初中数学知识点精讲精析 整式知识讲解

合集下载

整式知识点总结归纳

整式知识点总结归纳

整式知识点总结归纳
内容:
一、整式的概念
整式是只包含整数系数的一元多项式。

整式可以表示为_ ^ + _{-1} ^{-1} + ... + _1 + _0的形式,其中_0,_1,..._都是整数。

二、整式的运算
1. 整式的加法:两个整式可以直接相加,系数按照代数法则相加。

例如:(3^2 - 2 + 5) + (2^2 + - 1) = (3 + 2)^2 + (-2 + 1) + (5 - 1) = 5^2 - + 4
2. 整式的减法:将被减整式的每一项系数取反,然后与被减整式相加。

例如:(3^2 - 2 + 5) - (2^2 + - 1) = (3^2 - 2 + 5) + (-2^2 - + 1) = ^2 - 3 + 6
3. 整式的乘法:遵循代数乘法分配律和乘幂法则进行计算。

例如:(2 + 3)(^2 - 1) = 2(^2 - 1) + 3(^2 - 1) = 2^3 - 2 + 3^2 - 3
4. 整式的除法:遵循代数除法的步骤,将被除数按照余数进行分割。

例如:(^3 + 3^2 - 2) ÷ ( + 2) = ^2 + - 2 余数7
三、整式的基本操作
1. 通分:将整式中变量的指数统一到最大的那个指数。

2. 合并同类项:将整式中同类项的系数合并。

3. 提取公因式:找出整式所有项的公共因式并提出。

4. 因式分解:将整式分解为多个整式相乘的形式。

常用因式分解法有:差的平方,共同因式分解,分组等。

综上,我们系统地归纳总结了整式的基本概念和运算规则,整理出整式的各种基本操作,这对我们全面掌握和运用整式知识点是非常必要的。

整式全部的知识点总结

整式全部的知识点总结

整式全部的知识点总结一、整式的定义整式是由变量、常数和运算符(加法、减法、乘法和乘方)组成的代数表达式。

整式由多个单项式通过加法或减法连接而成,其中单项式又是由变量的某个非负整数次幂与一个系数相乘而成。

例如,3x^2 - 2xy + 5是一个整式,其中3x^2、-2xy和5都是单项式,它们通过加法连接而成。

二、整式的分类1. 单项式:只包含一个项的代数表达式,形如ax^n,其中a为常数,n为非负整数,a称为系数,n称为次数。

2. 多项式:由多个单项式通过加法或减法连接而成的代数表达式,形如anx^n + an-1x^n-1 + ... + a1x + a0,其中an、an-1、...、a1、a0都是常数,n为非负整数。

3. 恒等式:左右两边完全一样的整式,如(x + 1)^2 = x^2 + 2x + 1就是一个恒等式。

4. 同类项:具有相同变量及其指数的项,可以合并的项。

三、整式的基本运算规则1. 加法:整式相加只需把同类项合并即可,如3x^2 - 2xy + 5和2x^2 - xy + 4相加得到5x^2 - 3xy + 9。

2. 减法:整式相减可以看作是整式相加的特殊情况,减去一个整式等于加上其相反数,如3x^2 - 2xy + 5减去2x^2 - xy + 4得到x^2 - xy + 1。

3. 乘法:整式相乘时,按照分配律和结合律进行展开和合并同类项,如(a + b)(c + d) = ac + ad + bc + bd。

4. 除法:整式相除通常需要进行长除法或者因式分解等运算,以得到商和余数。

四、整式的化简化简整式是整式运算中的一个重要环节,可以减少计算的复杂性和提高表达式的简洁性。

化简整式的方法主要包括合并同类项、用分配律展开、因式分解等。

五、整式的应用整式在代数、初等数学、高等数学、物理学、化学等多个学科中都有着广泛的应用。

例如,在数学中,整式可以用来表示多项式函数、多项式方程等;在物理学中,整式可以用来表示物体的运动、力的计算等。

整式的概念知识点

整式的概念知识点

整式的概念知识点摘要:一、整式的概念1.整式的定义2.整式的特点3.整式的分类1) 单项式2) 多项式二、整式的性质1.整式的加法2.整式的减法3.整式的乘法4.整式的除法三、整式的应用1.整式在代数中的应用2.整式在几何中的应用正文:整式是代数学中的一个重要概念,它是由常数、变量及其非负整数次幂的乘积组成的式子。

整式具有以下特点:1.整式的定义整式是由常数、变量及其非负整数次幂的乘积组成的式子。

其中,常数和变量称为整式的项,项的次数是指该项中各变量的次数之和。

例如,3xy、-2ab、5都是整式。

2.整式的特点整式的特点是:各项次数都是非负整数,且系数和指数都是整数。

整式中的变量可以有多个,各个变量之间可以进行加、减、乘、除等运算。

3.整式的分类整式可以分为单项式和多项式两类。

1) 单项式单项式是只包含一个项的整式,例如3xy、-2ab等。

2) 多项式多项式是包含两个或两个以上项的整式,例如5xy - 2ab + 7。

整式具有以下性质:1.整式的加法单项式的加法是将同类项的系数相加,例如3xy + (-2xy) = xy。

多项式的加法是将同类项的系数相加,例如5xy - 2ab + 7 + (-2xy + ab) = 3xy - ab + 7。

2.整式的减法整式的减法可以看作是加法的一种特殊形式,例如5xy - 2ab + 7 - (-2xy + ab) = 7xy - 3ab + 7。

3.整式的乘法单项式的乘法是将系数相乘,同时将各项的次数相加,例如3xy * 2x =6xy。

多项式的乘法需要按照分配律进行计算,例如(5xy - 2ab + 7) * (2x + a)= 10xy - 2ab + 7ax - 4axy - 2abx + 7ax。

4.整式的除法整式的除法可以看作是乘法的逆运算,例如(5xy - 2ab + 7) ÷ (2x + a) = (5xy - 2ab + 7) * (1/2x + a/2x) = 5xy/2x + ab/2x - 7a/2x - ab/2x - 7a/2x - 7/2x。

整式知识点总结归纳总结

整式知识点总结归纳总结

整式知识点总结归纳总结一、整式的概念在代数中,整式是由字母和数字通过加减乘除及乘方等代数运算符号组成的式子。

整式通常由多项式和单项式组成,这些式子可以是常数、变量、或者变量的乘积,也可以是变量的幂次积。

二、整式的分类1. 单项式:只含有一个项的整式,例如3x、-5y、2a^2等。

2. 多项式:含有两个或多个项的整式,例如2x+3y、4a^2-5b+1等。

3. 基本整式:可以表示为单项式或单项式与多项式的和的整式,例如3x、5+2a-3b等。

三、整式的运算1. 整式的加法和减法:对整式进行加法和减法运算时,首先将同类项进行合并,然后再进行简化和化简。

2. 整式的乘法:两个整式相乘时,可以利用分配律和乘法结合律进行展开和化简。

3. 整式的除法:整式的除法通常需要将被除式分解成因式的乘积,然后再进行约分和化简。

四、整式的因式分解1. 将整式分解成两个或多个整式的乘积的过程称为因式分解。

因式分解可以简化计算和求解方程的过程,是代数运算中的重要内容。

2. 因式分解的方法:常见的因式分解方法有提公因式法、分组法、平方差公式、换元法等。

3. 因式分解的应用:因式分解可以用于解决多项式方程、求多项式的根、简化复杂表达式等问题。

五、整式的求值1. 求整式的值:当给定整式的变量取值时,可以通过代入变量的值得到整式的数值结果。

这个过程称为求整式的值。

2. 求整式的值的方法:可以通过代数运算规则和整式的性质进行计算,也可以通过代入变量的值进行计算。

六、整式的应用1. 整式在代数表达式中广泛应用于各类数学问题的建模和求解过程,包括代数方程的求解、图形分析、几何问题的求解等。

2. 在实际生活和工作中,整式也被广泛应用于各种工程技术和科学领域的计算和建模工作中。

总结:整式是代数中的重要概念,对于代数运算和数学建模具有重要的意义。

掌握整式的定义、分类、运算、因式分解和应用等知识点,有助于提高数学实际应用和解决问题的能力。

通过不断的练习和应用,可以更好地理解和掌握整式的相关知识,提高数学素养和解决实际问题的能力。

整式知识点总结初中

整式知识点总结初中

整式知识点总结初中一、整式的概念1. 整式的定义整式是由字母和常数的乘积及它们的和构成的代数式,其中各字母和常数的指数应是非负整数,整式通常用代数式或代数方程来表示。

例如,3x^2 + 2xy - 5y^2 + 7等都是整式。

2. 同类项同类项指的是整式中相同字母部分(含指数)相同的项。

在整式中,我们需要对同类项进行合并或整理,以便进行后续的运算和化简。

3. 等式与不等式中的整式整式在等式和不等式中具有重要的应用,可以通过整式来表达和推导数学关系,解决实际问题。

二、整式的性质1. 对称性整式具有对称性,即对于加法和乘法,整式满足交换律和结合律。

2. 乘法性质整式的乘法满足分配律、结合律和交换律。

3. 分配律对于任意整式a、b、c和d,有a(b+c) = ab + ac和(a+b)c = ac + bc。

三、整式的运算规律1. 加法和减法对于整式的加法和减法,我们需要合并同类项,并保持整式的形式不变。

2. 乘法整式的乘法需要遵循乘法分配律、结合律和交换律的规则,进行合并同类项和化简。

3. 除法整式的除法通常通过因式分解和约分的方式进行,以求得商式和余式。

4. 提取公因式对于给定的整式,我们可以通过提取公因式的方法来简化整式,方便后续的计算和分解因式。

四、整式的因式分解1. 因式分解的概念整式的因式分解是指将一个整式表示为几个整式的乘积。

因式分解在解决方程和不等式、简化计算、求根和解决实际问题中具有重要作用。

2. 因式分解的方法a) 提取公因式b) 分组分解c) 公式法d) 十字相乘法3. 因式分解的应用因式分解广泛应用于解方程、证明恒等式、求最值等问题中,是代数学习中的重要内容。

五、整式在实际应用中的作用1. 代数方程的建立与解法整式在解决现实生活中的问题中起着至关重要的作用,可以将现实问题转化为代数方程,然后运用整式的知识对方程进行求解。

2. 几何问题的代数化在几何学习中,整式也经常应用于解决几何问题,通过代数化的方法将几何问题转化为代数问题,并借助整式相关的知识来求解。

整式知识点分类归纳总结

整式知识点分类归纳总结

整式知识点分类归纳总结整式的种类有多种,主要包括单项式、多项式、分式,以及它们的运算。

下面对整式相关的知识点进行分类归纳总结:一、整式的基本概念1. 代数式的定义代数式是由数字、字母和运算符号组成的符合语法规则的表达式。

代数式可以表示数与数之间的关系,可以用来表示具有普遍性的数学规律。

2. 整式的定义整式是由字母和数以及加减乘除等运算符号组成的代数式。

整式中不包含分式以及根式等算术式。

整式通常由常数项、一次项、二次项、三次项等各种次数的项组成。

3. 单项式和多项式单项式是只包含一个变量的代数式,例如3x、-2y等。

多项式是由单项式经过加法与减法运算得到的代数式,例如3x+2y、5x^2+3x-6等。

4. 整式的次数整式中的最高变量次数称为整式的次数。

例如5x^2+3x-6的次数为2,3x^4-2x^3+5x^2-3x+4的次数为4。

5. 整式的分类整式按照其结构特点和性质可以分为单项式、多项式和分式。

单项式是只包含一个变量的代数式,多项式是由单项式经过加法与减法运算得到的代数式,分式是一个整式除以另一个整式所得到的代数式。

6. 整式的运算整式的运算包括加法、减法、乘法和除法。

整式的加法与减法是基于单项式和多项式的加减法运算规则,整式的乘法是基于分配律和乘法法则的运算,整式的除法则是利用多项式的因式分解和除法规则进行运算。

二、单项式与多项式的运算1. 单项式的加法与减法单项式的加法和减法是遵循着同类项相加减的原则,即变量的指数相等的项可以相加减,常数项也可以相加减。

2. 多项式的加法与减法多项式的加法和减法是将同类项进行合并,即对应位置的项进行加减操作,最终得到合并后的多项式。

3. 单项式与多项式的乘法单项式与多项式的乘法是利用分配律,即将单项式的每一项分别与多项式进行乘法运算,最后将结果合并得到最终的乘积。

4. 多项式的乘法多项式的乘法是将每个多项式中的项依次与另一个多项式中的项进行乘法运算,最后将结果合并得到最终的乘积。

初一数学《整式》知识点精讲

初一数学《整式》知识点精讲

知识点总结整式知识点综合一、用字母表示数和代数式1. 用字母表示数① 定义:用字母表示数,就是为了把数量和数量关系一般而又简明的表示出来,为研究和叙述问题带来方便。

② 需要注意的问题有:A. 同一问题中不同的东西的数量要用不同的字母表示。

B. 用字母表示数具有任意性,但要考虑实际意义或取值范围,如a个人,a肯定是自然数(不能是负数,也不能是分数或者小数)2. 代数式定义用运算符号把数和表示数的字母连接而成的式子,单独一个数或一个字母也是代数式。

二、整式1. 整式:单项式和多项式统称整式。

2. 单项式:表示数字与字母的乘积的代数式叫做单项式。

3. 单项式的系数:单项式中的数字因数。

4. 单项式的次数:单项式中所有字母的指数和。

需要注意的是:单项式的次数只与字母有关,和数字与π无关,切记π是数字,不是字母。

5. 多项式:几个单项式的和叫做多项式(单项式加减在一起,就是多项式了)6. 项:一个多项式中,每个单项式叫做这个多项式的项(这个地方需要说明的是,加号和减号都是单项式的符号,切记切记),不含字母的项叫做常数项。

7. 多项式的次数:取最高次项的次数为次数。

三、整式的加减1. 合并同类项:① 同类项定义:同类项是指所含字母相同,并且相同字母的指数也相同的项。

② 合并同类项的方法:就是把同类项的系数相加,字母和字母的指数不变。

③ 合并同类项的步骤:A、找出同类项;B、将同类项的系数相加,字母和字母的指数不变;C、写出合并后的结果。

▲注意:•同类项与字母的顺序无关,如3x2y和-5yx2也是同类项。

• 合并同类项时,只把系数相加,其他都不变。

• 单项式前面没有数字因数的时候,那么这个单项式的系数为1,如abc 它的系数为1;如果单项式前面只有一个负号,没有其它数字时,那么这个单项式的系数为-1.如-abc的系数为-1。

• 在计算合并同类项的时候,只需系数相加即可,例abc+bac=2abc,-abc+abc=02. 去括号:① 去括号口诀:括号前面是加号,去掉括号和加号,括号里面各项不变号。

整式知识点总结归纳大全

整式知识点总结归纳大全

整式知识点总结归纳大全整式的基本形式可以表示为一些项的和,在这些项中每一项都是由字母和数字以及运算符号组成的代数量。

整式是代数运算的基本对象之一,对整式的理解和运用,对学生来说具有非常重要的意义。

整式知识点总结1. 整式的基本概念整式是由字母和数字以及加减乘除等运算符号组成的代数式,整式通常可以表示为一些项的和的形式,每一项是由字母和数字以及运算符号组成的代数量。

整式是代数运算的基本对象之一,对整式的理解和运用,对学生来说具有非常重要的意义。

2. 整式的组成要素整式由字母、数字和运算符号组成。

其中,字母是整式中的变量,表示数值未知的量。

数字是整式中的常数项,表示具体的数值。

运算符号包括加减乘除等,用于表示整式中各项之间的运算关系。

3. 整式的分类整式根据字母的次数和含有的项的个数可以分为单项式、多项式和多项式。

单项式是只含有一个项的整式,多项式是由多个项相加或相减而成的整式,而多项式是一个含有若干个单项式的整式。

4. 单项式单项式是只含有一个项的整式,通常由一个常数项和一个或多个字母的乘积组成。

例如,3x、-5y、2x^2等都是单项式。

单项式的系数指的是该单项式中的常数项,单项式的次数指的是单项式中字母的次数。

5. 多项式多项式是由多个项相加或相减而成的整式,多项式通常由单项式相加或相减而得到。

例如,2x^2+3x-5、4x^3-2x^2+7x-1等都是多项式。

多项式的次数指的是多项式中出现的最高次项的次数。

6. 多项式的运算多项式的运算包括加法、减法、乘法和除法等。

多项式的加法和减法可以通过合并同类项进行化简;多项式的乘法则通过分配律和合并同类项进行化简;多项式的除法可以通过长除法来实现。

在进行多项式的运算时,需要注意合并同类项、对多项式进行因式分解和提取公因式等方法。

7. 多项式的应用多项式在代数学中具有广泛的应用,例如在代数方程的求解、数值计算、几何问题的研究等方面都有重要的作用。

多项式的概念和运算方法可以帮助我们更深入地理解代数学中的基本概念和运算规律,也为我们的数学学习提供了重要的工具和方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2·1 整式
1.单项式的有关概念
(1)单项式:数与字母的积构成的式子叫做单项式,如15ab 2c 6是单项式,而a 2c 3b ,ab 2+bc 不是单项式.对于单项式的理解有以下几点需要注意:
①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能
是乘法,而不能含有加减运算,如代数式15
(x +1)3不是单项式. ②字母不能出现在分母里,如n m
不是单项式,因为它是n 与m 的除法运算. ③单独的一个数或一个字母也是单项式,如0,-2,a 都是单项式. (2)单项式的系数:单项式中的数字因数叫做这个单项式的系数.如-14
ab 2的系数是-14
;-x 的系数是-1;y 的系数是1. (3)单项式的次数:一个单项式中,所有字母的指数和叫做单项式的次数.如15
ab 2c 6的次数是9;-14
ab 2的次数是3;-x 和y 的次数都是1;5的次数是0.掌握好这个概念要注意以下几点:
①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a 3b 就是5aaab ,有4个字母因数,因此它的次数就是4.
②确定单项式的次数时,不要漏掉“1”. 如单项式3x 2yz 3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.
③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式-(12
)2a 3b 4c 5的次数是字母a 、b 、c 的指数和,即3+4+5=12,而不是2+3+4+5=14.
④单独一个非零数字的次数是零.
2.多项式的有关概念
(1)多项式:几个单项式的和叫做多项式.其含义有:
①必须由单项式组成;②体现和的运算法则,如3a 2+b -5是多项式,而3x -2y 中,-2y
不是单项式,故3x -2y
不是多项式. 在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,一个多项式有几项,就叫几项式.要特别注意,多项式的项包括它前面的性质符号(正号或负号).
(2)多项式的次数:一般地,多项式里次数最高的项的次数,就是这个多项式的次数.注:
不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x 4+2y 2
+1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.
3.整式的概念
单项式和多项式统称为整式.
例1. 下列多项式分别有几项?每项的系数和次数分别是多少?
解答:(1)有3项,每项系数分别是
(2)有4项,每项系数分别是6,-5,1,-1;次数分别是6,0,4,3;
(3)有3项,每项系数分别是1,-1,-1;次数分别是4,3,1;
(4)有5项,每项系数分别是1,-1,2,,1;次数分别是3,3,4,3,0;
例2. 下列代数式中,哪些是整式?哪些是单项式?哪些是多项式?
解答:整式有:
单项式有:-5,
多项式有:
⎩⎨⎧多项式单项式整式1212)4(;)3(56)2(23
1)1(322233433332--+----+-+--b b a ab a x x x x xy y x y x x ;
;π;
,,;次数是、、0312131π--21-
12,2,,5,,2---+++x x y x c bx ax c ab π2,,5,,2y x c bx ax c ab --+++ππ2,
,2y x c bx ax c ab -+++。

相关文档
最新文档