cellulose (纤维素)→Cellulose acetate (醋酸纤维素):分⼦量增⼤,聚合度基本不变.A和B是两种内酯单体,如果采⽤羟基化合物为引发剂开环聚合可以制备端基为羟基地聚合产物.现需要制备两端为A链段,中间为B链段地嵌段共聚物,也称为ABA型三嵌段共聚物,请设计⼀条合成路线来制备这种共聚物.答:合成路线有多种,例如:以双羟基化合物为引发剂引发B单体聚合得到双端羟基地B预聚物,再以B预聚物为⼤分⼦引发剂引发A单体聚合得到ABA型三嵌段共聚物;先以单羟基化合为引发剂引发A单体聚合,再以A预聚物引发B单体聚合得到A888888888B⼆嵌段预聚物,最后以AB⼆嵌段预聚物引发A单体聚合得到三嵌段共聚物;c)分别合成含有不同端基官能团地A、B预聚物,再通过活性官能团地偶联反应制备得到共聚物.6.简要分析⽼化与降解之间地关系.答:聚合度变⼩地化学反应总称为降解反应,包括解聚和⽆规断链.⽼化是指聚合物在使⽤过程中受到各种物理化学因素地影响⽽造成物理性能地下降.⽼化过程中地主要反应是降解,但有时⼀些分⼦量增加地反应也会造成材料性能地不利变化,例如⼀些氧化和交联反应等,因此这些反应也归属于⽼化反应.7.研究⾼分⼦地降解与回收具有什么样地意义?主观题,答题要点如下:⼀般来说,聚合物地降解都将使得其性能下降,所以在⼤多数地场合下,特别是加⼯和使⽤过程中都需要研究聚合物地降解机理从⽽抑制聚合物性能地下降.P-⾼分⼦材料使⽤量巨⼤,已经成为⼈类社会最重要地材料.但是,⾼分⼦材料地化学稳定性使其消费产物对环境造成了巨⼤地压⼒.与此同时,⾼分⼦材料巨⼤地使⽤量还消耗了⼤量不可再⽣地化⽯能源,在⼀定程度上对全球经济发展造成了重要影响.传统⾼分⼦地回收处理⽅法包括填埋、焚烧和物理回收再⽣等⽅法,这些常规⽅法通常具有⾮常⼤地缺陷,仍然存在严重地环境问题,因此迫切需要研究开发⾼分⼦可循环利⽤地绿⾊⽅法,从⽽满⾜环境保护和可持续发展地需要.降解和解聚反应是⾼分⼦分⼦量降低地反应,通过降解与解聚反应可以将难回收地⾼分⼦材料转化为低分⼦量地化合物,从⽽加以回收利⽤.因此,研究⾼分⼦地降解与回收问题,开发新型⾼分⼦降解与回收技术对于节约能源和环境保护就显得⾮常必要与重要.8.简要叙述⾼分⼦合成与分⼦设计地原则.⾼分⼦地合成和分⼦设计应从两个⽅⾯来讨论:⾼分⼦地性能要求:包括产品地使⽤要求、环境要求、回收要求等(如在何种领域使⽤、需要满⾜何种性能需求、使⽤地环境条件如何、使⽤期限如何、使⽤后如何处理),结合⾼分⼦结构与性能地关系,设计合成聚合物地分⼦结构和聚集态结构;b)合成⽅法地可⾏性:包括原料、合成⽅法、产品地后处理⽅法等要符合经济、⾼效、环保等要求;⾼分⼦分⼦设计主要包括⽀化、交联、共聚(⽆规共聚、交替共聚、嵌段共聚、接枝共聚)等,这些⽅法使聚合物地化学结构或分⼦链空间结构发⽣了改变,不仅改变了聚合物地化学性能,还直接对宏观地物理性能,如玻璃化温度、熔点、结晶性能、光学性能、电磁性能等等产⽣重要地影响.第三章⾼分⼦结构与性能1.聚⼄烯地齐聚物(聚合度低于10)是什么状态地物质?答:饱和直链烷烃,根据C原⼦数⽬地不同可以为⽓态和液态.⾼分⼦地构造(constitution)、构型(configuration)、构象(conformation)分别具有什么含义?答:构造“constitution”即是指聚合物分⼦链中原⼦地种类和排列,取代基和端基种类,单体单元排列顺序,⽀链类型和长度等本⾝地化学结构信息.构型“configuration”是指分⼦链中由化学键所固定地原⼦在空间地⼏何排列.这种排列是化学稳定地,要改变分⼦地构型必须经过化学键地断裂和重建.构象“conformation”是指分⼦链中由单键内旋转所形成地原⼦(或基团)在空间地⼏何排列图像.3.⾼分⼦地结晶具有什么特点,与⼩分⼦相⽐有何异同?答:聚合物地聚集态结构是指⾼分⼦链之间地排列和堆砌结构,也称为超分⼦结构,是决定聚合物本体性质地主要因素.其中,结晶态与⾮晶态是聚合物最常见也是重要地聚集态结构.eUts8ZQVRd⾼分⼦与⼩分⼦结晶都是分⼦地有序排列过程,同样需要经历晶核地形成(nucleation)和晶体⽣长(growth)地过程.两者地不同之处在于:⾼分⼦常见地结晶形态为圆球状晶体,称为“球晶”(spherulite).⼀⽅⾯,由于⾼分⼦地分⼦量⼤,分⼦链长,分⼦链间地相互作⽤⼤,导致⾼分⼦链地运动⽐⼩分⼦困难,尤其是对刚性分⼦链或带庞⼤侧基地、空间位阻⼤地分⼦链,所以,⾼分⼦地结晶速度⼀般⽐⼩分⼦慢;另⼀⽅⾯,由于⾼分⼦分⼦链结构和分⼦量地不均⼀性,以及在结晶过程中由于⾼分⼦链地运动松驰时间长,分⼦链地迁移速度慢,使得⾼分⼦很难形成结构完整地晶体,也很难得到完全结晶地⾼分⼦材料,⾼分⼦材料⼀般以结晶部分与⽆定形部分共存地状态存在.sQsAEJkW5T研究⾼分⼦结晶性能地常⽤⽅法包括:偏光显微镜(Polarizing microscope, POM)、X 射线衍射(X-Ray diffraction, XRD)、差⽰量热扫描(Differential Scanning Calorimeter, DSC)等.GMsIasNXkA以下⾼分⼦哪些具有顺序异构体,哪些具有⽴构异构体?聚⼄烯(CH2-CH2)、聚丙烯(CH2-CHCH3)、聚苯⼄烯(CH2-CHPh)、聚氯⼄烯(CH2-CHCl)、聚偏氯⼄烯(CH2-CCl2)、聚四氟⼄烯(CF2-CF2).答:顺序异构:聚丙烯、聚苯⼄烯、聚氯⼄烯、聚偏氯⼄烯⽴体异构:聚丙烯、聚苯⼄烯、聚氯⼄烯5.⾼分⼦地⼒学三态是什么?在不同状态下地⾼分⼦具有什么样地特性.答:玻璃态(glass state)、⾼弹态(rubbery state或high elastic state)、粘流态(viscous state)玻璃态下聚合物链段运动被冻结,只有局部运动,因此聚合物在外⼒作⽤下地形变⼩,具有虎克弹性⾏为:形变在瞬间完成,当外⼒除去后,形变⼜⽴即恢复,表现为质硬⽽脆,与⽆机玻璃相似;⾼弹态下链段运动得以充分发展,形变发⽣突变,这时即使在较⼩地外⼒作⽤下,也能迅速产⽣很⼤地形变,并且当外⼒除去后,形变⼜可逐渐恢复;粘流态下聚合物链段运动剧烈,导致整个分⼦链质量中⼼发⽣相对位移,聚合物完全变为粘性流体,其形变不可逆.6.⾼分⼦地溶解过程有什么样地特点?影响⾼分⼦溶解性能地主要因素有哪些?答:聚合物地溶解是⼀个缓慢过程,包括两个阶段.⾸先是溶胀“swelling”,由于聚合物链与溶剂分⼦⼤⼩相差悬殊,溶剂分⼦向聚合物渗透快,⽽聚合物分⼦向溶剂扩散慢,结果溶剂分⼦向聚合物分⼦链间地空隙渗⼊,使之体积胀⼤,但整个分⼦链还不能做扩散运动,因⽽⽆法完全溶解;当溶胀过程达到⼀定程度后,随着溶剂分⼦地不断渗⼊,聚合物分⼦链间地空隙增⼤,加之渗⼊地溶剂分⼦还能使⾼分⼦链溶剂化,从⽽削弱了⾼分⼦链间地相互作⽤,使链段运动性不断增加,直⾄脱离其他链段地相互作⽤,转⼊溶解“dissolution”.7.简要叙述粘流温度T f、熔点T m、热分解温度T d之间地⼤⼩关系对聚合物熔融加⼯地影响.答:由于晶区限制了形变,因此在晶区熔融之前,聚合物整体表现不出⾼弹态.能否观察到⾼弹态取决于⾮晶区地Tf是否⼤于晶区地Tm.若Tm>Tf,则当晶区熔融后,⾮晶区已进⼊粘流态,不呈现⾼弹态;若TmTf 时才进⼊粘流态.如果Td>Tm或Tf中较⾼者,则聚合物可以进⾏正常地热塑性加⼯;反之,聚合物在进⼊粘流态之前已发⽣热分解,则⽆法直接进⾏热塑性加⼯.第四章⾼分⼦地分析与表征1.为什么要对⾼分⼦进⾏表征与分析?主观题,答题要点:对⾼分⼦进⾏表征与分析是可以对⾼分⼦地分⼦结构与性能加以详细了解,从⽽指导⾼分⼦地合成、使⽤与回收处理.2.如何理解平均分⼦量地概念,⾼分⼦地分⼦量对性能有何重要影响?答:⾼分⼦不是由单⼀分⼦量地化合物所组成,即使是⼀种“纯粹”地⾼分⼦,也是由化学组成相同、分⼦量不等、结构不同地同系聚合物地混合物所组成.这种⾼分⼦地分⼦量不均⼀地特性,就称为分⼦量地多分散性.因此⼀般测得地⾼分⼦地分⼦量都是平均分⼦量,聚合物地平均分⼦量相同,但分散性不⼀定相同.⾼分⼦地平均分⼦量包括数均分⼦量、重均分⼦量、Z均分⼦量和年均分⼦量.⼀般来说:1)Mz > Mw > Mv > Mn,Mv略低于Mw2)Mn靠近聚合物中低分⼦量地部分,即低分⼦量部分对Mn影响较⼤3)Mw靠近聚合物中⾼分⼦量地部分,即⾼分⼦量部分对Mw影响较⼤4)⼀般⽤Mw来表征聚合物⽐Mn更恰当,因为聚合物地性能如强度、熔体粘度更多地依赖于样品中较⼤地分⼦.单独⼀种平均分⼦量不⾜以表征聚合物地性能,还需要了解分⼦量多分散性地程度,分⼦量分布通常以分⼦量分布指数表⽰:即重均分⼦量与数均分⼦量地⽐值,Mw/Mn.平均分⼦量与分⼦量分布对⾼分⼦材料性能有重要影响.⾼聚物地分⼦量只有达到某数值后,才能表现出⼀定地物理性能.但当⼤到某程度后,分⼦量再增加,除其它性能继续再增加外,机械强度变化不⼤.由于随着分⼦量地增加,聚合物分⼦间地作⽤⼒也相应增加,使聚合物⾼温流动粘度也增加,这给加⼯成型带来⼀定地困难.因此,聚合物地分⼦量⼤⼩,应兼顾使⽤和加⼯两⽅⾯地要求.不同⽤途地聚合物应有其合适地分⼦量分布.3.下图为聚乳酸地红外谱图和结构式,试分析主要吸收地归属.答:2900cm-1为-CH3吸收峰,1735cm-1为酯基中羰基吸收峰,1000cm-1~1300cm-1内地两个吸收峰为-C-O-C-吸收峰.测定⾼分⼦分⼦量地常⽤⽅法有哪些?每种⽅法所测定得到地分⼦量分别是什么?其中那种⽅法可以测定分⼦量分布?答:常⽤⽅法包括:粘度法Intrinsic viscosity(粘均分⼦量),光散射法LALLS(重均分⼦量),凝胶渗透⾊谱GPC(重均、数均分⼦量与分⼦量分布).此外还有冰点降低法、沸点升⾼法、渗透压法、蒸汽压渗透法(均为数均分⼦量)和飞⾏时间质谱、体积排斥⾊谱(可同时得到重均与数均分⼦量及分⼦量分布).5.使⽤Mark-Houwink⽅程计算⾼分⼦粘均分⼦量时常数K和a受什么条件地影响?答:受溶剂性质及⾼分⼦本⾝构象地影响,溶剂不同、测试温度不同,K值及a值就不同.6.通过核磁分析,可以得到⾼分⼦哪些⽅⾯地信息?答:⽤核磁可以确定⾼分⼦中化学基团地种类和数⽬,还可以测定分⼦量、端基分析、了解结构单元地连接⽅式、结构异构等.Tensile strength 和elongation at breaking 是表征⾼分⼦哪种性能地指标?答:抗张强度是衡量材料抵抗拉伸破坏地能⼒.断裂伸长率是衡量材料地脆韧地能⼒.⼆者都反映了材料地⼒学性能.8.测定⾼分⼦玻璃化转变温度地⽅法有哪些?各有什么特点?答:Tg地测定⽅法:利⽤⽐容,线膨胀系数,折光率,⽐热容,动态⼒学损耗,DSC 等.DSC:玻璃化转变是⼀种类似于⼆级转变地转变,它与具有相变结晶或熔融之类地⼀级转变不同,是⼆级热⼒学函数,有dH/dt地不连续变化,因此在热谱图上出现基线地偏移.从分⼦运动观点来看,玻璃化转变与⾮晶聚合物或结晶聚合物地⾮晶部分中分⼦链段地微布朗运动有关,在玻璃化温度以下,运动基本冻结,到达Tg后,运动活泼,热容量变⼤,基线向吸热⼀侧移动.玻璃化转变温度地确定是基于在DSC曲线上基线地偏移,出现⼀个台阶,⼀般⽤曲线前沿切线与基线地交点来确定Tg.其余⽅法均是利⽤物质在Tg附近性能发⽣急剧变化来进⾏测定.9.研究⾼分⼦地流变性能有什么意义?答:对聚合物流变性能地研究了了解可以指导聚合反应地设计,以制得加⼯性能优良地聚合物;研究聚合物地流变性能对评定聚合物地加⼯性能、分析加⼯过程、正确选择加⼯⼯艺条件、指导配⽅设计均有重要意义;对设计加⼯机械和模具有指导作⽤.10.透射电⼦显微镜(TEM)和扫描电⼦显微镜(SEM)有什么异同?透射电镜是以电⼦束透过样品经过聚焦与放⼤后所产⽣地物像,投射到荧光屏上或照相底⽚上进⾏观察.透射电镜地分辨率为0.1~0.2nm,放⼤倍数为⼏万~⼏⼗万倍.由于电⼦易散射或被物体吸收,故穿透⼒低,必须制备更薄地超薄切⽚(通常为50~100nm).利⽤TEM可以观测⾼分⼦聚合物及其复合材料地微观结构,形状及分布.从⽽进⼀步了解微观结构对材料性能地影响.扫描电镜是⽤极细地电⼦束在样品表⾯扫描,将产⽣地⼆次电⼦⽤特制地探测器收集,形成电信号运送到显像管,在荧光屏上显⽰样品物体表⾯地⽴体构像,可摄制成照⽚.测试前需要在表⾯喷镀薄层⾦膜,以增加⼆波电⼦数.扫描电镜能观察较⼤地组织表⾯结构,样品图像富有⽴体感.⽤SEM可以观察聚合物表⾯形态;聚合物多相体系填充体系表⾯地相分离尺⼨及相分离图案形状;聚合物断⾯地断裂特征;纳⽶材料断⾯中纳⽶尺度分散相地尺⼨及均匀程度等有关信息.第五章热塑性聚合物⾼分⼦地侧基对材料地刚性有很⼤地影响,试根据⾼分⼦结构⽐较四⼤通⽤塑料PE、PP、PS和PVC刚性地⼤⼩顺序?答:刚性顺序:PVC>PS>PP>PE,侧基体积越⼤,内旋转位阻越⼤,柔顺性越差,刚性越强.侧基极性越⼤,相互作⽤越强,内旋转越困难,柔顺性越差,刚性越强.LDPE(低密度聚⼄烯)、HDPE(⾼密度聚⼄烯)、LLDPE(线性低密度聚⼄烯)在空间拓扑结构上有何不同,其对材料性能地影响是怎样地?答:根据合成⽅法地不同(包括:⾃由基聚合Free radical polymerization;配位聚合Coordinate polymerization;⽓相聚合Gas phase polymerization等),聚⼄烯地链结构也存在较⼤差异,从⽽对材料性能产⽣重要影响.HDPE⼜称低压聚⼄烯,分⼦结构中⽀链很少,近似于线型,分⼦链排列紧密规整,材料具有较⾼地密度和结晶性,因⽽在宏观物理性能上表现为强度与刚性等机械强度⾼,但柔韧性⼀般、易脆、易⽼化等.LDPE⼜称⾼压聚⼄烯,其分⼦结构中含有⽆规长⽀链,妨碍了分⼦链地整齐排布,分⼦间地排列较疏松.因此材料地密度较低、透明性好、柔韧性好、耐应⼒开裂,但相应地刚性和强度较低,易变形.LLDPE是⼀种含有⼤量短⽀链地聚⼄烯,结构类似于梳状⽀化,⽀化程度介于HDPE和LDPE之间,因⽽性能上兼具有⼆者地优点.3.不同⽴构规整度地聚丙烯(PP)性能有何差异?答:全同⽴构和间同⽴构地有序结构使聚合物链段更容易紧密排列,形成结晶结构,即所谓地等规⽴构PP.与⽆规PP相⽐,等规PP具有更⾼地强度,⽓体与有机⼩分⼦更难渗透,因⽽具有更好地耐腐蚀、耐溶剂性以及⽓密性,熔点也有所升⾼.⽆规PP则不能结晶,是⼀种橡胶状地弹性体.4.常见地聚苯⼄烯(PS)品种有哪些?答:聚苯⼄烯(PS)包括普通聚苯⼄烯(GPPS).聚苯⼄烯.可发性聚苯⼄烯(EPS).⾼抗冲聚苯⼄烯(HIPS)及间规聚苯⼄烯(SPS).5.ABS共聚物树脂地单体有哪些,这些单体各赋予了ABS什么样地特性?答:单体有:丙烯腈(acrylonitrile)、丁⼆烯(butadiene)、苯⼄烯(styrene).1,4-丁⼆烯为ABS树脂提供低温延展性和抗冲击性;丙烯腈为ABS树脂提供硬度、耐热性、耐酸碱盐等化学腐蚀地性质;苯⼄烯为ABS树脂提供硬度、加⼯地流动性及产品表⾯地光洁度.6.PVC中地氯原⼦对材料地性能产⽣了哪些影响?答:使PVC具有了难燃性,⾼强度,强地耐腐蚀能⼒.7.常⽤地热塑性加⼯⽅法有哪些?分别适合加⼯什么产品?答:加⼯热塑性塑料常⽤地⽅法有挤出(extrusion)、注塑(injection molding)、压塑(compress molding)、吹塑(blow molding)等.挤出适合加⼯热塑性塑料及橡胶;注塑适合加⼯热塑性塑料及部分热固性塑料;吹塑适合苯⼄烯聚合物、聚氯⼄烯、聚酯、聚氨酯、聚碳酸酯和其他热塑性塑料.第六章⼯程塑料1.什么样地材料称为“⼯程塑料”?答:⼯程塑料是指⼀类可以作为结构材料,在较宽地温度范围内承受机械应⼒,在较为苛刻地化学物理环境中使⽤地⾼性能地⾼分⼦材料.⼀般指能承受⼀定地外⼒作⽤,并有良好地机械性能和尺⼨稳定性,在⾼、低温下仍能保持其优良性能,可以作为⼯程结构件地塑料.聚⼰⼆酰⼰⼆胺和聚⼰内酰胺分别称为“尼龙66”和“尼龙6”.以下两种聚酰胺对应地尼龙分别为?-[NH-(CH2)5-NH-CO-(CH2)8-CO]-,-[NH-(CH2)11-CO]-答:尼龙510,尼龙12尼龙地命名要根据其聚合过程中单体⼆胺和⼆酸上碳原⼦地数量来命名.因此通过戊⼆胺(6个碳)和癸⼆酸(10个碳)缩聚⽽成地尼龙产品命名为尼龙610(⼆胺中碳原⼦数在前,⼆酸中碳原⼦数在后).⽽由⼗⼆内酰胺开环聚合制备得到地尼龙由于其单体只有⼀种化合物,因此被命名为尼龙12.3.从⾼分⼦单元结构地⾓度分析PET与PBT熔点地差别.答:与PET相⽐,PBT结构单元中地亚甲基数⽬从2个增加到4个,因⽽分⼦链地刚性降低,熔点相对较低.4.三⼤“有机玻璃”是哪3种聚合物?为什么这些聚合物适合⽤作光学材料?答:聚甲基丙烯酸甲酯(PMMA);聚碳酸酯(PC);聚苯⼄烯(PS).PMMA:聚甲基丙烯酸甲酯,俗称亚克⼒(acrylic),透光度⼤约能达到92%,⽽且有较好地耐候能⼒,⼴泛应⽤于热塑型标识牌、飞机挡风玻璃、浴缸等.PC:聚碳酸酯,⾼熔点透明地碳酸酯类聚合物,其中应⽤最⼴泛,⽤量最⼤地为双酚A (bisphenol A)碳酸酯,透光率达到93%,聚碳酸酯制品可⽤于玻璃窗、装置设备、标识牌、可回收塑料瓶、太阳能集电器、商务机器、电⼦产品等领域,此外在压缩光盘(CD)中也有⼴泛应⽤;PS:聚苯⼄烯,普通聚苯⼄烯(GPPS)地侧苯基地空间排列为⽆规结构,即⽆规聚苯⼄烯,使得材料具有很⾼地透明性.这些聚合物由于主链结构有序性较低,为⽆定形地⾮晶聚合物,透明性和光学性能⾮常好,因此可⽤于光学材料.5.试分析均聚甲醛和共聚甲醛结构与性能地差异.答:共聚甲醛与均聚甲醛相⽐,其含有环氧⼄烷地结构单元,⽐甲醛地结构单元多了⼀个亚甲基,因⽽链段地柔韧性有所增加、刚性有所下降.但聚合物中氧含量有所降低,因此热稳定性⽐均聚甲醛有明显提⾼.6.分别写出聚苯醚、聚苯硫醚、聚酰亚胺、聚醚醚酮地英⽂名称与缩写,并列举出这⼏类⼯程塑料地特性.答:聚苯醚:Polyphenylene oxide PPO;聚苯硫醚:Polyphenylene sulfide PPS;聚酰亚胺:Polyimide PI;聚醚醚酮:poly(ether-ether-ketone);PEEK;相关特性略(详见讲义).这些聚合物分⼦主链中都含有⼤量刚性地苯环结构,因此具有较⾼地机械性能(强度、模量等)和耐热性能.7.聚硅氧烷俗称为硅胶,其特性和应⽤领域是什么?答:聚硅氧烷(Polysiloxane),也叫硅树脂(Silicone),是⼀类以重复地Si-O键为主链,硅原⼦上直接连接有机基团地聚合物,具有其它聚合物不具备地综合地电、化学以及⼒学性能.这类聚合物具有很多独特地性能,包括较⾼地热氧化稳定性和热稳定性、低地介电损耗、独特地流变和应⼒/应变⾏为、良好地耐溶剂和耐腐蚀性、流变⾏为对温度不敏感、良好地阻燃性燃性、剪切稳定性、⾼地抗压性能以及低地表⾯张⼒等等.聚硅氧烷具有特别宽地温度使⽤范围,可以在-120~200℃甚⾄300o C地温度范围内保持良好地性能,第七章热固性树脂1.热固性树脂与热塑性塑料地定义分别是什么?答:热塑性塑料(thermoplastic):线性或⽀化⾼聚物,可以多次反复地在加热条件下软化,⽽在冷却条件下凝固为固体;热固性树脂(thermosetting resin):指在加热、加压下或在固化剂、紫外光等作⽤下,进⾏化学反应,交联固化成为不溶不熔物质地⼀⼤类合成树脂.这种树脂在固化前⼀般为分⼦量不⾼地固体或粘稠液体,在成型过程前能软化或流动,具有可塑性.⼀经固化,再加压加热也不可能再度软化或流动.2.在酯化反应中,伯醇和仲醇哪个地反应活性⼤?答:伯醇地反应活性⼤,因为伯醇地位阻⼩,易于进攻碳正离⼦形成中间产物.3.家装污染中地甲醛地主要来源是什么?答:家装材料中⼤量使⽤地热固性树脂如酚醛树脂等.由于其在固化过程中需要预聚物与甲醛反应,板材中残留地和未参与反应地甲醛在使⽤过程中会逐渐向周围环境释放,是形成室内空⽓中甲醛地主体.4.醇酸树脂固化地机理有哪些?答:⼤多数醇酸树脂都是在不饱和酸如油酸地存在下,由双官能团地醇与羧酸缩聚制得.在氧地存在下,这些醇酸树脂中地不饱和双键可以进⼀步反应形成交联.在酯化反应中,伯醇⽐仲醇具有更⾼地反应活性,因此在适当地温度条件下,⽢油地两个伯羟基先与⼆酸反应得到地线性预聚物,⽽当温度升⾼后,预聚物中残留地仲羟基将继续发⽣反应将线形地分⼦链交联.5.环氧树脂可以与酚醛树脂共聚交联固化,试分析其机理如何?答:酚醛树脂中地酚羟基地活性较⾼,在弱碱性甚⾄是⽆催化剂条件下都可与环氧基顺利反应,从⽽形成更复杂地交联结构.6.聚氨酯是通过逐步聚合制备地聚合物,其反应基团与反应机理是什么?如何调控聚氨酯材料性能?答:反应基团:⼆异氰酸酯,最为⼴泛使⽤地⼆异氰酸酯是甲苯⼆异氰酸酯(TDI, H3C–C6H3(NCO)2).⼆醇HO–(RO–)n H:端羟基地低分⼦量聚酯和聚醚,分别称为聚酯多元醇和聚醚多元醇.产物最终地交联程度则由反应中加⼊地三元醇(如⽢油)地量来控制.因此通过预聚物、多元醇、⼆异氰酸酯地化学结构地控制即可实现对聚氨酯最终性能地调控.第⼋章纤维1.什么样地材料称为纤维?答:纤维是⼀种长径⽐不低于100:1,具有⼀定柔顺性和强度地线性物,是⽤以制造纺织品地基础原料.2.与天然纤维、⼈造纤维相⽐,合成纤维地优势是什么?答:纤维分为天然纤维(natural fiber)和化学纤维(chemical fiber)两⼤类,其中化学纤维⼜分为⼈造纤维(rayon)和合成纤维(synthetic fiber).天然纤维与⼈造纤维地原料均来⾃于天然地动植物资源,⽽合成纤维来源于⽯油化⼯产品,因此具有原料易得、加⼯简单、结构与性能多样.3.试⽐较“熔体纺丝”、“湿法纺丝”、“⼲法纺丝”之间地相同与不同之处?答:纺丝是化学纤维⽣产过程中地关键⼯序,改变纺丝地⼯艺条件,可在较⼤范围内调节纤维地结构,从⽽相应地改变所得纤维地物理机械性能.熔体纺丝法是将纺丝熔体经螺杆挤压机由纺丝泵定量压出喷丝孔,使其成细流状射⼊空⽓中,并在纺丝甬道中冷却成丝.熔体纺丝法地主要特点是卷绕速度⾼,不需要溶剂和沉淀剂,设备简单,⼯艺流程短,是⼀种经济、⽅便和效率⾼地成形⽅法.但喷丝头孔数相对较少.溶液纺丝法包括湿法纺丝与⼲法纺丝.湿法纺丝是将溶液法制得地纺丝熔液从喷丝头地细孔中压出呈细流状,然后在凝固液中固化成丝.由于丝条凝固慢,所以湿法纺丝地纺丝速度较低,⽽喷丝板地孔数较熔体纺丝多.湿法纺丝地特点是⼯艺流程复杂,投次⼤、纺丝速度低,⽣产成本较⾼.⼀般在短纤维⽣产时,可采⽤多孔喷丝头或级装喷丝孔来提⾼⽣产能⼒,从⽽弥补纺丝速度低地缺陷.⼲法纺丝是将溶液纺丝制备地纺丝溶液从喷丝孔中压出,呈细流状,然后在热空⽓中因溶剂声速挥发⽽固化成丝.⼲法纺丝制得地纤维结构紧密,物理机械性能和染⾊性能较发,纤维质量⾼.但⼲法纺丝地投资⽐湿纺还要⼤,⽣产成本⾼,污染环境.⽬前⽤于⼲纺丝产⽣地合成纤维较少,仅醋酯纤维和维纶可⽤此法.4.天然纤维(Natural fiber)与⼈造纤维(Rayon)之间存在何种联系?答:天然纤维:指⾃然界原有地,或从经⼈⼯培植地植物中、⼈⼯饲养地动物中获得地纤维.⼈造纤维:是利⽤⾃然界地天然⾼分⼦化合物——纤维素或蛋⽩质作原料,经过⼀系列地化学处理与机械加⼯⽽制成类似棉花、⽺⽑、蚕丝⼀样能够⽤来纺织地纤维.它是由提纯得到地某些线型天然⾼分⼦物为原料,经直接⽤溶剂溶解或制备成衍⽣物后⽤溶剂溶解,之后再经纺丝加⼯制得地多种化学纤维地统称.5.试从聚丙烯结构与性能地特点分析丙纶纤维地优点与缺点.答:优点:聚丙烯为线性结构,不含极性基团,丙纶质轻保暖性好,⼏乎不吸湿,具有较好地耐溶剂性和耐化学腐蚀性.缺点:由于甲基⽀链结构地存在,丙纶热稳定性差,不耐⽇晒,易于⽼化脆损,为此常在丙纶中加⼊抗⽼化剂,⽆极性基团,容易积聚静电.第九章橡胶1.橡胶是⼀类具有何种特性地⾼分⼦材料答:橡胶是⼀类使⽤温度⾼于玻璃化转变温度Tg (即⾼弹态,以便使聚合物链段运动),并且其常规态是⾮晶态地聚合物.弹性体有记忆功能,也就是说,当它们受外⼒时能变形,⼀旦外⼒移除,它们能恢复其原始未受⼒地状态.2.橡胶地硫化是什么过程。

高分子物理习题讲解

高分子物理习题讲解

⾼分⼦物理习题讲解第⼀章绪论⼀、选择题1.GPC对⾼聚物进⾏分级的依据是(B)A.⾼聚物分⼦量的⼤⼩B.⾼分⼦流体⼒学体积⼤⼩C.⾼分⼦末端距⼤⼩D.⾼分⼦分⼦量分布宽度2.下列哪些⽅法获得的是数均分⼦量(BCD)A.粘度法B.冰点下降C.沸点升⾼D.渗透压E.超离⼼沉降F.光散射法3.聚合物分⼦量越⼤,则熔体粘度(A)对相同分⼦量聚合物⽽⾔,分⼦量分布越宽,则熔体粘度(B)A.增⼤B.降低C.相等D.不变4.某⼀⾼聚物试样A的分⼦量约为3×104,试样B的分⼦量约为7×105,测定试样A的分⼦量应采⽤(A)(B)等⽅法。

测出的分别是(C)(D)分⼦量。

测定试样B的分⼦量则宜采⽤(E)(F)等⽅法,测出的分别是(G)(各H)分⼦量。

A.膜渗透压B.粘度法降低C.数均D.粘均E.光散射F.凝胶渗透⾊谱法G.重均H.各种平均5.分⼦量相同的线形聚⼄烯和⽀化聚⼄烯的混合试样,当采⽤的溶解度分级时不能将它们分开,这是由于(AB)⽽采⽤GPC法则能将它们分开,这是由于(CD)⾸先被淋洗出来的是(E)A.两者分⼦量相同B.溶解度相同C.它们的分⼦尺⼨不⼀样D.流体⼒⽴体积不同E.线性聚⼄烯6.聚合物没有⽓态是因为(B)A .聚合物不耐⾼温B .聚合物分⼦间⼒很⼤C .聚合物的结构具多分散性D .聚合物的分⼦量具多分散性7.下列哪些⽅法获得的是数均分⼦量(BCD )A .粘度法B .冰点下降C .沸点升⾼D .渗透压E .超离⼼沉降F .光散射法8.不同⽤途和不同成型⽅法对聚合物分⼦量的⼤⼩有不同的要求。

通常是(C )A .合成纤维分⼦量最⾼,塑料最低9.下列那种⽅法可测定聚合物的数均分⼦量(B )A .超速离⼼沉降;B .膜渗透压C .黏度D .光散射⼆、问答与计算题1. 某⾼聚物10,0000M η=,已知Mark-Houwink ⽅程中4110/d g -K =?I ,α=0.8 Huggins ⽅程中常数κ=0.33(1)计算c =0.0030g/ml 时,溶液的相对粘度r η。

高分子物理(第三版)第一章--绪论

高分子物理(第三版)第一章--绪论
¾高分子学说的争鸣时期,是一个重要的里程碑。
1920年,H. Staudinger发表了他的划时代的文献《论聚合》。他根据实验结 果,论证了聚合过程是大量的小分子自己结合起来的过程。大量实验事实雄辩 地证明了大分子的存在,人们又称它为“高分子”或“聚合物”。高分子学说得到 愈来愈多科学家的承认。
至1930年左右,高分子学说终于战胜了胶体缔合论。这一时期是高分子学说 的争鸣时期,是一个重要的里程碑。从此,高分子科学得到了欣欣向荣的健康 发展。
9
¾20世纪50年代后高分子物理的发展。
20世纪50年代后半期由Ziegler发现,Natta发展的配位催化剂引发的定向聚合, 使高分子的结构和物性理论受到很大的推动。 用这种催化剂,除了能控制乙烯基聚合物的不对称碳原子的立体构型,控制双 烯类聚合物的顺反异构以外,还使烯烃的低压聚合成为可能。这一成果促进了 结晶结构和旋转位能的研究。 从无支化的低压聚乙烯中首次观察到高分子单晶,以致发现了高分子特有的高 次结构,而这种高次结构与各种物理性质有很大的关系。
4
参考教材或资料: 1、何曼君等,高分子物理,复旦大学出版社,2007年;
2、郝立新等,高分子化学与物理,北京:化学工业出版社,1997年 3、H.S. Kaufman,J.J.Falcetta,Introduction to Polymer Science and Technology:An SPE Textbook,John Wiley & Sons Inc,New York,1977
高分子化学与物理 (Polymer Chemistry & Physics)
第二部分:高分子物理 (Polymer Physics)
第一章 绪论
1
1. 概论
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)成熟时期
•Carothers(30年代)缩合聚合,尼龙的发明 •40年代,高分子统计性质与物理化学研究。 代表性工作:Kuhn, Guth, Mark, Flory •1940-60年代,高分子科学的大发展(日新月异):
塑料、橡胶、纤维、涂料、粘合剂、复合材料 Ziegler-Natta催化剂,定向聚合
高分子间相互作用能 》 共价键键能
•突出的熵效应
构象熵
•特有的粘弹性 力学松弛
六、高分子物理的应用实例
石油工业
三次采油
合成润滑油
PP透明饭盒
透明成核剂
PVC制品
警惕增塑剂!
高速公路
电子封装
•近代,精度、广度: de Geens的标度理论,非平衡态理论
Liaison Agency
Discovery of Nylon
The DuPont Company is known for its pioneering development of synthetic fibers, including rayon and nylon. In this photo, DuPont chemist Julian Hill reenacts the discovery of nylon fiber by his colleague, Wallace Carothers.
习题集
1. 2. 高分子物理学习指导,董炎明,胡晓兰著, 科学出版社 高分子物理习题集,徐世爱主编,华东理工大学出版社
教学内容
第一章 绪论
第二章 高分子链结构
第三章 高分子溶液
结构
第四章 高分子聚集态(一) 第五章 高分子聚集态 (二) 第六章 分子运动与转变 第七章 橡胶弹性
性能
第八章 第九章
聚合物的粘弹性 聚合物的机械强度
聚 合 物 的 结 构 层 次
近程结构 (初级) 链结构 远程结构 (二级) 聚集态 结构 (高级)
五、高分子性能的特点
成膜性
成纤性
可塑性
吸附性 环境敏感性 绝缘性 粘接性
导电性
导光性
高弹性
生物活性
可塑性
塑料
高弹性
橡胶
成纤性
纤维
成膜性
涂料
粘合剂
粘接性
General Characteristics
Kerosene Oil and Grease Paraffin Wax Candle
>181 (1000-3000)
Tough Plastic Solid
Polyethylene Bottle and Containers
高分子的特征不在其分子量高,而在其长链状结构
二、 高分子科学的发展历程
(1)蒙昧时期
度、热膨胀系数、模量、拉伸强度、导热系
数、折光指数...)
从小分子到大分子
HC

C

C

C C C C
丁 戊 己 庚
C

C C
25 26
C
C
C
C

180 181 182 183
Number of Carbons in Chain 1-4
State and Properties of Material Simple Gas
• 19世纪中叶以前 •无意识地使用高分子材料 •体现在人类对天然高分子的利用。 •纤维素、蛋白质、淀粉
(2)萌芽时期
•19世纪末期到 20世纪初期 •出现了化学改性与人工合成的高分子
•橡胶
•塑料
(3)争鸣时期
• 20世纪初期到30年代 •高分子科学与传统科学的碰撞 •Staudinger(1920)高分子的科学概念。链状分子、 分子量及其分布、聚合反应
• 多分散性:
分子量:大小不等、长短不一 分子尺寸:即使分子量一样,可有多种构象, 不同尺寸
• 物质结构的多层次性 • 化学组成 • 支化、交联、端基 • 键接方式 • 构型 • 共聚单元序列分布 • 高分子的大小(分子量) •高分子的形态(构象) • 结晶态结构 • 非晶态结构 • 取向态结构 • 液晶态结构 • 纳米区结构 • 织态结构
High Toughness 高韧性 Easy molding 易加工 Transparency 透明
另外一些性能
Extremely light weight 重量轻
Chemical resistance 化学惰性 Colorability 色彩
共性:由高分子的结构特点所决定 •强大的分子间作用力 只有固态和液态---凝聚态 共价键键能:100-900 KJ/mol
三、高分子物理的研究内容
高分子物理
结构
性能
制备
成型加工
应用
高分子物理是研究高分子结构、 性能及两者相互关系的一门学科
长链状分子具有共同的运动规律,不再取决于小分子 的结构。
高分子物理的一个使命就是揭示聚合物的结构及其共 性分子运动规律。
四、高分子的结构特点
• 高分子量(万以上)
• 线链状结构:线形链、支化链、网络链 特殊情况:热固性树脂 例如环氧树脂 高度交联, 交联点间仅几个化学键
考试及成绩评定 平时成绩 + 期末考试成绩
平时成绩 (20%-30%) 作业 (80%)+ 考勤 (20%)
考试成绩 (80%-70%) 卷面成绩
第一章
绪论
一、 高分子物理的研究对象
高分子家族
涂料

粘合剂
弹性体
塑料
合成纤维 天然聚合物 生物系统
塑料
热固性塑料 (酚醛树脂、脲醛树脂) 热塑性塑料 (PE, PP, PVC, PS, PMMA, 尼龙) 橡胶 天然橡胶 (聚异戊二烯) 合成橡胶 (顺丁, 丁苯, 丁腈, 丁基橡胶) 纤维 腈纶 (PAN)、丙纶 (PP) 聚酯纤维 (PET)、尼龙 涂料与粘合剂
Use , Dependent on Chain Length Bottle gas for cooking
5-11
9-16 16-25 25-50
Simple Liquid
Medium-viscosity Liquid High-viscosity Liquid Simple Solid
Gasoline
小分子单体相互连接而成

Cl 氯乙烯 n CH2 = CH
聚氯乙烯
(CH2 CH)n
苯乙烯
聚苯乙烯

n CH2 = CH
(CH2 - CH)n
Cl
பைடு நூலகம்
聚合过程赋予高分子三个特征
1. 由重复单元相互连接构成
2. 链状分子的基本形式 3. 足够长
足够长:
聚合物(Polymer):多增加或减少几个重单元 不会影响本体性质(玻璃化温度、热容、密
范德华力作用能:0.8-20 KJ/mol
偶极力: 0.8-20 KJ/mol 诱导力: 6-13 KJ/mol 色散力: 0.8-8 KJ/mol 氢键: 小于等于40 KJ/mol
小分子间相互作用能 < 共价键键能
高分子的特点: 其中的链单元数:
大 103 - 105
链单元之间的相互作用力
小分子之间的相互作用力
高分子物理
Polymer Physics
教材与参考书
1. 高分子物理, 刘凤岐,汤心颐编著,第二版,高等教育出版社 2. 高分子物理, 何曼君,张红东, 陈维孝, 董西侠编著,第三版,复旦大学 出版社 3. 新编高聚物的结构与性能,何平笙编著,科学出版社
4. 高分子物理,金日光,华幼卿主编,第三版,化学工业出版社
相关文档
最新文档