南开大学2003年数学分析考研试题及解答

合集下载

南开大学03年数学分析答案

南开大学03年数学分析答案

一、 设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w解:令u=x+y,v=x-y,z=x则zv u x f f f w ++=;)1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w二、 设数列}{n a 非负单增且a a n n =∞→lim ,证明a a a a n n n n n n =+++∞→121][lim解:因为an 非负单增,故有nn n nnn n n n na a a a a 1121)(][≤+++≤由a a n n =∞→lim ;据两边夹定理有极限成立。

三、 设⎩⎨⎧≤>+=0,00),1ln()(2x x x x x f α试确定α的取值范围,使f(x)分别满足:(1) 极限)(lim 0x f x +→存在(2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为)(lim 0x f x +→=)1ln(lim 20x x x ++→α=)]()1(2[lim 221420n nn x x o nx x x x +-++--→+α极限存在则2+α0≥知α2-≥(2)因为)(lim 0x f x -→=0=f(0)所以要使f(x)在0连续则2->α(3)0)0(='-f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l++⎰)(22与积分路径无关 解;令U=22y x +则ydy xdx y x f l ++⎰)(22=21du u f l )(⎰又f(x)在R 上连续故存在F (u )使dF(u)=f(u)du=ydy xdx y x f ++)(22所以积分与路径无关。

(此题应感谢小毒物提供思路)四、 设f(x)在[a,b]上可导,)2(=+b a f 且Mx f ≤')(证明2)(4)(a b Mdx x f b a-≤⎰证:因f(x)在[a,b]可导,则由拉格朗日中值定理,存在)2)(()2()(),(ba x fb a f x f b a +-'=+-∈ξξ使即有dx ba x f dx x f baba)2)(()(+-'=⎰⎰ξ222)(4])2()2([)2)((a b M dx b a x dx x b a M dx b a x f bb a ba ab a-=+-+-+≤+-'≤⎰⎰⎰++ξ六、设}{n a 单减而且收敛于0。

数学分析_考研资料

数学分析_考研资料

2003南开大学年数学分析一、设),,(x y x y x f w-+=其中),,(z y x f 有二阶连续偏导数,求xy w二、设数列}{n a 非负单增且a a nn =∞→lim ,证明a a a a nn n n n n =+++∞→121][lim三、设⎩⎨⎧≤>+=0,00),1ln()(2x x x x x f α试确定α的取值范围,使f(x)分别满足: (1) 极限)(lim 0x f x +→存在 (2) f(x)在x=0连续(3) f(x)在x=0可导 四、设f(x)在R 连续,证明积分ydy xdx y x f l++⎰)(22与积分路径无关 四、设f(x)在[a,b]上可导,0)2(=+b a f 且M x f ≤')(,证明2)(4)(a b Mdx x f b a -≤⎰ 六、设}{n a 单减而且收敛于0。

∑n a n sin 发散(1) 证明∑收敛n an sin(2) 证明1l i m =∞→nn n v u 其中)s i ns i n (k ak k a u k n +=∑;)sin sin (k ak k ak v n -=∑七、设dx xxe t F tx sin )(1⎰∞+-= 证明 (1)dx xxe txsin 1⎰∞+-在),0[+∞一致收敛 (2))(t F 在),0[+∞连续八、命)}({x f n 是[a,b]上定义的函数列,满足 (1)对任意0x ],[b a ∈)}({0x f n 是一个有界数列 (2)对任意0>ε,存在一个εδδ<-<-∈>)()(,],[,,0y f x f n ,y x b a y x n n 有对一切自然数时且当求证存在一个子序列)}({x f kn在[a,b]上一致收敛中科院2006年数学分析试题1求a,b 使下列函数在x=0处可导:21ax b y x +≥⎧=⎨+⎩当x 0;当x<0.2 1110,,.1n n n a ∞∞==>+∑∑n n 1已知级数发散求证级数也发散a a 3 1(1).nx dx ≥-⎰m 设m,n 0为整数,求积分x 的值4 0().aaa dx f x dx -=⎰⎰xf(x)设a>0,f(x)是定义在[-a,a]上的连续的偶函数,则1+e5()[,]f x a b ''设函数在含有的某个开区间内二次可导且f (a)=f (b)=0,24(,)||()()|.()a b f b f a b a ξξ''∈)≥--则存在使得|f (6 122[,]222()[,],|()||'()|),1()()|'()|.2ba b abbaaf x a b f x f t dt f x dx b a f t dt ∈≤≤-⎰⎰⎰x 设实值函数及其一阶导数在区间上连续而且f(a)=0,则max72222n D C u ()C Du uds dxdy n u u ∂∂∂=+∂∂∂⎰⎰⎰ 设是平面区域的正向边界线的外法线,则8 设曲线2222x :1y a bΓ+=的周长和所围成的面积分别为L 和S ,还令2222(2)J b x xy a y ds Γ=++⎰ ,则22S LJ π=.9 1n 110(1)32n n -∞=--∑⎰3dx 计算积分的值,并证明它也等于数项级数的和。

2003数学四--考研数学真题详解

2003数学四--考研数学真题详解

2003年全国硕士研究生入学统一考试经济数学四试题详解及评析一、填空题(1)极限xx x 20)]1ln(1[lim ++→= .【答】 2e【详解】 xx x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e++→=.2)1ln(2lim)]1ln(1ln[2lim 00e ee x x x x x x ==+++→→(2)dx e x x x∫−−+11)(= .【答】 )21(21−−e 【详解】dx ex x x∫−−+11)(=dx xedx ex xx∫∫−−−−+1111=dx ex x−−∫111122x x xe dx xde −−+=−∫∫=1102()xx xe e dx −−−−∫ =)21(21−−e .(3)设a>0,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则∫∫−=Ddxdy x y g x f I )()(= .【答】2a 【详解】 ∫∫−=Ddxdy x y g x f I )()(=dxdy ax y x ∫∫≤−≤≤≤10,102=.])1[(212112a dx x x a dy dx ax x=−+=∫∫∫+(4)设A,B 均为三阶矩阵,E 是三阶单位矩阵. 已知AB=2A+B,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡202040202,则 1)(−−E A = .【答】 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 【详解】 由AB=2A+B, 知 AB-B=2A-2E+2E, 即有 E E A B E A 2)(2)(=−−−, E E B E A 2)2)((=−−, E E B E A =−⋅−)2(21)(, 可见 1)(−−E A =)2(21E B −=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100.(5)设n 维向量0,),0,,0,(<=a a a T"α;E 为n 阶单位矩阵,矩阵 TE A αα−=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= . 【答】 -1【详解】 由题设,有)1)((T Ta E E AB αααα+−= =TT T T a a E αααααααα⋅−+−11=TT T T a a E αααααααα)(11−+−=TT T a a E αααααα21−+−=E aa E T=+−−+αα)121(,于是有 0121=+−−a a ,即 0122=−+a a ,解得 .1,21−==a a 由于a<0 ,故a=-1.(6)设随机变量X 和Y 的相关系数为0.5, EX=EY=0,222==EY EX, 则2)(Y X E += .【答】 6 【详解】 因为2)(Y X E +=22)(2EY XY E EX ++ =4+]),([2EY EX Y X Cov ⋅+=4+2.625.024=××+=⋅⋅DY DX XY ρ二、选择题(1)曲线21x xe y =(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线. 【答】 [ D]【详解】 当±∞→x 时,极限y x ±∞→lim 均不存在,故不存在水平渐近线;又因为 1lim lim 21==∞→∞→x x x e x y ,0)(lim 1=−∞→x xe x x ,所以有斜渐近线y=x.另外,在 x=0 处21x xe y =无定义,且∞=→1lim x x xe ,可见 x=0为铅直渐近线.故曲线21x xe y =既有铅直又有斜渐近线,应选(D).(2)设函数)(1)(3x x x f ϕ−=,其中)(x ϕ在x=1处连续,则0)1(=ϕ是f(x)在x=1处可导的(A) 充分必要条件. (B )必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. 【答】 [ A ] 【详解】 因为)1(3)(11lim 1)1()(lim 311ϕϕ=⋅−−=−−++→→x x x x f x f x x , )1(3)(11lim 1)1()(lim 311ϕϕ−=⋅−−−=−−−−→→x x x x f x f x x , 可见,f(x)在x=1处可导的充分必要条件是 .0)1()1(3)1(3=⇔−=ϕϕϕ 故应选(A).(3)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. 【答】 [ A ]【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00=′y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).(4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B . 已知矩阵A 相似于B ,则秩(A-2E)与秩(A-E)之和等于(A) 2. (B) 3. (C) 4. (D) 5. 【答】 [ C ]【详解】 因为矩阵A 相似于B ,于是有矩阵A-2E 与矩阵B-2E 相似,矩阵A-E 与矩阵B-E 相似,且相似矩阵有相同的秩,而秩(B-2E)=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−,秩(B-E)=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−, 可见有 秩(A-2E)+秩(A-E)= 秩(B-2E)+秩(B-E)=4,故应选(C). (5)对于任意二事件A 和B(A) 若φ≠AB ,则A,B 一定独立. (B) 若φ≠AB ,则A,B 有可能独立. (C) 若φ=AB ,则A,B 一定独立. (D) 若φ=AB ,则A,B 一定不独立. 【答】 [ B ]【详解】 φ≠AB 推不出P(AB)=P(A)P(B), 因此推不出A,B 一定独立,排除(A); 若φ=AB ,则P(AB)=0,但P(A)P(B)是否为零不确定,因此(C),(D) 也不成立,故正确选项为(B).(6)设随机变量X 和Y 都服从正态分布,且它们不相关,则 (A) X 与Y 一定独立. (B) (X,Y)服从二维正态分布. (C) X 与Y 未必独立. (D) X+Y 服从一维正态分布. 【答】 [ C ]【详解】 只有当(X,Y) 服从二维正态分布时,X 与Y 不相关⇔X 与Y 独立,本题仅仅已知X 和Y 服从正态分布,因此,由它们不相关推不出X 与Y 一定独立,排除(A); 若X 和Y 都服从正态分布且相互独立,则(X,Y)服从二维正态分布,但题设并不知道X,Y 是否独立,可排除(B); 同样要求X 与Y 相互独立时,才能推出X+Y 服从一维正态分布,可排除(D).故正确选项为(C).三 、(本题满分8分) 设 21,0(,)1(11sin 1)(∈−−−=x x x x x f πππ 试补充定义f(0),使得f(x)在]21,0[上连续.【详解】)(lim 0x f x +→= -.1π+xx xx x ππππsin sin lim 0−+→= -220sin lim 1ππππx x x x −++→= -xxx 202cos lim 1πππππ−++→= -2202sin lim 1ππππxx +→+ = -.1π由于f(x)在]21,0(上连续,因此定义π1)0(−=f ,使f(x)在]21,0[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vfu f ,又)](21,[),(22y x xy f y x g −=,求.2222ygx g ∂∂+∂∂ 【详解】v f x u f y x g ∂∂+∂∂=∂∂,.vfy u f x y g ∂∂−∂∂=∂∂ 故 v f v f x v u f xy u f y x g ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222, .2222222222v f v f y u v f xy u f x y g ∂∂−∂∂+∂∂∂−∂∂=∂∂所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x+=∫∫−+−π其中积分区域D=}.),{(22π≤+y x y x【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I Dy x)sin(22)(22+=∫∫+−π=.sin 2022dr r re d e r ∫∫−πππθ令2r t =,则 tdt e e I t sin 0∫−=πππ.记 tdt e A t sin 0∫−=π,则t t de e A −−∫−=int 0π=]cos sin [0∫−−−−ππtdt e te t t=∫−−πcos t tde =]sin cos [0tdt e te t t ∫−−+−ππ=.1A e −+−π因此 )1(21π−+=e A , ).1(2)1(2πππππe e e I +=+=−六、(本题满分9分)设a>1,at a t f t−=)(在),(+∞−∞内的驻点为).(a t 问a 为何值时,t(a)最小?并求出最小值.【详解】 由0ln )(=−=′a a a t f t,得唯一驻点.ln ln ln 1)(aaa t −= 考察函数aaa t ln ln ln 1)(−=在a>1时的最小值. 令 0)(ln ln ln 1)(ln ln ln 11)(22=−−=−−=′a a aa aa a a t ,得唯一驻点 .ee a =当ee a >时,0)(>′a t ;当ee a <时,0)(<′a t ,因此ee t e11)(−=为极小值,从而是最小值.七、(本题满分9分)设y=f(x) 是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM的面积之和为3163+x ,求f(x)的表达式.【详解】 根据题意,有316)()](1[213+=++∫x x dt t f x f x .两边关于x 求导,得.21)()(21)](1[212x x f x f x x f =−′++当0≠x 时,得.1)(1)(2xx x f x x f −=−′ 此为标准的一阶线性非齐次微分方程,其通解为 ]1[)(121C dx e xx ex f x dxx+∫−∫=−−−∫=]1[ln 2ln C dx e xx ex x+−−∫=)1(22C dx xx x +−∫ =.12Cx x ++ 当x=0时,f(0)=1.由于x=1时,f(1)=0 ,故有2+C=0,从而C=-2. 所以 .)1(21)(22−=−+=x x x x f八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值; (2) 在时间段[0,T]上的平均剩余量.【详解】 (1) 在时刻t 商品的剩余量为 )()(t x A t y −==kt A −, ].,0[T t ∈ 由kt A −=0,得 TA k =, 因此 ,)(t TAA t y −= ].,0[T t ∈ (2) 依题意,)(t y 在[0,T]上的平均值为∫=Tdt t y T y 0)(1 =∫−T dt t T A A T 0)(1=.2A因此在时间段[0,T] 上的平均剩余量为.2A九、(本题满分13分)设有向量组(I ):T)2,0,1(1=α,T)3,1,1(2=α,Ta )2,1,1(3+−=α和向量组(II ):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I )与(II )等价?当a 为何值时,向量组(I )与(II )不等价?【详解】 作初等行变换,有),,,,(321321βββααα#=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++−463232112110221111a a a a ###⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−+−+−−→111100112110111201a a a a ###.(1) 当1−≠a 时,有行列式[]01321≠+=a ααα,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解. 所以,321,,βββ可由向量组(I )线性表示.同样,行列式[]06321≠=βββ,秩(3),,321=βββ,故321,,ααα可由向量组(II )线性表示. 因此向量组(I )与(II )等价.(2) 当a=-1时,有),,,,(321321βββααα#⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−→202000112110111201###. 由于秩(321,,ααα)≠秩(),,1321βααα#,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 因此,向量组(I )与(II )不等价.十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求a,b 和λ的值.【详解】 矩阵*A 属于特征值λ的特征向量为α, 由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且 λαα=*A.两边同时左乘矩阵A ,得 αλαA AA =*, αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ, 由此,得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=+.1,22,3λλλA b a b A b A b (1)(2)(3) 由式(1),(2)解得1=b或2−=b ;由式(1),(3)解得 a=2. 由于 42311121112=−==a aA ,根据(1)式知,特征向量α所对应的特征值.343bb A+=+=λ 所以,当1=b 时,1=λ;当2−=b 时,.4=λ十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【详解】 易见,当x<1时,F(x)=0; 当x>8 时,F(x)=1.对于]8,1[∈x ,有.131)(3132−==∫x dt t x F x设G(y)是随机变量Y=F(X)的分布函数.显然,当0<y 时,G(y)=0;当1≥y 时,G(y)=1.对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤==})1({}1{33+≤=≤−y X P y X P=.])1[(3y y F =+于是,Y=F(X)的分布函数为 0,0,(),01,1, 1.y G y y y y <⎧⎪=≤<⎨⎪≥⎩十二、(本题满分13分)对于任意二事件A 和B ,1)(0,1)(0<<<<B P A P ,)()()()()()()(B P A P B P A P B P A P AB P −=ρ称做事件A 和B 的相关系数.(1) 证明事件A 和B 独立的充分必要条件是其相关系数等于零;(2) 利用随机变量相关系数的基本性质,证明.1≤ρ【详解】 (1) 由ρ的定义,可见0=ρ当且仅当P(AB)-P(A)P(B)=0,而这恰好是二事件A 和B 独立的定义,即0=ρ是A 和B 独立的充分必要条件.(2) 考虑随机变量X 和Y:A A X 不出现若出现若⎩⎨⎧=,0,1 .,0,1不出现若出现若B B Y ⎩⎨⎧= 由条件知,X 和Y 都服从0—1分布:⎟⎟⎠⎞⎜⎜⎝⎛)((10~A P A P X ,.)((10~⎟⎟⎠⎞⎜⎜⎝⎛B P B P Y 易见)(A P EX =, )(B P EY =;)()(A P A P DX =, )()(B P B P DY =;).()()(),cov(B P A P AB P EXEY EXY Y X −=−= 因此,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二随机变量相关系数的基本性质,可见 .1≤ρ。

2003年全国硕士入学统考数学(一)试题及答案 .doc

2003年全国硕士入学统考数学(一)试题及答案 .doc

2003年全国硕士入学统考数学(一)试题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) )1ln(12)(cos lim x x x +→ =e1 .【分析】 ∞1型未定式,化为指数函数或利用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算求极限均可.【详解1】 )1ln(12)(cos lim x x x +→=xx x ecos ln )1ln(1lim20+→,而 212cos sin lim cos ln lim )1ln(cos ln lim02020-=-==+→→→x x xx x x x x x x , 故 原式=.121ee=-【详解2】 因为 2121lim )1ln(1)1(cos lim 2202-=-=+⋅-→→xxx x x x , 所以 原式=.121ee=-(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是542=-+z y x . 【分析】 待求平面的法矢量为}1,4,2{-=n ρ,因此只需确定切点坐标即可求出平面方程, 而切点坐标可根据曲面22y x z +=切平面的法矢量与}1,4,2{-=n ρ平行确定.【详解】 令 22),,(y x z z y x F --=,则x F x 2-=',y F y 2-=', 1='z F .设切点坐标为),,(000z y x ,则切平面的法矢量为 }1,2,2{00y x --,其与已知平面042=-+z y x 平行,因此有11422200-=-=-y x ,可解得 2,100==y x ,相应地有 .520200=+=y x z故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x .(3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = 1 .【分析】 将)()(2ππ≤≤-=x x x f 展开为余弦级数)(cos 02ππ≤≤-=∑∞=x nx ax n n,其系数计算公式为⎰=ππ0cos )(2nxdx x f a n .【详解】 根据余弦级数的定义,有 x d x xdx x a 2sin 12cos 22022⎰⎰=⋅=ππππ=⎰⋅-πππ2]22sin 2sin [1xdx x xx=⎰⎰-=πππππ]2cos 2cos [12cos 1xdx xx x xd=1.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为⎪⎪⎭⎫⎝⎛--2132 .【分析】 n 维向量空间中,从基n ααα,,,21Λ到基n βββ,,,21Λ的过渡矩阵P 满足 [nβββ,,,21Λ]=[nααα,,,21Λ]P ,因此过渡矩阵P 为:P=[121],,,-n αααΛ[],,,21n βββΛ.【详解】根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P=[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ.=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-(5)设二维随机变量(X,Y)的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P41 . 【分析】 已知二维随机变量(X,Y)的概率密度f(x,y),求满足一定条件的概率}),({0z Y X g P ≤,一般可转化为二重积分}),({0z Y X g P ≤=⎰⎰≤0),(),(z y x g dxdy y x f 进行计算.【详解】 由题设,有 =≤+}1{Y X P ⎰⎰⎰⎰≤+-=121016),(y x xxxdy dx dxdy y x f=.41)126(2102=-⎰dx x x(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是)49.40,51.39( .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ 【分析】 已知方差12=σ,对正态总体的数学期望μ进行估计,可根据)1,0(~1N nX μ-,由αμα-=<-1}1{2u n X P 确定临界值2αu ,进而确定相应的置信区间. 【详解】 由题设,95.01=-α,可见.05.0=α 于是查标准正态分布表知.96.12=αu 本题n=16, 40=x , 因此,根据 95.0}96.11{=<-nX P μ,有 95.0}96.116140{=<-μP ,即 95.0}49.40,51.39{=P ,故μ的置信度为0.95的置信区间是)49.40,51.39( .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) [ C ]【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21Λ==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).(3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则 (A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点. [ A ]【分析】 由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号.【详解】 由1)(),(lim2220,0=+-→→y x xyy x f y x 知,分子的极限必为零,从而有f(0,0)=0, 且222)(),(y x xy y x f +≈- y x ,(充分小时),于是.)()0,0(),(222y x xy f y x f ++≈-可见当y=x 且x 充分小时,04)0,0(),(42>+≈-x x f y x f ;而当y= -x 且x 充分小时,04)0,0(),(42<+-≈-x x f y x f . 故点(0,0)不是f(x,y)的极值点,应选(A).(4)设向量组I :r ααα,,,21Λ可由向量组II :s βββ,,,21Λ线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21Λ可由向量组II :s βββ,,,21Λ线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21Λ可由向量组II :s βββ,,,21Λ线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).(5)设有齐次线性方程组Ax=0和Bx=0, 其中A,B 均为n m ⨯矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B); ② 若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解. 以上命题中正确的是(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④. [ B ] 【分析】 本题也可找反例用排除法进行分析,但① ②两个命题的反例比较复杂一些,关键是抓住③ 与 ④,迅速排除不正确的选项.【详解】 若Ax=0与Bx=0同解,则n-秩(A)=n - 秩(B), 即秩(A)=秩(B),命题③成立,可排除(A),(C);但反过来,若秩(A)=秩(B), 则不能推出Ax=0与Bx=0同解,如⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B ,则秩(A)=秩(B)=1,但Ax=0与Bx=0不同解,可见命题④不成立,排除(D),故正确选项为(B).(6)设随机变量21),1)((~XY n n t X =>,则 (A) )(~2n Y χ. (B) )1(~2-n Y χ.(C) )1,(~n F Y . (D) ),1(~n F Y . [ C ] 【分析】 先由t 分布的定义知nV U X =,其中)(~),1,0(~2n V N U χ,再将其代入21XY =,然后利用F 分布的定义即可. 【详解】 由题设知,nV U X =,其中)(~),1,0(~2n V N U χ,于是21X Y ==122U n V U n V =,这里)1(~22χU ,根据F 分布的定义知).1,(~12n F X Y =故应选(C).三 、(本题满分10分)过坐标原点作曲线y=lnx 的切线,该切线与曲线y=lnx 及x 轴围成平面图形D.(1) 求D 的面积A;(2) 求D 绕直线x=e 旋转一周所得旋转体的体积V.【分析】 先求出切点坐标及切线方程,再用定积分求面积A; 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算,为了帮助理解,可画一草图.【详解】 (1) 设切点的横坐标为0x ,则曲线y=lnx 在点)ln ,(00x x 处的切线方程是 ).(1ln 000x x x x y -+= 由该切线过原点知 01ln 0=-x ,从而.0e x = 所以该切线的方程为 .1x ey =平面图形D 的面积 ⎰-=-=1.121)(e dy ey e A y (2) 切线x ey 1=与x 轴及直线x=e 所围成的三角形绕直线x=e 旋转所得的圆锥体积为 .3121e V π=曲线y=lnx 与x 轴及直线x=e 所围成的图形绕直线x=e 旋转所得的旋转体体积为 dy ee V y212)(⎰-=π,因此所求旋转体的体积为 ).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ四 、(本题满分12分)将函数x xx f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n n n 的和.【分析】 幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形。

2003数一数三考研数学真题及解析

2003数一数三考研数学真题及解析

2003年全国硕士研究生入学统一考试数学一试题一、填空题(本题共6小题,每小题4分,满分24分.)(1))1ln(12)(cos lim x x x +→= .(2)曲面22y x z+=与平面042=-+z y x 平行的切平面的方程是.(3)设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a =.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为 .(5)设二维随机变量(,)X Y 的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧= 则=≤+}1{Y X P.(6)已知一批零件的长度X (单位:cm )服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40(cm ),则μ的置信度为0.95的置信区间是.(注:标准正态分布函数值(1.96)0.975,(1.645)0.95.ΦΦ==)二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示,则()f x 有(A ) 一个极小值点和两个极大值点. (B ) 两个极小值点和一个极大值点. (C ) 两个极小值点和两个极大值点. (D ) 三个极小值点和一个极大值点.(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A ) n n b a <对任意n 成立.(B ) n n c b <对任意n 成立.(C ) 极限n n n c a ∞→lim 不存在.(D ) 极限n n n c b ∞→lim 不存在.(3)已知函数(,)f x y 在点(0,0)的某个邻域内连续,且22200(,)lim1()x y f x y xyx y →→-=+,则 (A ) 点(0,0)不是(,)f x y 的极值点. (B ) 点(0,0)是(,)f x y 的极大值点. (C ) 点(0,0)是(,)f x y 的极小值点.(D ) 根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点.(4)设向量组I:r ααα,,,21 可由向量组II:s βββ,,,21 线性表示,则 (A ) 当s r <时,向量组II 必线性相关.(B ) 当s r>时,向量组II 必线性相关.(C ) 当s r <时,向量组I 必线性相关.(D ) 当s r >时,向量组I 必线性相关.(5)设有齐次线性方程组0Ax =和0Bx =,其中,A B 均为n m ⨯矩阵,现有4个命题: ①若0Ax =的解均是0Bx =的解,则秩(A )≥秩(B ); ②若秩(A )≥秩(B ),则0Ax =的解均是0Bx =的解; ③若0Ax =与0Bx =同解,则秩(A )=秩(B ); ④若秩(A )=秩(B ),则0Ax =与0Bx =同解. 以上命题中正确的是(A ) ①②.(B ) ①③.(C ) ②④.(D ) ③④.(6)设随机变量21),1)((~X Y n n t X =>,则 (A ) )(~2n Yχ.(B ) )1(~2-n Yχ.(C ) )1,(~n F Y .(D ) ),1(~n F Y .过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V .四、(本题满分12分)将函数x xx f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n n n 的和.五、(本题满分10分) 已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界.试证:(1)dx ye dy xe dx ye dy xe xLy x Ly sin sin sin sin -=-⎰⎰--; (2).22sin sin π≥--⎰dx ye dy xex Ly六、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为,0k k >).汽锤第一次击打将桩打进地下a (m ).根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<.问(1)汽锤击打桩3次后,可将桩打进地下多深? (2)若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七、(本题满分12分)设函数()y y x =在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1)试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程;(2)求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.设函数()f x 连续且恒大于零,222()22()()()()t D t f xy z dVF t f x y d σΩ++=+⎰⎰⎰⎰⎰,22()2()()()D t tt f x y d G t f x dxσ-+=⎰⎰⎰,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1)讨论()F t 在区间),0(+∞内的单调性. (2)证明当0t >时,).(2)(t G t F π>九、(本题满分10分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P ,P A P B *1-=,求2B E +的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a十一、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数X 的数学期望; (2)从乙箱中任取一件产品是次品的概率.十二、(本题满分8分)设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数.从总体X 中抽取简单随机样本n X X X ,,,21 ,记12ˆmin(,,,X X θ=L )n X .(1)求总体X 的分布函数()F x ; (2)求统计量θˆ的分布函数)(ˆx F θ;(3)如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2003年考研数学一试题答案与解析一、填空题(1)【分析】 属1∞型. 原式=1cos 1cos 1ln(1)lim[1(cos 1)].x x x x x -⋅-+→+-利用等价无穷小因子替换易求得2121lim)1ln(1)1(cos lim 22020-=-=+⋅-→→x xx x x x , 故原式=12.e -(2)【分析】 曲面在任意点(,,)P x y z 处的法向量{2,2,1}x y =-n ,n 与平面042=-+z y x 的法向量{2,4,1}=-0n 平行,λλ⇔=0n n 为某常数,即22,24,1.x y λλλ==-=- 从而1, 2.x y ==,又点P 在曲面上22(1,2)()5z x y P ⇒=+=⇒点处的{2,4,1}=-n .因此所求切面方程是0)5()2(4)1(2=---+-z y x ,即245x y z +-=.(3)【分析】 这是求傅氏系数的问题. 已知)()(2ππ≤≤-=x x x f 是以2π为周期的偶函数,按傅氏系数计算公式得2220002211cos 2sin 22sin 22a x xdx x d x x xdx ππππππ===-⎰⎰⎰=00111cos 2cos 2cos 2 1.xd x x x xdx ππππππ=-=⎰⎰(4)【分析】 设由基12,αα到基12,ββ的过渡矩阵为C ,则1212(,)(,)C ββαα=,即11212(,)(,).C ααββ-=那么,由111110231023011201120112⎡⎤⎡⎤⎡⎤→→⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ 可知应填:23.12⎡⎤⎢⎥--⎣⎦当然也可先求出11111,0101-⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦再作矩阵乘法而得到过渡矩阵.(5)【分析】 =≤+}1{Y X P 1(,)x y f x y dxdy +≤⎰⎰11206xxdx xdy -=⎰⎰12016(12).4x x dx =-=⎰(6)【分析】 这是一个正态总体方差已知求期望值μ的置信区间问题,该类型置信区间公式为(,),I x x =+其中λ由{}0.95P U λ<=确定(~(0,1))U N 即 1.96λ=.将40,1,16, 1.96x n σλ====代入上面估计公式,得到μ的置信度为0.95的置信区间是(39.51,40.49).二、选择题(1)【分析】 由图,()f x 有三个驻点和一个不可导点0.x ='()f x 在三个驻点处,一个由正变负,两个由负变正,因而这三个驻点中一个是极大值点,两个是极小值点;而点0x =(()f x 的连续点)的左侧'()0f x >,0x =的右侧'()0f x <,0x =是()f x 由增变减的交界点,因而是极大值点.应选(C ).(2)【分析】 (A ),(B )显然不对,因为由数列极限的不等式性质只能得出数列“当n 充分大时”的情况,不可能得出“对任意n 成立”的性质.(C )也明显不对,因为“无穷小⋅无穷大”是未定型,极限可能存在也可能不存在. 故应选(D ).(3)【分析】 由条件000lim[(,)]0lim (,)(0,0)0.x x y y f x y xy f x y f →→→→⇒-=⇒==由极限与无穷小的关系⇒222(,)1(1)()f x y xyo x y -=++ (0).ρ=→⇒2222222(,)()(())()(0).f x y xy x y o x y xy o ρρ=++++=+→ 当y x =时,2(,)(0,0)[1(1)]0f x y f x o -=+>(0ρδ<<时), 当y x =-时,2(,)(0,0)[1(1)]0f x y f x o -=-+<(0ρδ<<时),其中δ是充分小的正数,因此,(0,0)不是(,)f x y 的极值点.应选(A ).(4)【分析】 根据定理“若12,,,s αααL可由12,,,t βββL 线性表出,且s t >,则12,,,s αααL 必线性相关”,即若多数向量可以由少数向量线性表出,则这多数向量必线性相关,故应选(D ).(5)【分析】 显然命题④错误,因此排除(C ),(D ).对于(A )与(B )其中必有一个正确,因此命题①必正确,那么②与③哪一个命题正确呢?由命题①,“若0Ax =的解均是0Bx =的解,则秩(A )≥秩(B )”正确,知“若0Bx =的解均是0Ax =的解,则秩(A )≥秩(B )”正确,可见“若0Ax =与0Bx =同解,则秩(A )=秩(B )”正确.即命题③正确,所以应当选(B ).(6)【分析】 根据t 分布的性质,2~(1,)X F n ,再根据F 分布的性质21~(,1),F n X因此21~(,1)Y F n X=.故应选择(C ).三、【解】(1)曲线ln y x =在点0000(,)(ln )x y y x =处的切线方程为0001();y y x x x -=- 由切线过原点(0,0),得000,y x e ==,所以该切线方程为x y e=.从而,图形的D 面积为(如图)1() 1.2y eA e ey dy =-=-⎰ (2)切线y x e x =、轴与直线x e =所围三角形绕x e =旋转所得圆锥体的体积为211,3V e π=而曲线ln y x x =、轴与直线x e =所围曲边三角形绕x e =的旋转体体积为1222011()(2),22y V e e dy e e ππ=-=-+-⎰或者221112()ln (2).22e V e x xdx e e ππ=-=-+-⎰因此所求旋转体的体积为 212(5123).6V V V e e π=-=-+四、【分析与求解】 (1)因为'()f x 简单,先求'()f x 的展开式,然后逐项积分得()f x 的展开式.因2220112211()()'2(1)4,(,),121214221()12n n nn x f x x x x x x x∞=--'==-=--∈--++++∑ 又(0)4f π=,两边积分得221000(1)411()2(1)42,(,).442122n n x n n nn n n f x t dt x x n ππ∞∞+==-=--=-∈-+∑∑⎰因为()f x 在21=x 连续,21102(1)41(1)21221n n nn x n n xn n ∞∞+===--=++∑∑收敛,所以210(1)411()2,(,].42122n n n n f x x x n π∞+=-=-∈-+∑(2)令21=x ,得21001(1)41(1)()2.24212421n n n n n n f n n ππ∞∞+==--=-⋅=-++∑∑又0)21(=f ,因此0(1).214n n n π∞=-=+∑五、【分析与证明】用格林公式把第二类曲线积分转化为二重积分.(1)由格林公式,有左边曲线积分=sin sin sin sin [()()](),y x y x DDxe ye dxdy e e dxdy x y --∂∂--=+∂∂⎰⎰⎰⎰ 右边曲线积分=sin sin ().y x De e dxdy -+⎰⎰ 因为区域D 关于y x =对称⇒⎰⎰-+Dx y dxdy e e )(sin sin =⎰⎰+-Dxy dxdy e e )(sin sin (x 与y 互换). 因此dx ye dy xe dx ye dy xex Ly x Lysin sin sin sin -=---.①(2)由(1)的结论,有sin sin sin sin sin sin ()()y x y x y yLDDxe dy ye dx e e dxdy e e dxdy ----=+=+⎰⎰⎰⎰⎰Ñ2222.DDdxdy π≥==⎰⎰⎰⎰六、【分析】 设第n 次打击后,桩被打进地下n x ,第n 次打击时,气锤所作的功为),3,2,1( =n W n . 由题设,已知当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,1n n W rW -=要求的是(n x n 3)=及lim .n n x →+∞【解】 通过求1nii W =∑直接求出nx .按功的计算公式:12211011,22x W kxdx kx ka ===⎰2312123,,,.nn x x x n x x x W kxdx W kxdx W kxdx -===⎰⎰⎰L相加得 21201.2nx n n W W W kxdx kx +++==⎰L又 21121n n n n W rW r W r W ---====L ,代入上式得21221111(1),.22n n r r r W kx W ka -++++==L 于是().n x a m ==因此3().x m ==lim ).n n x m →+∞=七、【证明】 (1)实质上是求反函数的一、二阶导数的问题.由反函数求导公式知y dy dx '=1,2211()'()'()'''y y x d x dx dx dy dy y y dy===⋅33''().y dxy y dy ''=-=-' 代入原微分方程,便得常系数的二阶线性微分方程.sin x y y =-''(*)(2)特征方程210r -=的两个根为1,21;r =±由于非齐次项()sin f x x =sin x e x αβ=,0,α=1β=,i i αβ±=±不是特征根,则设(*)的特解*cos sin y a x b x =+,代入(*)求得,10,2a b ==-,故x y sin 21*-=,于是(*)的通解为121()sin .2x x y x C e C e x -=+- 又由初始条件得1,121-==C C ,所求初值问题的解为.sin 21x e e y x x --=-八、【分析与证明】(1)分别作球坐标变换:sin cos ,sin sin ,cos x y z ρϕθϕθρϕ===与极坐标变换:cos ,sin .x r y r θθ==将()F t 中的分子与分母表成定积分,于是222220222()sin 2()().()()ttttd d f drf drF t d f r rdrf r rdrπππθϕρρϕρρθ==⎰⎰⎰⎰⎰⎰⎰下面求'()F t ,由它的符号讨论()F t 的单调性.由变限积分求导法得2222222022()()()()()2(())tttt f t f r rdr t f t f r r drF t f r rdr -'=⎰⎰⎰220220()()()20,[()]tttf t f r r t r drf r rdr -=>⎰⎰(0,)t ∈+∞.因此()F t 在),0(+∞单调增加.(2)如同题(1),先将()G t 表成定积分:22200022()()().2()()ttttd f r rdrf r rdrG t f r rdrf r drπθπ==⎰⎰⎰⎰⎰要证0t >时,2()(),F t G t π>即证2220022()(),()()t t ttf r r dr f r rdr f r rdrf r dr>⎰⎰⎰⎰即证222220()()[()]0.ttt f r dr f r r dr f r rdr ->⎰⎰⎰(*)我们将利用单调性证明这个不等式. 令222220()()()[()],tttt f r dr f r r dr f r rdr Φ=-⎰⎰⎰⇒2222222200'()()()()()2[()]()tttt f t f r r dr f t tf r dr f r rdr f t t Φ=+-⋅⎰⎰⎰2220()()()0t f t f r t r dr =->⎰,(0,)t ∈+∞又()t Φ在0t =处连续⇒()t Φ在[0,)+∞单调增加0t ⇒>时,()(0)0.t ΦΦ>=因此0t >时,).(2)(t G t F π>九、【解】由于322777232232223011E A λλλλλλλλλλ-------=---=--------2111(7)(1)232(1)(7),011λλλλλ=-----=---故A 的特征值为.7,1321===λλλ因为7,i A λ==∏若,A αλα=则.AA ααλ*=所以,A *的特征值为:7,7,1.由于1B P A P -*=,即A *与B 相似,故B 的特征值为7,7,1.从而2B E +的特征值为9,9,3.因为11111()()(),AB P P A P P P A P ααααλ--*--*-===按定义可知矩阵B 属于特征值Aλ的特征向量是1Pα-.因此2B E +属于特征值2+λA的特征向量是1Pα-.由于,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,而当1λ=时,由222111()0,222000,222000E A x ---⎡⎤⎡⎤⎢⎥⎢⎥-=---→⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦得到属于1λ=的线性无关的特征向量为111,0α-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦210.1α-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 当7λ=时,由422121(7)0,242011,224000E A x ---⎡⎤⎡⎤⎢⎥⎢⎥-=--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦ 得到属于7λ=的特征向量为311.1α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦那么1111,0P α-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦1211,1P α--⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦1301.1P α-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦故2B E +属于特征值9λ=的全部特征向量为121111,01k k -⎡⎤⎡⎤⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦12,k k 是不全为零的任意常数. 而2B E +属于特征值3λ=的全部特征向量为301,1k ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中3k 为非零的任意常数.十、【解】必要性:若三条直线交于一点,则线性方程组23,23,23ax by c bx cy a cx ay b +=-⎧⎪+=-⎨⎪+=-⎩(*)有唯一解,故()()2r A r A ==.于是0.A =由于23111236()23a bc A b c a a b c b c a c a b c a b--=-=++---2226()()a b c ab c ab ac bc =++++---2223()[()()()],a b c a b b c c a =++-+-+-(* *)由321,,l l l 是三条不同直线,知a b c ==不成立,那么0)()()(222≠-+-+-a c c b b a .故必有.0=++c b a充分性:若0,a b c ++=由(**)知0=A ,故秩() 3.r A <由22222132()2[()]2[()]0,224a b ac b a a b b a b b b c =-=-++=-++≠(否则0a b c ===.)知秩() 2.r A =于是()() 2.r A r A ==因此,方程组(*)有唯一解,即三条直线321,,l l l 交于一点.十一、【解】 (1)易见,X 服从超几何分布,其分布参数为123,3n N N ===,根据超几何分布的期望公式,可直接得到1123.2N EX nN N ==+(2)设A 表示事件“从乙箱中任意取出的一件产品是次品”,由于{0},{1},{2}X X X ===和{3}X =构成完备事件组,因此根据全概率公式,有3300(){}{}{}6k k kP A P X k P A X k P X k =======⋅∑∑3011131{}.66624k kP X k EX =====⋅=∑十二、【解】 (1)2(),1,()().0,x xx e F x f t dt x θθθ---∞≥⎧-==⎨<⎩⎰(2)}),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤=θθ 12121{min(,,,)}1{,,,}n n P X X X x P X x X x X x =->=->>>L L 121{}{}{}n P X x P X x P X x =->>>L1[1()]nF x =--=2(),1,.0,n x x e x θθθ--≥⎧-⎨<⎩(3)ˆθ的概率密度为 2()ˆˆ,2,()'().0,n x x ne f x F x x θθθθθ-->⎧==⎨≤⎩因为2()ˆ1ˆ()2,2n x E xf x dx nxe dx nθθθθθθ+∞+∞---∞===+≠⎰⎰ 所以ˆθ作为θ的矩估计量不具有无偏性.。

2003年考研数学四试题答案与解析

2003年考研数学四试题答案与解析
……如上解法,应注意计算 ∫∫ dxdy 时,最 D1
好的办法是利用二重积分的几何意义,直 接判断该积分的值就是区域 D1 的面积,可
由图直接得到 D1 的面积为 1。
本题考查了函数的复合以及简单二重积 分的计算。 【陈白皮】确定被积函数 f(x)g(y-x)的具体 表达式,是计算二重积分的关键。 【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域 与被积函数不为零的区域的公共部分上积分即可. 完全类似例题见《数学复习指南》P.191【例 8.16-17】 .
其中 A 的逆矩阵为 B ,则 a = -1
.
【分析】 本题考查了矩阵的运算性质(分配律、结合律),逆矩阵等知识点。
这里αα T 为 n 阶矩阵,而α Tα = 2a 2 为数,直接通过 AB = E 进行计算并注
意利用乘法的结合律即可. 【详解】 由题设,有
AB = (E − αα T )(E + 1 αα T ) a
0⎥⎥ . 0⎥⎦
【评注】 本题实质上是已知矩阵等式求逆的问题,应先分解出因式 A-E, 写成逆矩阵的定义形式,从而确定(A-E) 的逆矩阵.
【陈白皮】当 n 阶矩阵 A 满足某个矩阵等式时,要计算 A 的逆矩阵,总是
将这个矩阵等式分解为 AC=E,得到 A−1 = C 。
完全类似例题见《数学最后冲刺》P.92【例 7】. 【二李】本题恒等变形的方法早已出现,见 91 年 10 题。
x→∞ x
x→∞
a = lim y 及 b = lim ( y − ax) 。
x x→+∞
( x→−∞)
x→+∞ ( x→−∞)
本题为常规题型,完全类似例题见《数学复习指南》P.153 【例 6.30-31】.

2003年考研数学(一)试题及答案解析

2003年考研数学(一)试题及答案解析

2003年考研数学(一)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) )1ln(12)(cos lim x x x +→ =e1 .【分析】 ∞1型未定式,化为指数函数或利用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算求极限均可.【详解1】 )1ln(12)(cos lim x x x +→=xx x ecos ln )1ln(1lim20+→,而 212c o s s i n lim cos ln lim )1ln(cos ln lim 02020-=-==+→→→x x xx x x x x x x , 故 原式=.121ee=-【详解2】 因为 2121lim)1ln(1)1(cos lim 22020-=-=+⋅-→→x xx x x x , 所以 原式=.121ee=-【评注】 本题属常规题型,完全类似例题见《数学复习指南》P.24-25 【例1.30-31】.(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是542=-+z y x .【分析】 待求平面的法矢量为}1,4,2{-=n,因此只需确定切点坐标即可求出平面方程, 而切点坐标可根据曲面22y x z +=切平面的法矢量与}1,4,2{-=n平行确定.【详解】 令 22),,(y x z z y x F --=,则x F x 2-=',y F y 2-=', 1='z F .设切点坐标为),,(000z y x ,则切平面的法矢量为 }1,2,2{00y x --,其与已知平面042=-+z y x 平行,因此有11422200-=-=-y x , 可解得 2,100==y x ,相应地有 .520200=+=y x z故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x .【评注】 本题属基本题型,完全类似例题见《数学复习指南》P.279 【例10.28】和 《数学题型集粹和练习题集》P.112 【例8.13】.(3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = 1 .【分析】 将)()(2ππ≤≤-=x x x f 展开为余弦级数)(cos 02ππ≤≤-=∑∞=x nx ax n n,其系数计算公式为⎰=ππ0cos )(2nxdx x f a n .【详解】 根据余弦级数的定义,有 x d x xdx x a 2sin 12cos 22022⎰⎰=⋅=ππππ=⎰⋅-πππ2]22sin 2sin [1xdx x xx=⎰⎰-=πππππ]2cos 2cos [12cos 1xdx xx x xd=1.【评注】 本题属基本题型,主要考查傅里叶级数的展开公式,本质上转化为定积分的计算. 完全类似例题见《文登数学全真模拟试卷》数学一P.62第一大题第(6)小题和《数学复习指南》P.240 【例8.37】.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为⎪⎪⎭⎫ ⎝⎛--2132. 【分析】 n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足 [nβββ,,,21 ]=[nααα,,,21 ]P ,因此过渡矩阵P 为:P=[121],,,-n ααα [],,,21n βββ .【详解】根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P=[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ.=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-【评注】 本题属基本题型,完全类似例题见《数学复习指南》P.429 【例3.35】. (5)设二维随机变量(X,Y)的概率密度为 ,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P41 . 【分析】 已知二维随机变量(X,Y)的概率密度f(x,y),求满足一定条件的概率}),({0z Y X g P ≤,一般可转化为二重积分}),({0z Y X g P ≤=⎰⎰≤0),(),(z y x g dxdy y x f 进行计算.【详解】 由题设,有 =≤+}1{Y X P ⎰⎰⎰⎰≤+-=121016),(y x xxxdy dx dxdy y x f=.41)126(2102=-⎰dx x xy1DO211 x【评注】 本题属基本题型,但在计算二重积分时,应注意找出概率密度不为零与满足不等式1≤+y x 的公共部分D ,再在其上积分即可. 完全类似例题见《文登数学全真模拟试卷》数学一P.14第一大题第(5)小题.(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是)49.40,51.39( . (注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ【分析】 已知方差12=σ,对正态总体的数学期望μ进行估计,可根据)1,0(~1N n X μ-,由αμα-=<-1}1{2u nX P 确定临界值2αu ,进而确定相应的置信区间. 【详解】 由题设,95.01=-α,可见.05.0=α 于是查标准正态分布表知.96.12=αu 本题n=16, 40=x , 因此,根据 95.0}96.11{=<-nX P μ,有 95.0}96.116140{=<-μP ,即 95.0}49.40,51.39{=P ,故μ的置信度为0.95的置信区间是)49.40,51.39( . 【评注】 本题属基本题型,完全类似例题见《数学复习指南》P.608 【例6.16】.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ] yO x【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. 完全类似方法见《数学最后冲刺》P.179.(3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则(A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点. [ A ] 【分析】 由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号.【详解】 由1)(),(lim2220,0=+-→→y x xyy x f y x 知,分子的极限必为零,从而有f(0,0)=0, 且 222)(),(y x xy y x f +≈- y x ,(充分小时),于是 .)()0,0(),(222y x xy f y x f ++≈-可见当y=x 且x 充分小时,04)0,0(),(42>+≈-x x f y x f ;而当y= -x 且x 充分小时,04)0,0(),(42<+-≈-x x f y x f . 故点(0,0)不是f(x,y)的极值点,应选(A).【评注】 本题综合考查了多元函数的极限、连续和多元函数的极值概念,题型比较新,有一定难度. 将极限表示式转化为极限值加无穷小量,是有关极限分析过程中常用的思想,类似分析思想的例题见《数学复习指南》P.43 【例1.71】.(4)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。

2003考研数学真题+答案

2003考研数学真题+答案

1 x 与 x 轴及直线 x e 所围成的三角形绕直线 x e 旋转所得的圆锥体积 e
1 e 2 ;曲线 y ln x 与 x 轴及直线 x e 所围成的图形绕直线 x e 旋转所得的旋 3
2003 年 • 第 2 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
即汽锤击打 3 次后,可将桩打进地下
1 r r 2 a
n 1
m.
„„ 6 分
(2) 用归纳法:设 xn 1 r ... r
a ,则
2003 年 • 第 4 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
k k „„ 8 分 kxdx ( x2n1 x 2n ) [ x2n1 (1 r r n1 )a 2 ] xn 2 2 2 n1 由于 Wn1 rWn r 2Wn1 r nW ,故得 xn )a2 r n a2 , 1 (1 r r Wn1
sin x
dx
„„ 6 分 „„ 8 分
(2) 由于 esin x e sin x 2,
2003 年 • 第 3 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
故由(1)得 xe
L

sin y
dy ye sin x dx (e sin x e sin x )dx 2 2
0

„„ 10 分
证法 2
(1) 根据格林公式, 得 xe
L
sin x

sin y
dy ye sin x dx (e sin y e sin x )d „„ 2 分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南开大学2003年数学分析考研试题及解答一.设(),,w f x y x y x =+-,其中(),,f u v s 有二阶连续偏导数,求xy w .解:令u x y =+,v x y =-,s x =,则xu v s w f f f =++;()()()111xy uu uv vu vv su sv w f f f f f f =+-++-++-.二.设数列{}n a 非负单增,且lim n n a a →∞=,证明:()112lim n nn n nn a a aa →∞+++=L .证明:因为{}n a 非负单增,所以有()()11112n n n n nn n nnnn a a a ana n a ≤+++≤=L ,由lim nn a a →∞=,1lim nn n n a a →∞=,根据夹逼定理,得()112limn n n n nn aa aa →∞+++=L .三.设()()2ln 1,00,0x x x f x x α⎧+>⎪=⎨≤⎪⎩,试确定α的取值范围,使()f x 分别满足:(1)极限()0lim x f x +→存在;(2)()f x 在0x =处连续; (3)()f x 在0x =处可导.解(1)因为()()2lim lim ln 1x x f x x x α++→→=+()222ln 1lim x x x xα++→+=,()220ln 1lim1x x x+→+=,极限存在的条件为20α+≥,即2α≥-,所以当2α≥-时,极限()0lim x f x +→存在; (2)因为()()0lim 00x f x f -→==,所以要使()f x 在0x =处连续,需要求20α+>,2α>-,所以当2α>-时,()f x 在0x =处连续;(3)显然()00f -'=,()()()12000lim lim ln 1x x f x f x x xα++-→→-=+()212ln 1lim x x x xα++→+=,要使其存在且为0,必须10α+>,1α>-,所以当1α>-时,()f x 在0x =处可导.四.设()f x 在(),-∞+∞上连续,证明积分()()22Lf x y xdx ydy ++⎰与积分路径无关. 证明:设()()2201,2x y U x y f t dt +=⎰, 则有()()()22,dUx y f x y xdx ydy =++,即存在势函数, 所以()()22LLf x y xdx ydy dU ++=⎰⎰与积分路径无关.五.设()f x 在[],a b 上可导,02a b f +⎛⎫= ⎪⎝⎭,且()f x M '≤,证明:()()24baM f x dx b a ≤-⎰. 证明:因为()f x 在[],a b 上可导,则由拉格朗日中值定理,存在ξ在x 与2a b+之间,使得()()22a b a b f x f f x ξ++⎛⎫⎛⎫'-=- ⎪ ⎪⎝⎭⎝⎭, 由题设条件02a b f +⎛⎫= ⎪⎝⎭,()f x M '≤, 得()2a b f x M x +≤-,[](),x a b ∈,从而()()bb aaf x dx f x dx ≤⎰⎰2baa bM x dx +≤-⎰2222a bb a b a a b a b M x dx x dx ++⎡⎤++⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎰⎰()24M b a =-. 六.设{}n a 单调递减,且收敛于0,1sin n n a n ∞=∑发散,(1)证明:1sin nn an ∞=∑收敛;(2)证明lim 1nn nu v →∞=,其中()1sin sin nn k k k u a k a k ==+∑,()1sin sin nn k k k v a k a k ==-∑.证明:(1)因为11sin 1sin 2nk k =≤∑,即1sin nk k =∑有界,而{}na 单调递减且收敛于0,据迪利克列判别法,知1sin nn an ∞=∑收敛;(2)因为1sin nn an ∞=∑发散,1|sin |nn k k S a k ==∑,有lim n n S →∞=+∞, 1sin nn an ∞=∑收敛,1sin nn k k Q a k ==∑,有lim n n Q Q →∞=存在,lim0nn nQ S →∞=,n n n u S Q =+,n n n v S Q =-,11n n n n nnn n n nQ u S Q S Q v S Q S ++==--,故有lim 1nn nu v →∞=.七.设()1sin txxFt edx x+∞-=⎰, 证明:(1)()1sin txxF t e dx x+∞-=⎰在[)0,+∞上一致收敛; (2)()Ft 在[)0,+∞上连续.证明:(1)由狄利克莱判别法知1sin xdx x+∞⎰收敛, 从而在0t ≥上一致收敛;对每一0t≥,tx e -关于[)1,x ∈+∞单调,且一致有界,01tx e -≤≤,()1,0x t ≥≥,由阿贝尔判别法知1sin txxe dx x+∞-⎰关于[)0,t ∈+∞一致收敛. (2)对任意[)00,t ∈+∞,存在,0αβ≥,使得[]0,t αβ∈,1sin txxedx x+∞-⎰在[],αβ上一致收敛,且由sin txxex-在()[)[],1,,x t αβ∈+∞⨯上连续, 由含参变量积分一致收敛的性质,知()F t 在0t 连续,由0t 的任意性,得()F t 在[)0,+∞上连续.八.设(){}nf x 是在[],a b 上有定义的函数列,满足(1)对任意[]0,x a b ∈,(){}n f x 是一个有界数列;(2)对任意0ε>,存在一个0δ>,使当[],,x y a b ∈,且x y δ-<时,对一切自然数n ,有()()n n f x f y ε-<.求证:存在一个子序列(){}kn f x 在[],a b 上一致收敛.注:此题即是著名的阿尔采拉定理. 证明:(1)证明(){}nf x 在[],a b 上一致有界.对1ε=,存在0δ>,当[],,x y a b ∈,且x y δ-<时,对于一切*n N ∈有()()1n n f x f y -<.取正整数N ,使得b aNδ-<,记k b ax a kN-=+,0,1,k N =L , 由(){}nkf x 是有界数列,存在0M>,使得()n k f x M≤,()1,2,,0,1,n k N ==L L ,对任意[],x a b ∈,存在k 使得[]1,k k x x x -∈,k b ax x Nδ--≤<()()()()n n n k n k f x f x f x f x ≤-+1M <+,()1,2,n =L ,即得(){}nf x 在[],a b 上一致有界.(2)设{}12,,,,k r r r L L 是[],a b 中的所有有理数,对每一k ,(){}nkf r 是有界数列,由聚点定理,存在收敛的子列,取子列的子列,利用对角线法则,可选到{}n f 的子列{}kn f ,使得,对每一i r ,(){}kn if r 收敛,下证{}kn f 在[],a b 上一致收敛.对任意0ε>,存在一个0δ>,当[],,x y a b ∈,x y δ-<时,有()()n n f x f y ε-<,取正整数N 充分大,使得b aNδ-<,ib ax a iN-=+,()0,1,i N =L , 区间[],a b 被分割成N 个小区间[]1,i i x x +,()0,1,i N =L ,在每一区间[]1,i i x x +上取出一个有理点i ξ,()0,1,2,1i N =-L,由于(){}kn if ξ收敛,对上述0ε>,存在*K N ∈,当,k l K >时,()()k l n i n i f f ξξε-<,对任意[],x a b ∈,存在一个区间[]1,i i x x +,使得[]1,i i x x x +∈,i b ax Nξδ--≤<,综合以上不等式,得()()k l n n f x f x -()()()()()()k k k l l l n n i n i n i n i n f x f f f f f x ξξξξ≤-+-+-3ε<,即得(){}kn f x 在[],a b 上是一致柯西列,故(){}kn f x 在[],a b 上一致收敛.。

相关文档
最新文档