2004年上海交通大学数学分析考研试题答案
数学类考研上海交大陈纪修《数学分析》配套考研真题

数学类考研上海交大陈纪修《数学分析》配套考研真题第一部分名校考研真题第1章集合与映射本章暂未编选名校考研真题,若有最新真题会及时更新。
第2章数列极限一、判断题1.对任意的p为正整数,如果,则存在。
()[重庆大学研]【答案】错查看答案【解析】根据数列收敛的Cauchy收敛准则,可举出反例:,虽然对任意的但(也可说明)。
2.对数列和若是有界数列,则是有界数列。
()[北京大学研]【答案】对查看答案【解析】设|S n|<M,则3.数列存在极限的充分必要条件是:对任一自然数p,都有()[北京大学研]【答案】错查看答案【解析】反例:,但不存在.二、解答题1.[暨南大学2013研]解:利用定积分的定义求解.2.设数列满足条件:,且,证明数列无界.[华东师范大学2009研]证明:用反证法.假若数列有界,即存在,使得,则由条件知.由得,对,存在正整数,当时,有,,令,则,且,,(1)对(1)式两边取上确界,有,所以,这与矛盾,所以数列无界.3.求极限.[华中科技大学2008研]解:一方面显然,另一方面,且由迫敛性可知.注:可用如下两种方式证明.(1)令,则,所以,从而.(2)由,得.4.证明不存在.[兰州大学2009研]证明:取,则由于,所以不存在.5.(1)设数列为正的单调递减数列,且收敛,证明:.(2)设数列为正的单调递减数列,且收敛,证明:.[南开大学2011研]证明:(1)因为为正的单调递减数列,由单调有界定理得存在,由收敛,可知必有(p为任意正整数),对任意存在正整数,使得对任意正整数,成立在上式中,令,取极限,则得由的任意性,则得显然故有.(2)因为为正的单调递减数列,由单调有界定理知存在,由收敛,可知必有;对任意存在正整数,使得对任意正整数,成立在上式中,令,取极限,则得由的任意性,则得显然故有.6.设证明收敛,并求极限。
[华中科技大学2007研]证明:很明显,假设则又因为所以单调递增有上界,故极限存在。
2004年考研数学试题答案与解析(数学一)

2004年考研数学试题答案与解析(数学一)一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标.【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为)1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为110=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知x x xe e f -=')(,且f(1)=0, 则f(x)=2)(ln 21x .【分析】 先求出)(x f '的表达式,再积分即可. 【详解】 令t e x =,则t x ln =,于是有 tt t f ln )(=', 即 .ln )(xx x f ='积分得 C x dx xx x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)=2)(ln 21x .【评注】 本题属基础题型,已知导函数求原函数一般用不定积分.(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 .【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,s i n 2,c o s 2πθθθ→⎩⎨⎧==y x于是θθθθθπd y d x x d y L]s i n 2s i n 22c o s 2c o s 2[22⋅+⋅=-⎰⎰=.23sin 222πθθππ=+⎰d【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程)0(024222>=++x y dxdy xdxy d x的通解为 221xc xc y +=.【分析】 欧拉方程的求解有固定方法,作变量代换t e x =化为常系数线性齐次微分方程即可.【详解】 令t e x =,则dtdy x dtdy edxdt dtdy dxdy t1==⋅=-,][11122222222dtdy dty d xdxdt dty d x dtdy xdxy d -=⋅+-=,代入原方程,整理得02322=++y dtdy dty d ,解此方程,得通解为 .221221xc xc ec ec y tt+=+=--【评注】 本题属基础题型,也可直接套用公式,令t e x =,则欧拉方程)(222x f cy dxdy bxdx y d ax=++,可化为 ).(][22te f cy dtdy bdtdy dty d a =++-(5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91 .【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =-)63(,再两边取行列式,有 363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= e1 .【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可.【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x⎰+∞-=>λλλλ1}1{=.11eex=-∞+-λλ【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xxx⎰⎰⎰===32sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ] 【分析】 先两两进行比较,再排出次序即可.【详解】 0c o s 2t a n lim cos tanlim lim22002=⋅==+++→→→⎰⎰xx x dtt dtt x xxx x αβ,可排除(C),(D)选项,又 xx xx dtt dtt x xxx x tan 221sin lim tansin lim lim23032⋅==+++→→→⎰⎰βγ=∞=+→2lim 41xx x ,可见γ是比β低阶的无穷小量,故应选(B).【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序.(8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .[ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知 0)0()(lim)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论.(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n n a 收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散.(C) 若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取nn a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n nn a 发散,排除(A),(D);又取nn a n 1=,则级数∑∞=1n n a 收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01limlim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n发散,因此级数∑∞=1n n a 也发散,故应选(B).(10)设f(x)为连续函数,⎰⎰=ttydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ] 【分析】 先求导,再代入t=2求)2(F '即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得 ⎰⎰=ttydx x f dy t F 1)()(=⎰⎰⎰-=t xtdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010, C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .1000111010110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ 可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系.(12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关.(C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B T T =,于是有T B 的列向量组,从而B 的行向量组线性相关,故应选(A).【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的: 1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.(13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论.【详解】 由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是 }{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C).【评注】 本题αuα 21α-(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ令∑==ni iX nY 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σnn Y X D +=+. (D) 211)(σnn Y X D +=-. [ A ]【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i ==【详解】 Cov(∑∑==+==ni i ni iX X Cov nX X Cov nX nX Cov Y X 2111111),(1),(1)1,(),=.1121σnDXn =【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如 222222111)1()111()(σσnn nn X nX nX nn D Y X D n -++=++++=+=222233σσn n nn n +=+,222222111)1()111()(σσnn nn X nX nX nn D Y X D n -+-=----=-=.222222σσnn nn n -=-(15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-.【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明.【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<-=-ξξξ设tt t ln )(=ϕ,则2ln 1)(tt t -='ϕ,当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln eee =>ξξ,故 )(4ln ln 222a b ea b ->-.【证法2】 设x ex x 224ln )(-=ϕ,则24ln 2)(e x xx -='ϕ,2ln 12)(xx x -=''ϕ,所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时, 044)()(222=-='>'eee x ϕϕ,即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>, 即 a ea b eb 22224ln4ln ->-,故 )(4ln ln 222a b ea b ->-.【评注】 本题也可设辅助函数为2222),(4lnln )(e x a e a x ea x x <<<---=ϕ或2222),(4lnln )(e b x e x b ex b x <<<---=ϕ,再用单调性进行证明即可.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可. 【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得 kv dtdv m -=.又d xd v v d t d x d x d v d td v =⋅=,由以上两式得 dv k m dx -=,积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v km C =,从而)).(()(0t v v k m t x -=当0)(→t v 时, ).(05.1100.67009000)(60km kmv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdv m -=,所以.dt m k v dv -=两端积分得通解tmk Cev -=,代入初始条件00v vt ==解得0v C =,故 .)(0tm k ev t v -=飞机滑行的最长距离为 ).(05.1)(0000km kmv ekmv dt t v x t mk ==-==∞+-∞+⎰或由tmk ev dtdx -=0,知)1()(000--==--⎰tmk ttmk emkv dt ev t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dtdx kdtx d m-=22,022=+dtdx m k dtx d ,其特征方程为 02=+λλmk ,解之得mk -==21,0λλ,故 .21tm k e C C x -+=由 00200,0v emkC dtdx vxt tmk t t t =-====-===,得 ,021kmv C C =-= 于是 ).1()(0tmk ekmv t x --=当+∞→t 时,).(05.1)(0km kmv t x =→所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意.(17)(本题满分12分) 计算曲面积分 ,)1(322233d x d y z d z d x y d y d z x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy z dzdx y dydz xI ⎰⎰∑+∑-++=1)1(322233.)1(3221233dxdy z dzdx y dydz x ⎰⎰∑-++-由高斯公式知d x d y d zz y x d x d y z d z d x y d y d z x ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r)(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r 而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdydxdy z dzdx y dydz x π,故 .32πππ-=-=I【评注】 本题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧(或内侧),再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定.【证】 记1)(-+=nx x x f nn 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n 存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n存在惟一正实数根.n x由01=-+nx x n 与0>n x 知nnx x nnn 110<-=<,故当1>α时,αα)1(0nx n <<.而正项级数∑∞=11n nα收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值.【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以 02262=∂∂-∂∂--xz zx z yy x ,0222206=∂∂-∂∂--+-yz zyz yz y x .令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z xz得 ⎩⎨⎧=-+-=-,0103,03z y x y x故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x由于 02)(22222222=∂∂-∂∂-∂∂-xz zxz x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx z zxzy zyx z yxz02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yz zyz yz yyz yz ,所以 61)3,3,9(22=∂∂=xz A ,21)3,3,9(2-=∂∂∂=yx z B ,35)3,3,9(22=∂∂=yz C ,故03612>=-BAC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3.类似地,由 61)3,3,9(22-=∂∂=---xz A ,21)3,3,9(2=∂∂∂=---yx z B ,35)3,3,9(22-=∂∂=---yz C ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.(20)(本题满分9分)设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.0021*******1111B a naa aa a n nnna a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T-=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.1000120002)1(1000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→n n n a na B 可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n an n a an nnna aA.当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解.当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00000111122221111n nnnA , 故方程组的同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T-=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a aa a n nn n a a A0002111122221111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→10012000010000121111nna , 故方程组的同解方程组为 ⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n nnn a a A22221111=aE+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n nnn22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n nnn22221111的特征值为2)1(,0,,0+n n ,从而A 的特征值为a,a,2)1(,++n n a , 故行列式.)2)1((1-++=n an n a A(21)(本题满分9分) 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321aA 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321-------=------=-λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++--=------λλλλλλ当2=λ是特征方程的二重根,则有,03181622=++-a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18+3a=16,解得 .32-=a当32-=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =--λ 而单根一定只有一个线性无关的特征向量.(22)(本题满分9分) 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于121)()()(==A B P A P AB P ,,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P ,61)()()(}0,1{=-====AB P A P B A P Y X P ,,121)()()(}1,0{=-====AB P B P B A P Y X P)(1)(}0,0{B A P B A P Y X P +-=====32)()()(1=+--AB P B P A P(或32121611211}0,0{=---===Y X P ),故(X,Y)的概率分布为YX 0 10 32 121 161121(II) X, Y 的概率分布分别为X 0 1 Y 0 1 P 43 41 P65 61则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x xx f βββ (I ) 由于 1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx xx dx x xf EX ,令X =-1ββ,解得 1-=X X β,所以参数β的矩估计量为.1ˆ-=X X β(II )似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L in nni i ββββ 当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=-=ni i x nd L d 1ln)(ln βββ,令0)(ln =ββd L d ,可得 ∑==ni ix n1lnβ, 故β的最大似然估计量为 .lnˆ1∑==ni iX nβ【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.。
上海交通大学2004年硕士研究生入学考试试题

上海交通大学2004年硕士研究生入学考试试题811 质量管理学 (解析与答案)一、填空(30分)1、质量管理在发展到全面质量管理阶段之前经历过一下两个发展阶段:(1),(2);各个发展阶段中对质量管理的发展做出突出贡献的代表人物有:(3)、(4)、(5)、(6)。
【答案解析】:(1)质量检验阶段 (2)统计控制阶段 (3)泰勒 (4)修哈特 (5)戴明 (6)费根堡姆考察质量管理的三个发展阶段,第一个阶段代表人物泰勒,第二阶段修哈特、戴明,第三阶段费根堡姆。
出现在第一章第四节。
2、在推行全面质量管理时,要求做到“三全一多样”。
即(1)质量管理,(2)的质量管理,(3)的质量管理,以前全面质量管理所采用的方法是(4),建立(5)是全面质量管理的基本要求。
【答案解析】:(1)全面的 (2)全过程 (3)全员参与 (4)多种多样的 (5)质量管理体系 “三全一多样”是全面质量管理的特点。
考察全面质量管理,出现在教材第二章第一节。
3、排列图的主要用途是:(1);因果图的主要用途是:(2)。
【答案解析】:(1)找出主要问题或影响质量的主要因素 (2)找到质量问题的主要原因 考察旧七种质量工具的主要用途。
出现在第四章。
4、质量认证的最大特点是由(1)进行证明的活动。
【答案解析】: (1)第三方考察质量认证(产品质量认证、质量体系认证)的相关概念。
出现在第三章第六节。
5、质量成本可分为四类:(1),(2),(3),(4)。
【答案解析】:(1)预防成本 (2)鉴定成本 (3)内部故障成本 (4)外部故障成本 考察质量成本的分类,即质量成本项目。
出现在第十四章第四节。
6、工序质量控制的任务,是要把(1)控制在规定的波动范围内,是工序处于受控状态,能稳定地生产合格品。
【答案解析】: (1)系统性原因考察工序质量与控制图的概念。
出现在教材第五章和第六章。
7、控制图的基本思想是:(1)。
按控制图的用途来分类,控制图可以分为(2)控制与(3)控制图,计算控制图中的点子排列缺陷的概率,通常采用(4)分布概率的计算公式,其计算公式为(5)。
2004考研数学真题+答案

.
(B) (D)
Cov( X 1 , Y ) 2 .
D( X 1 Y ) n 1 2 . n
2004 年 • 第 2 页
郝海龙:考研数学复习大全·配套光盘·2004 年数学试题答案和评分参考
三、解答题(本题共 9 小题,满分 94 分. 解答应写出文字说明、证明过程或演算步骤) ( 15 )(本题满分 12 分)
1
由高斯公式知
1
2x dydz 2 y dzdx 3( z
3 3
2
1)dxdy 6( x 2 y 2 z)dxdydz
…… 3 分 …… 9 分
1 1 ( z r 2 )rdz = 12 [ r (1 r 2 ) 2 r 3 (1 r 2 )]dr 2 . 0 2 3 3 2 而 2 x dydz 2 y dzdx 3( z 1)dxdy 3dxdy 3 ,
2 设 e a b e , 证明 ln 2 b ln 2 a
ln t 1 ln t ,则 (t ) ,当 t e 时, (t ) 0 ,即 (t ) 单调减少, …… 9 分 t t2 ln ln e 2 2 4 2 从而 ( ) (e ) ,即 …… 12 分 2 2 ,故 ln 2 b ln 2 a 2 (b a) . e e e
解
2 2 取 1 为 xoy 平面上被圆 x y 1 所围部分的下侧, 记 为由 与 1 围成的空
间闭区域,则 I
1
2x dydz 2 y dzdx 3( z
3 3
2
1)dxdy
2 x 3 dydz 2 y 3 dzdx 3( z 2 1)dxdy.
上海大学2004年数学分析解答

上海大学2004年度研究生入学考试题数学分析1、 判断数列{}n S 是否收敛,其中111,231nn k S k k =⎛⎫=+ ⎪+⎝⎭∑证明你的结论. 2、 在[]0,1区间上随机地选取无穷多个数构成一个数列{}n a ,请运用区间套定理或有限覆盖定理证明该数列{}n a 必有收敛子列.3、 设函数在[]0,1上连续, (0)(1)f f =,证明方程1()()3f x f x =+在[]0,1上一定有根.4、 证明:达布定理:设()f x 在(),a b 上可微, ()12,,x x a b ∈,如果12()()0,f x f x ''<则在12,x x 之间存在一点,使得()0f ξ'=.5、 给出有界函数()f x 在闭区间[],a b 上黎曼可积的定义,并举出一个[],a b 有界但是不可积的函数的例子,并证明你给的函数不是黎曼可积的.6、 闭区间[],a b 上的连续函数()f x ,如果积分()()0ba f x x dx ϕ=⎰对于所有具有连续一 阶导数并且()()0a b ϕϕ==的函数)(x ϕ都成立,证明:()f x .7、判别广义积分dx x x ⎰+∞0sin 的收敛性和绝对收敛性,证明你的结论. 8、证明:2cos 10220lim π=+⎰+→dt t x t x x 9、计算:∑+∞=++-01121n n n )(. 10、试将函数x x f =)(在],0[π上展开成余弦级数,并由此计算:++++++222)12(151311k 11、函数列 ,2,1)(=n x f n ,,在]1,0[上连续,且对任意的),()(],1,0[x f x f x n n −−→−∈∞→,问)(x f 是否也在]1,0[上连续,证明你的结论.12、设函数,3),(33xy y x y x f -+=请在平面上每一点指出函数增加最快的方向,并计算出函数在该方向的方向导数.13、求解viviani 问题,计算球体2222a z y x ≤++被柱面ax y x =+22所截出的那部分体积.14、曲线积分⎰++L y x ydy xdx 22是否与路径无关,其中曲线不过原点,证明你的结论.15、设函数)(x f 可微,若0)(2)(−−→−'++∞→x x f x f ,证明:0)(lim =+∞→x f x .。
上海交通大学《高等代数》《数学分析》历年考研真题汇总(2009-2018真题汇编)

(x − 1)n | (f (x) + 1), (x + 1)n | (f (x) − 1).
Ê! V •ê• F þ n ‘‚5˜m, A • V þ ‚5C†÷v A 3 − 2A 2 − A = −2id, Ù¥ id • V þð C†.
(1) A ´ÄŒé z, e´, žy². (2) - V1 = {(A − 2id)v | v ∈ V }, V2 = {(A 2 − id)v | v ∈ V }. y²: V = V1 ⊕ V2.
8
5 þ° ÏŒÆ 2015 ca¬ïÄ)\Æ•ÁÁK£828 p “ê¤
9
6 þ° ÏŒÆ 2018 ca¬ïÄ)\Æ•ÁÁK£828 p “ê¤
10
7 þ° ÏŒÆ 2010 ca¬ïÄ)\Æ•ÁÁK( 614 êÆ©Û)
11
8 þ° ÏŒÆ 2011 ca¬ïÄ)\Æ•ÁÁK( 614 êÆ©Û)
16
3
1. 2010年þ° ÏŒÆ828《高等代数》a¬ïÄ)\Æ•ÁÁK
˜! ( 20 ©) OŽ1 ª
an1
an2
(1) Dn+1 =
...
an1 −1b1 · · ·
an2 −1b2 · · · ...
ann+1 ann−+11bn+1 · · ·
1 + a1 + b1 a1 + b2
a1bn1 −1
›˜! A ´ n ‘m¥ f˜m.
C†, V1 ´ V A − ØCf˜m. y²: V1
Ö•´ V A − ØC
› ! A, B þ• n ¢é¡ , y²: AB A ŠÑŒu".
4
2004—数一真题、标准答案及解析

2004年全国硕士研究生入学统一考试数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为__________ . (2)已知xxxee f −=′)(,且f(1)=0, 则f(x)=__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分∫−Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dy x dx yd x 的通解为. __________ . (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足**2ABA BA E =+,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B __________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x∫∫∫===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ ](8)设函数f(x)连续,且,0)0(>′f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ−内单调减少. (C) 对任意的),0(δ∈x 有f(x)>f(0) .(D) 对任意的)0,(δ−∈x 有f(x)>f(0) . [ ](9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ ](10)设f(x)为连续函数,∫∫=ttydx x f dy t F 1)()(,则)2(F ′等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ ](11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ ](12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ ](13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α−u. (C) 21α−u . (D) α−1u . [ ](14)设随机变量)1(,,,21>n X X X n L 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=−. [ ] (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b e a b −>−. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66×=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy z dzdx y dydz x I ∫∫∑−++=其中∑是曲面)0(122≥−−=z y x z 的上侧.(18)(本题满分11分)设有方程01=−+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.(19)(本题满分12分)设z=z(x,y)是由0182106222=+−−+−z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. (20)(本题满分9分)设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n nn L L L L L L L L L 试问a 取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (22)(本题满分9分) 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧−=x x x x F ββ其中未知参数n X X X ,,,,121L >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II )β的最大似然估计量.2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为1−=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标. 【详解】 由11)(ln ==′=′xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10−⋅=−x y , 即 1−=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11==′=x y x x ,得10=x ,由此可知所求切线方程为)1(10−⋅=−x y , 即 1−=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知xxxee f −=′)(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f ′的表达式,再积分即可. 【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=′, 即 .ln )(x x x f =′ 积分得 C x dx x x x f +==∫2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)=2)(ln 21x . 【评注】 本题属基础题型,已知导函数求原函数一般用不定积分. (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分∫−Lydx xdy 2的值为π23. 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=−∫∫=.23sin 2202πθθππ=+∫d【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为 221x c x c y +=. 【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可. 【详解】 令te x =,则dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=−, ][11122222222dtdy dt y d x dx dt dt y d x dt dy x dx yd −=⋅+−=,代入原方程,整理得02322=++y dt dydty d , 解此方程,得通解为 .221221xc x c e c ec y t t+=+=−− 【评注】 本题属基础题型,也可直接套用公式,令te x =,则欧拉方程)(222x f cy dx dybx dx y d ax=++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++−(5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91 . 【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =−)63(,再两边取行列式,有363==−A B E A ,而 2763=−E A ,故所求行列式为.91=B 【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= e1.【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可. 【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x ∫+∞−=>λλλλ1}1{=.11eex=−∞+−λλ 【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x∫∫∫===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ]【分析】 先两两进行比较,再排出次序即可.【详解】 0cos 2tan lim cos tan limlim 22002=⋅==+++→→→∫∫x xx dtt dt t x xx x x αβ,可排除(C),(D)选项,又 xx xx dtt dtt x xxx x tan 221sin lim tan sin limlim 2300302⋅==+++→→→∫∫βγ=∞=+→20lim 41xx x ,可见γ是比β低阶的无穷小量,故应选(B). 【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序. (8)设函数f(x)连续,且,0)0(>′f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ−内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ−∈x 有f(x)>f(0) .[ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知0)0()(lim)0(0>−=′→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδU −∈x 时,有0)0()(>−xf x f即当)0,(δ−∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论. (9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(E) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n n n a 发散,排除(A),(D); 又取nn a n 1=,则级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01lim lim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B).(10)设f(x)为连续函数,∫∫=t tydx x f dy t F 1)()(,则)2(F ′等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求)2(F ′即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得∫∫=tt ydx x f dy t F 1)()(=∫∫∫−=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(−=′t t f t F ,从而有 )2()2(f F =′,故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ∫′−′=′)()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系. (12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关,B 的行向量组线性相关. (E) A 的列向量组线性相关,B 的列向量组线性相关. (F) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ×矩阵,B 为s n ×矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B TT=,于是有TB 的列向量组,从而B 的行向量组线性相关,故应选(A). 【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的: 1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.(13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α−u. (C) 21α−u . (D) α−1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论. 【详解】 由标准正态分布概率密度函数的对称性知,αα=−<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=−≤+≥=≥=<−=−α即有 21}{α−=≥x X P ,可见根据定义有21α−=u x ,故应选(C). 【评注】 本题u 相当于分位数,直观地有α α 2/)1(α−o u 21−u(14)设随机变量)1(,,,21>n X X X n L 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ=(B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=−. [ A ] 【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i L ==【详解】 Cov(∑∑==+==ni i n i i X X Cov n X X Cov n X n X Cov Y X 2111111),(1),(1)1,(),=.1121σnDX n = 【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如222222111)1()111()(σσn n n n X n X n X n n D Y X D n −++=++++=+L =222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n −+−=−−−−=−L =.222222σσn n nn n −=− (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b −>−. 【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明. 【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<−=−ξξξ设t t t ln )(=ϕ,则2ln 1)(ttt −=′ϕ, 当t>e 时,,0)(<′t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ, 故 )(4ln ln 222a b e a b −>−.【证法2】 设x e x x 224ln )(−=ϕ,则24ln 2)(e x x x −=′ϕ, 2ln 12)(xxx −=′′ϕ, 所以当x>e 时,,0)(<′′x ϕ 故)(x ϕ′单调减少,从而当2e x e <<时,044)()(222=−=′>′e e e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a e a b e b 22224ln 4ln −>−, 故 )(4ln ln 222a b ea b −>−.【评注】 本题也可设辅助函数为2222),(4ln ln )(e x a e a x ea x x <<<−−−=ϕ或 2222),(4ln ln )(e b x e x b ex b x <<<−−−=ϕ,再用单调性进行证明即可. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66×=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得kv dt dvm−=. 又 dxdv v dt dx dx dv dt dv =⋅=,由以上两式得 dv kmdx −=,积分得 .)(C v k m t x +−= 由于0)0(,)0(0==x v v ,故得0v k mC =,从而 )).(()(0t v v kmt x −=当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =××=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdvm −=, 所以.dt mk v dv −= 两端积分得通解t mkCev −=,代入初始条件00v vt ==解得0v C =,故 .)(0t mk ev t v −=飞机滑行的最长距离为 ).(05.1)(000km kmv e kmv dt t v x tmk==−==∞+−∞+∫或由t m ke v dt dx −=0,知)1()(000−−==−−∫t m kt t mke mkv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dt dxk dt x d m −=22, 022=+dtdxm k dt x d ,其特征方程为02=+λλm k ,解之得m k −==21,0λλ, 故 .21t mk eC C x −+=由 002000,0v e mkC dt dxv x t m kt t t =−====−===,得 ,021k mv C C =−= 于是 ).1()(0t m ke kmv t x −−=当+∞→t 时,).(05.1)(0km kmv t x =→所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意. (17)(本题满分12分)计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ∫∫∑−++=其中∑是曲面)0(122≥−−=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy z dzdx y dydz x I ∫∫∑+∑−++=1)1(322233 .)1(3221233dxdy z dzdx y dydz x ∫∫∑−++−由高斯公式知dxdydz z y x dxdy z dzdx ydydz x ∫∫∫∫∫Ω∑+∑++=−++)(6)1(322222331=rdz r z dr d r )(62011022∫∫∫−+πθ=.2)]1()1(21[12232210ππ=−+−∫dr r r r r而∫∫∫∫≤+∑=−−=−++123322133)1(322y x dxdy dxdy z dzdx y dydz x π,故 .32πππ−=−=I【评注】 本题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧(或内侧),再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).(18)(本题满分11分)设有方程01=−+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定.【证】 记.1)(−+=nx x x f n n 由01)0(<−=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=−+nx x n存在正实数根).1,0(∈n x当x>0时,0)(1>+=′−n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=−+nx x n 存在惟一正实数根.n x由01=−+nx x n与0>n x 知n n x x nn n 110<−=<,故当1>α时,αα)1(0n x n <<.而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证.(19)(本题满分12分)设z=z(x,y)是由0182106222=+−−+−z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. 【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+−−+−z yz y xy x ,所以 02262=∂∂−∂∂−−xz z x z yy x , 0222206=∂∂−∂∂−−+−yzz y z yz y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0yzxz得 ⎩⎨⎧=−+−=−,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+−−+−z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧−=−=−=.3,3,9z y x 由于 02)(22222222=∂∂−∂∂−∂∂−xzz x z x z y ,,02222622=∂∂∂−∂∂⋅∂∂−∂∂∂−∂∂−−yx z z x z y z y x z y x z 02)(22222022222=∂∂−∂∂−∂∂−∂∂−∂∂−y z z y z y z y y zy z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2−=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=−B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3. 类似地,由61)3,3,9(22−=∂∂=−−−x zA ,21)3,3,9(2=∂∂∂=−−−y x zB ,35)3,3,9(22−=∂∂=−−−yzC ,可知03612>=−B AC ,又061<−=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.(20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n L L L L L L L L L试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.00002111122221111B a na a a a a n n n n a a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=L L L L L L L L L L L L L L L L 当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x L 由此得基础解系为,)0,,0,1,1(1T L −=η ,)0,,1,0,1(2T L −=η,)1,,0,0,1(,1T n L L −=−η于是方程组的通解为,1111−−++=n n k k x ηηL 其中11,,−n k k L 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.10000120002)1(10000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡−−++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−+→L L L L L L L L L L L L L L L L n n n a n a B可知2)1(+−=n n a 时,n n A r <−=1)(,故方程组也有非零解,其同解方程组为 ⎪⎪⎩⎪⎪⎨⎧=+−=+−=+−,0,03,0213121n x nx x x x x L L L 由此得基础解系为Tn ),,2,1(L =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111−++=+++=n a n n a an n n n a a A L L L L L L L L . 当0=A ,即a=0或2)1(+−=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000000111122221111L L L L L L L L L L L L L L L n n n n A , 故方程组的同解方程组为 ,021=+++n x x x L 由此得基础解系为,)0,,0,1,1(1T L −=η ,)0,,1,0,1(2T L −=η,)1,,0,0,1(,1T n L L −=−η于是方程组的通解为,1111−−++=n n k k x ηηL 其中11,,−n k k L 为任意常数. 当2)1(+−=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a a a a n n n n a a A L L L L L L L L L L L L L L L L 0002111122221111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−+→1000012000010000121111L L L L L L L L L L L L L L L L n n a , 故方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧=+−=+−=+−,0,03,0213121n x nx x x x x L L L 由此得基础解系为Tn ),,2,1(L =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n n n n a a A L L L L L L L L 22221111=aE +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n L L L L L L L L 22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n L L L L L L L L 22221111的特征值为2)1(,0,,0+n n L ,从而A 的特征值为a,a,2)1(,++n n a L , 故行列式.)2)1((1−++=n a n n a A(21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. 【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321−−−−−−−=−−−−−−=−λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++−−=−−−−−−λλλλλλ 当2=λ是特征方程的二重根,则有,03181622=++−a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++−λλ为完全平方,从而18+3a=16,解得 .32−=a当32−=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =−−λ 而单根一定只有一个线性无关的特征向量.(22)(本题满分9分)设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于121)()()(==A B P A P AB P , ,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=−====AB P A P B A P Y X P , ,121)()()(}1,0{=−====AB P B P B A P Y X P)(1(}0,0{B A P B A P Y X P +−=====32)()()(1=+−−AB P B P A P (或32121611211}0,0{=−−−===Y X P ),故(X,Y)的概率分布为 YX 0 10 32121 1 61121 (II) X, Y 的概率分布分别为X 0 1 Y 0 1 P43 41 P 65 61则61,41==EY EX ,163=DX ,DY=365, E(XY)=121, 故 241)(),(=⋅−=EY EX XY E Y X Cov ,从而 .1515),(=⋅=DY DX Y X Cov XY ρ 【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧−=x x x x F ββ其中未知参数n X X X ,,,,121L >β为来自总体X 的简单随机样本,求:(I )β的矩估计量; (II ) β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x x x f βββ (I ) 由于1);(11−=⋅==∫∫+∞++∞∞−βββββdx x x dx x xf EX , 令X =−1ββ,解得 1−=X X β,所以参数β的矩估计量为 .1ˆ−=X β(II )似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L i n n n i i L L ββββ当),,2,1(1n i x i L =>时,0)(>βL ,取对数得∑=+−=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=−=n i i x n d L d 1ln )(ln βββ, 令0)(ln =ββd L d ,可得 ∑==n i ixn 1ln β, 故β的最大似然估计量为.ln ˆ1∑==n i iXnβ 【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.。
上海交大2004考研数学分析

2004年上海交通大学 数学分析一(14)设lim n n a a →∞=,证明22lim221anna a a n n =+++∞→ 证 因2n x n =∞ ,故利用Stolz 公式,11limlim n n n n n n n ny y yx x x +→∞→∞+-=-,得12112222(1)1limlim lim lim (1)212n n n n n n n a a na n a n aa n n n n ++→∞→∞→∞→∞+++++===+-+ 二(14)证明2sin()x 在[)+∞,0上不一致连续.证因n x =n y =22sin sin 1n n x y -=,0n n x y -=-=→,故2sin()x 在[)+∞,0上不一致连续.三(14)设)(x f 在[]a 2,0上连续,且)0(f =)2(a f ,证明∃0x ∈[]a ,0,使)(0x f =)(0a x f +证 作()()()g x f x a f x =+-([]0,x a ∈),则()g x 在[]0,a 上连续,因)0(f =)2(a f ,故(2)(0)g a g =-,情形1 若(0)0g =,则取00x =,则)(0x f =)(0a x f +, 情形2 若(0)0g ≠,则因2(2)(0)(0)0g a g g =-<,故由介值定理知,存在[]00,x a ∈,使得0()0g x =,即)(0x f =)(0a x f +.四(14)证明不等式x π2<x sin <x ,⎪⎭⎫ ⎝⎛∈2,0πx证 作sin ()x f x x =,π0,2x ⎛⎫∈ ⎪⎝⎭,则因22cos sin cos ()(tan )0x x x xf x x x x x-'==-<,故sin ()x f x x =在π0,2⎛⎫⎪⎝⎭上严格单调减少,而0lim ()1x f x →=,π22lim ()πx f x →=, 因此,在π0,2⎛⎫ ⎪⎝⎭上,有2sin ()1πx f x x <=<,即x π2<x sin <x .五 (14) 设()d af x x +∞⎰收敛,且)(x f 在[)+∞,a 上一致连续,证明)(lim x f x +∞→= 0.证 因)(x f 在[)+∞,a 上一致连续,故0ε∀>,0δ∃>,使得当[)12,,t t a ∈+∞且12t t δ-<时,有12()()2f t f t ε-<,令(1)()d a n n a n u f x x δδ++-=⎰,则由积分第一中值定理得,[](1),n x a n a n δδ∃∈+-+,使得(1)()d ()a n n n a n u f x x f x δδδ++-==⎰.因()d af x x +∞⎰收敛,故级数1n n u ∞=∑收敛,从而0n u →,即()0n f x δ→,也即()0n f x →,故对上述的ε,存在N +∈ ,使得当n N >时,()2n f x ε<.取X a N δ=+,则当x X >时,因[)[)0,(1),k x a a k a k δδ∞=∈∞=+-+故存在惟一的k +∈ ,使得[)(1),x a k a k δδ∈+-+,易见k N >,且k x x δ-<,从而()()()()22k k f x f x f x f x εεε≤+-<+=六(14)设211n x n -=,121d n n n x x x +=⎰,1,2,n = ,证明级数()∑∞=--111n nn x 收敛.解. 11211d ln |ln(1)n n n n nx x x x n ++===+⎰,因2121n nS S k+=+,故只要证 ()1211111ln(1)nnk n k k k S x kk -==⎡⎤=-=-+⎢⎥⎣⎦∑∑22111()2n k k k =⎡⎤=+⎢⎥⎣⎦∑ 收敛即可.七(14)设)(x f 在[]1,0上连续,)1(f = 0 ,n n x x f x g )()(= ,1,2,n = , 证明)}({x g n 在[]1,0上一致收敛.八(12)设()f x 在[]1,0上连续,证明10lim ()d n n n x f x x →∞⎰=)1(f .证 (1)(令n t x =,则10()d n n x f x x ⎰111()d n nt f t t =⎰,(2)因()f x 在[]1,0上连续,故0M ∃>,使得()f x M ≤,[]0,1x ∈,(3)0ε∀>,记3a Mε=,不妨设01a <<,则11110()d ()d d 3aa an nnnt f t t t f t t M t Ma ε≤≤==⎰⎰⎰,(4)111111111()d (1)[()(1)]d ()(1)d n nnnnnaa at f t t f tf t f t t f t f t -=-≤-⎰⎰⎰11111()(1)(1)(1)d nnnnat f t t f t f f t =-+-⎰1111()(1)d (1)1d nnaaf t f t f t t ≤-+-⎰⎰(5)因()f x 在[]1,0上连续,故()f x 在[]1,0上一致连续,故对上述的正数ε,0δ∃>,当[]12,0,1x x ∈且12x x δ-<时,有12()()3(1)f x f x a ε-<-(6)因1lim 1nn a →∞=,记min{,}3(1)M a εεδ*=-,则存在正整数N ,使得当n N >时,有11na ε*-<,(7)当(,1)t a ∈时,有111111nnnt t a -=-≤-,从而当n N >时,有1111()(1)d (1)1d 33nnaaf t f t f t t εε-+-<+⎰⎰(8)由(3)和(7)知,当n N >时,有1110()d (1)nnt f t t f -⎰1111102()d ()d (1)33an n n na t f t t t f t t f εεε≤+-<+=⎰⎰九(12)设1a >0,1+n a =n a +n a 1,证明n =1证 (1)要证n =1 ,只要证2lim 12nn a n →∞=,即只要证221lim 1(22)2n nn a a n n +→∞-=+-,即证221lim()2n n n a a +→∞-= (2)因1+n a =n a +n a 1,故110n n n a a a +-=>,1211n n na a a +=+ 2211112211()()112n n n n n n n n n n na a a a a a a a a a a +++++-=-+==++=+ 因此只要证21lim0n na →∞=,即只要证lim n n a →∞=∞ (3)由110n n na a a +-=>知,{}n a 单调增加,假如{}n a 有上界,则{}n a 必有极限a ,由1+n a =n a +n a 1知,a =a +1a,因此10a =,矛盾. 这表明{}n a 单调增加、没有上界,因此lim n n a →∞=∞. (证完)十(28)计算下述积分:1.d x y ⎰⎰,其中D 是矩形区域x 1≤,20≤≤y解 记21{(,)|1,02,0}D x y x y y x =≤≤≤-≤22{(,)|1,02,0}D x y x y y x =≤≤≤≤-,2d d d DD D x y x y x y =+⎰⎰⎰⎰⎰⎰2112221122211d ()d d ()d x x x x y y x y x y --=-+-⎰⎰⎰⎰332211221122()d (2)d 33x x x x --=+-⎰⎰ 332211220044()d (2)d 33x x x x =+-⎰⎰ π143400416d cos d 33x x t t =+⎰⎰()x t =这里 π2401161cos2d 332t t +⎛⎫=+ ⎪⎝⎭⎰ π40141cos412cos2d 332t t t +⎛⎫=+++ ⎪⎝⎭⎰ π40143sin 4sin 23328t t t ⎡⎤=+++⎢⎥⎣⎦ 143ππ5133823⎛⎫=++=+ ⎪⎝⎭ 2.22d d ()d d d d Syz y z x z y z x xy x y +++⎰⎰,其中S 是曲面224z x y +=-上0≥y 的那部分正侧.解 记22{(,,)|4,0}x y z x z y ∑=+≤=(取下侧),22{(,,)|04}V x y z y x z =≤≤--,则V S ∂=+∑,由高斯公式知,2222d d ()d d d d ()d d d 0SS Vyz y z x z y z x xy x y x z x y z +∑∑+++=-=++⎰⎰⎰⎰⎰⎰⎰⎰⎰2242222()d d d d ()d d Vx z x z x y z yx z x z +=+=+⎰⎰⎰⎰42012π(4)d 4y y =-⎰ 430π32π(4)63y ⎡⎤=--=⎣⎦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n→∞
数学分析
a1 + 2a 2 + L + na n a = 2 n2
证 因 xn = n 2
lim
∞ ,故利用 Stolz 公式,lim
n→∞
yn+1 − yn y = lim n ,得 xn+1 − xn n→∞ xn
a1 + 2a2 + L + nan n +1 a (n + 1)an+1 lim lim lim a = = = n +1 n→∞ n →∞ ( n + 1) 2 − n 2 n →∞ 2n + 1 n →∞ 2 n2
二(14)证明 sin( x 2 ) 在 [0,+∞ ) 上不一致连续.
xn − yn = 2nπ +
w w
1k et
∞
∃xn ∈ [ a + (n − 1)δ , a + nδ ] ,使得 un =
Hale Waihona Puke ana + nδ a +( n −1)δ
令 un =
∫
f ( x)d x ,则由积分第一中值定理得,
∫
g.
ε
2 +
a + nδ
f ( x)d x = δ f ( xn ) .
co
2
+
t1 , t2 ∈ [ a, +∞ ) 且 t1 − t2 < δ 时,有 f (t1 ) − f (t2 ) <
2 π 四(14)证明不等式 x < sin x < x , x ∈ 0,
w
w w
证 作 g ( x) = f ( x + a ) − f ( x) ( x ∈ [ 0, a ] ) ,则 g ( x) 在 [ 0, a ] 上连续,
π
.2
1k et
证 作 f ( x) =
sin x π , x ∈ 0, ,则因 x 2
0
3M
.2
(3) ∀ε > 0 ,记 a =
ε
,不妨设 0 < a < 1 ,则
a 1 n
1k et
1 n 0
(2)因 f ( x) 在 [0,1] 上连续,故 ∃M > 0 ,使得 f ( x) ≤ M , x ∈ [ 0,1] ,
an
a 0 1 n
1
co
1
证明 {g n ( x)} 在 [0,1] 上一致收敛.
f ( x) ≤ f ( xk ) + f ( x) − f ( xk ) <
ε
2
=ε
六(14)设 x2 n−1 = 收敛. 解. x2 n = ∫
S2 n = ∑ ( −1)
k =1 n k −1 n +1
∞ n +1 1 1 d x , n = 1, 2,L ,证明级数 ∑ (− 1)n−1 x n , x2 n = ∫ n n x n =1
n
1 1 1 n +1 d x = ln x |n = ln(1 + ) , 故只要证 因 S2 n+1 = S 2 n + , k x n
n
1 n 1 1 1 xk = ∑ − ln(1 + ) = ∑ 2 + o( 2 ) 收敛即可. k k =1 2k k k =1 k
an
2
g.
π − 2 nπ = 2
1 → 0, π 2nπ + + 2nπ 2
co
m
证 因 xn = 2nπ +
π 2 2 , yn = 2nπ , sin xn − sin yn = 1, 2
f ′( x) =
x cos x − sin x cos x = 2 ( x − tan x) < 0 , x2 x sin x π 2 在 0, 上严格单调减少, lim ( ) 而 lim f ( x) = 1, f x = , π x →0 x π x→ 2
故 sin( x 2 ) 在 [0,+∞ ) 上不一致连续.
三(14)设 f ( x) 在 [0,2a ] 上连续,且 f (0) = f (2a) ,证明 ∃ x0 ∈ [0, a ] ,使
f ( x0 ) = f ( x0 + a)
因 f (0) = f (2a) ,故 g (2a ) = − g (0) , 情形 1 若 g (0) = 0 ,则取 x0 = 0 ,则 f ( x0 ) = f ( x0 + a) , 情形 2 若 g (0) ≠ 0 ,则因 g (2a ) g (0) = − g 2 (0) < 0 ,故由介值定理 知,存在 x0 ∈ [ 0, a ] ,使得 g ( x0 ) = 0 ,即 f ( x0 ) = f ( x0 + a) .
2
故 f ( x) =
2 sin x π 2 < 1 ,即 x < sin x < x . 因此,在 0, 上,有 < f ( x) = π x π 2
五 (14) 设
x → +∞
∫
+∞ a
f ( x)d x 收 敛 , 且 f ( x) 在 [a,+∞ ) 上 一 致 连 续 , 证 明
lim f ( x) = 0.
证 因 f ( x) 在 [a,+∞ ) 上一致连续,故 ∀ε > 0 , ∃δ > 0 ,使得当
a +( n −1)δ
a
.2
因∫
+∞
f ( x)d x 收敛,故级数 ∑ un 收敛,从而 un → 0 ,即
n =1
δ f ( xn ) → 0 ,也即 f ( xn ) → 0 ,故对上述的 ε ,存在 N ∈
∫
1 1 n a
a
0
t f (t )d t ≤ ∫ t
1 n
七(14)设 f ( x) 在 [0,1] 上连续, f (1) = 0 , g n ( x) = f ( x) x n , n = 1, 2,L ,
g.
0
1 1 0
八(12)设 f ( x) 在 [0,1] 上连续,证明 lim n ∫ x n f ( x)d x = f (1) .
1 n→∞
证 (1) (令 t = x n ,则 n ∫ x n f ( x)d x = ∫ t n f (t n )d t ,
ε
,
m
,使得
w
当 n > N 时, f ( xn ) <
ε
2
.
取 X = a + Nδ ,则当 x > X 时,因
x ∈ [ a, ∞ ) = U [ a + (k − 1)δ , a + kδ )
k =0
∞
故存在惟一的 k ∈
x − xk < δ ,从而
+
,使得 x ∈ [ a + (k − 1)δ , a + kδ ) ,易见 k > N ,且