数学分析课件PPT之十三章函数列与函数项级数
数学分析课件PPT之十三章函数列与函数项级数

审敛原理存在自然数N ,使得当 n N 时,对
于任意的自然数 p 都有
a a n1
n2
an p
.
2
由条件(1),对任何 x I ,都有
un1 ( x) un2 ( x) un p ( x)
un1 ( x) un2 ( x) un p ( x)
an1 an2
an p
例3 研究级数
x ( x2 x) ( x3 x2 ) ( xn xn1 )
在区间( 0 , 1]内的一致收敛性.
解 该级数在区间(0,1)内处处收敛于和s( x) 0,
但并不一致收敛.
对于任意一个自然数
n,
取 xn
1 ,于是 n2
sn ( xn )
xn n
1, 2
但 s( xn ) 0,
一 一致收敛函数列的性质 二 函数项级数的性质
一. 一致收敛函数列的解析性质
1 函数及限与序列极限交换定理
fn
x
f
x
lim
x x0
fn
x
an
lim
n
an
(即nlim
lim
xx0
lim xx0
fn x
f
x 存在
lim
xx0
lim
n
fn
x)
讨论单侧极限是, 只要把以上定理中的
n 1
在 D 上一致收敛的一个必要条件是:
函数列un (x)在 D 上一致收敛于 0.
3.若已知和函数 S(x) 可用下面的判别法
定理 13-4 函数项级数 un (x)在 D 上一致收 n 1
敛于 S(x)
lim sup
n xD
Rn (x)
数学分析2课件:13-1函数项级数及其一致收敛性

x(1,1) 1 x n 1
n1
而右端极限为,
故原级数在(-1,1)不一致收敛。
但限制x [a,a],a 1,则
sup
x(a,a )
|
sn( x)
s( x) |
sup
x(a,a )
| 1 xn 1 x
1 1
x
|
sup | xn | an , x(a,a) 1 x 1 a
[( xn ) 0,单调增] 1 x
故 un( x)在数集D上一致收敛。
n1
证毕。
注1 在这个定理的条件下,可得| un( x) | 也一致收敛。
n1
注2 不是每个收敛级数都有优级数。
例8
sin n
nx
p
,
cos n
nx
p
,(
p
1)在(,)一致收
敛。
优级数均为
1 np
.
(1)n sin nx的优级数为 np
1, np
一致收敛。
xn在[a,a](a 1)的优级数为 an,一致收敛。
an为绝对收敛级数,则 an sin nx, an cos nx
n1
n1
n1
在(,)一致收敛,且| an | 就是其优级数。
n1
全体收敛点的集合称为收敛域。
un( x) s( x)
n1
——和函数。
例5
xn 1 x x2 x3
n0
lim
n
sn( x)
lim
n
1 xn 1 x
1 , 1 x 发散,
| x | 1 | x | 1
xn在( 1,1)内收敛于s( x)
1
.
n0
函数项级数和函数列的区别

函数项级数和函数列的区别函数项级数和函数列是数学中的两种重要概念,它们在数学分析和数值计算中有着广泛的应用。
虽然它们都涉及到无穷项的求和,但在定义和性质上有一些不同之处。
我们来看函数项级数。
函数项级数是指一系列函数按照一定的顺序进行求和的过程。
具体地说,给定一个函数项序列{an(x)},其中an(x)表示第n个函数项,函数项级数可以写成S(x) = a1(x) + a2(x) + a3(x) + ...的形式。
在函数项级数中,每一项都是一个函数,而求和的结果也是一个函数。
函数项级数的求和可以通过逐项求和的方式进行,即对每个函数项分别求和,并将结果相加得到函数项级数的和。
函数项级数的收敛性和性质可以通过一系列定理进行研究和判断。
与函数项级数相比,函数列是一系列函数按照一定的顺序排列的序列。
给定一个函数列{fn(x)},其中fn(x)表示第n个函数,我们可以将函数列写成f1(x), f2(x), f3(x), ...的形式。
函数列的性质和收敛性可以通过逐点收敛和一致收敛来刻画。
逐点收敛是指对于每个x值,函数列在该点处的极限存在,而一致收敛是指函数列在整个定义域上的极限存在且收敛速度足够快。
从定义上看,函数项级数和函数列有一些相似之处。
它们都是一系列函数按照一定的顺序排列的序列。
然而,它们的主要区别在于求和的方式和求和的结果。
函数项级数的求和结果是一个函数,而函数列的求和结果是一个极限值。
此外,函数项级数的求和是逐项进行的,而函数列的求和是对整个函数列进行的。
在应用上,函数项级数和函数列都有着重要的作用。
函数项级数在数学分析中常用于研究函数的性质和逼近问题,如泰勒级数和傅里叶级数。
函数列在数值计算中常用于逼近函数的值和求解方程,如插值方法和迭代法。
函数项级数和函数列是数学中的两个重要概念。
它们在定义和性质上有所不同,但在应用上具有相似之处。
函数项级数和函数列在数学分析和数值计算中有着广泛的应用,对于理解和研究函数的性质和逼近问题具有重要意义。
13.2一致收敛函数列与函数项级数级数的性质

因为函数列 { fn } 在 [a , b]上一致收敛于 f ,所以
对任给的ε> 0 , 存在 N > 0 , 当 n > N 时,对一切
x ∈ [a , b],
都有
| fn ( x ) - f ( x ) | < ε
b
于是当 n > N 时有
| f n ( x ) dx f ( x ) dx |
由柯西准则知数列 { an } 收敛.
设
lim a n A ,
n
x x0
下面证明: lim f ( x ) A . 因为{ fn } 一致收敛于 f ,数列 { an } 收敛于 A , 因此对任给的ε > 0 , 存在 N > 0 , 当 n > N 时, 对任何 x ∈(a , x0 )∪(x0 , b) 有 | fn(x) – f (x) | <ε/3 和 | an – A | <ε/3 同时成立.特别取 n = N +1,有 | fN+1(x) – f (x) | <ε/3 和 | aN+1 – A | <ε/3
n
( iii ) lim f n ( a ) 不存在,
n
则{ f n ( x )} 在 ( a , b )内不一致收敛
定理 13.9(连续性) 设函数列 { fn } 在区间 I 上一致收敛于 f ,且 fn ( n = 1, 2, . . . ) 在 I 上连续, 则 f在 I 上也连续.
证 要证:对任何 x0 ∈I , lim f ( x ) f ( x 0 ) .
x x0
由定理 13.8, lim lim lim f ( x ) x x lim f n ( x ) lim x x f n ( x ) n n
数学分析课件一致收敛函数列与函数项级数的性质

对于一致收敛的函数列或函数项级数 ,在每个点的某个邻域内,函数列或 级数的每一项都是有界的。这意味着 在每个点的附近,函数列或级数的变 化范围是有限的。
性质三:局部连续性
总结词
局部连续性是指一致收敛的函数列或函 数项级数在每个点的邻域内都是连续的 。
VS
详细描述
对于一致收敛的函数列或函数项级数,在 每个点的某个邻域内,函数列或级数的每 一项都是连续的。这意味着在每个点的附 近,函数列或级数的值是平滑变化的,没 有突然的跳跃或断点。
03
一致收敛函数列与函数项 级数的应用
应用一:微积分学中的一致收敛概念
要点一
总结词
要点二
详细描述
理解一致收敛在微积分学中的重要性
一致收敛是数学分析中的一个重要概念,它描述了函数列 或函数项级数在某个区间上的收敛性质。在微积分学中, 一致收敛的概念对于研究函数的极限行为、连续性、可微 性和积分等性质至关重要。通过理解一致收敛,可以更好 地理解函数列和级数的收敛性质,从而更好地应用微积分 学中的相关定理和性质。
应用二:实数完备性的证明
总结词
利用一致收敛证明实数完备性
详细描述
实数完备性是实数理论中的重要性质,它表 明实数具有某些理想的完备性。利用一致收 敛的性质,可以证明实数完备性的一些重要 定理,如确界定理、区间套定理和闭区间套 定理等。这些定理在实数理论中起着至关重 要的作用,为实数性质的研究提供了重要的 理论支持。
05
一致收敛函数列与函数项 级数的扩展知识
扩展知识一:一致收敛的判定定理
01
柯西准则
对于任意给定的正数$varepsilon$,存在正整数$N$,使得当
$n,m>N$时,对所有的$x$,有$|f_n(x)-f_m(x)|<varepsilon$。
一致收敛函数列与函数项级数级数的性质.ppt

又
lim
x x0
fN1( x) aN1
,
所以存在δ > 0 , 当0 < | x – x0 | <δ时,
| fN+1(x) – aN+1 | <ε/3
这样当0 < | x – x0 | <δ时,
| f (x) A|
| f ( x) f N 1( x) | | f N 1( x) aN 1 | | aN 1 A |
? lim
x x0
n1
un ( x)
n1
lim
x x0
un
(
x)
注:对函数序列{Sn ( x)}而言,应为
? lim
x x0
lim
n
Sn
(
x
)
lim
n
lim
x x0
Sn
(
x)
2.求导运算与无限求和运算交换次序问题
? d
dx n1 un ( x)
d n1 dx un ( x)
lim lim
x x0 n
fn
(
x)
lim
n
lim
x x0
fn(x) .
这表明在一致收敛的条件下,极限可以交换顺序.
证 先证数列 { an } 收敛.因为{ fn } 一致收敛,
故对任给的ε > 0 , 存在 N > 0 , 当 n > N 时,对任何 正整数 p ,对一切 x ∈(a , x0 )∪(x0 , b) 有
| fn(x) – f n+p(x) | <ε
从而
lim
x x0
|
函数项级数和函数列一致收敛

函数项级数和函数列一致收敛函数项级数和函数列是数学中非常重要的概念。
在许多数学领域,我们经常会遇到这两个概念,并且它们在解决许多问题时发挥着重要的作用。
本文将介绍函数项级数和函数列的概念,并探讨它们之间的联系和应用。
首先,我们来看看函数项级数的概念。
一个函数项级数是指一系列函数的无穷和。
具体而言,给定一个函数项级数$\sum_{n=1}^{\infty}f_n(x)$,其中$f_n(x)$是一个函数序列。
我们可以将级数记为$S(x)=\sum_{n=1}^{\infty}f_n(x)$。
函数项级数的收敛性是指$S(x)$是否存在有限的极限。
当级数对于所有的$x$都收敛时,我们说该函数项级数是一致收敛的。
与之相对应的是函数列。
函数列是一系列函数的序列。
对于给定的$x$,函数列的极限是指当$n$趋向于无穷大时,函数序列中的每个函数在$x$处的极限都存在,并且这些极限构成了一个函数。
具体而言,给定一个函数列$(f_n(x))$,其极限为$f(x)$,可以表示为$\lim_{n\to\infty}f_n(x)=f(x)$。
函数项级数和函数列之间存在着紧密的联系。
实际上,函数项级数可以看作是函数列的一种特殊情况。
考虑一个函数项级数$\sum_{n=1}^{\infty}f_n(x)$,我们可以构造一个函数列$(S_n(x))$,其中$S_n(x)$表示级数的部分和,即$S_n(x)=\sum_{k=1}^{n}f_k(x)$。
函数列$(S_n(x))$就是函数项级数$\sum_{n=1}^{\infty}f_n(x)$的部分和函数列。
一个重要的问题是函数项级数和函数列的收敛性之间的关系。
当级数对于所有的$x$都收敛时,我们说该函数项级数是一致收敛的。
类似地,当函数列对于所有的$x$都收敛时,我们也说该函数列是一致收敛的。
可以证明,函数项级数的一致收敛性等价于其部分和函数列的一致收敛性。
也就是说,如果函数项级数收敛于函数$S(x)$,那么它的部分和函数列也收敛于$S(x)$。
《数学分析》第13章 函数列与函数项级数ppt课件

例1 设 fn( x) xn, n 1,2, 为定义在(-, ) 上的 函数列, 证明它的收敛域是 (1, 1], 且有极限函数
0, | x | 1,
f
(
x)
1,
x 1.
证 任给 0 (不妨设 1), 当 0 | x | 1 时, 由于
只限于在区间 0, b (b 1)上, 则容易看到, 只要
f (x) ,
xD
或 fn(x) f (x) (n ) , x D.
函数列极限的 N 定义: 对每一固定的 x D , 任 给正数 , 总存在正数N(注意: 一般说来N值与 和 x 的值都有关, 所以有时也用N( , x)表示三者之间
的依赖关系), 使当 n N 时, 总有
| fn( x) f ( x) | .
§1 一致收敛性
对于一般项是函数的无穷级数,其收敛性 要比数项级数复杂得多,特别是有关一致收 敛的内容就更为丰富,它在理论和应用上有 着重要的地位.
一、函数列及其一致收敛性
二、函数项级数及其一致收敛性 三、函数项级数的一致收敛判别法
一、函数列及其一致收敛性
设
f1, f2 , , fn ,
பைடு நூலகம்
(1)
是一列定义在同一数集 E 上的函数,称为定义在E
| fn( x) f ( x) || xn |,
只要取 N ( , x) ln , 当 n N ( , x) 时,就有
ln | x |
| fn( x) f ( x) || x |n| x |N .
当 x 0 和 x 1时, 则对任何正整数 n, 都有
| fn(0) f (0) | 0 , | fn(1) f (1) | 0 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2n
n
x,
0
x
1 2n
fn (x)
2
n
2nn
x,
1 2n
n xx0
fn (x)
即极限次序可换 .
3. 可积性定理
若在区间 [ a ,b ] 上函数列{ fn (x) }一致收
敛 , 且每个 f n (x) 在[ a , b ] 上连续. 则有
b
b
a
lim
n
fn (x)
dx lim n
a fn (x)dx.
证
设在[ a , b ] 上
fn
f (x) ,
线 y sn ( x)将位于曲线
y s( x) 与 y s( x) 之间.
y
y s( x)
y s( x)
y sn(x)
y s( x)
o
I
x
例2 研究级数
1 x1
x
1
2
x
1
1
x
1
n
x
1 n
1
在区间[ 0,)上的一致收敛性.
解
sn( x)
x
1
, n
1
s( x)
, 2
令 p ,则由上式得
rn (
x)
2
.
因此函数项级数 un ( x) 在区间I 上一致收敛. n1
例4 证明级数
sin x sin 22 x sin n2 x
12
22
n2
在(,)上一致收敛.
证 在(,)内
sin n2 x 1
n2
n2
(n 1,2,3, )
级数
1 收敛,
n2
4.一致收敛性简便的判别法:
定理13.5(Weierstrass判别法)
如果函数项级数 un ( x)在区间I 上满足条件: n1
(1) un ( x) an (n 1,2,3 );
(2) 正项级数 an 收敛, n1
则函数项级数 un ( x)在区间 I 上一致收敛. n1
证 由条件(2),对任意给定的 0 ,根据柯西
n 1
在 D 上一致收敛的一个必要条件是:
函数列un (x)在 D 上一致收敛于 0.
3.若已知和函数 S(x) 可用下面的判别法
定理 13-4 函数项级数 un (x)在 D 上一致收 n 1
敛于 S(x)
lim sup
n xD
Rn (x)
lim sup n xD
S(x) Sn (x)
0.
x
U
x0
与x
x0分别改为U
x0
(或U
x0
)与x
x0
(或x
x0 )即可.
2.连续性定理
设在 D上
fn
f (x) ,且对
n
,函数
fn (x)
在 D 上连续 , f (x) 在 D 上连续.
证 ( 要证 : 对 x0 D, f (x) 在点 x0
连续 .即证: 对 0 , 0 , 当 | x x0 | 时, | f (x) f (x0 ) | . )
从而
rn ( xn )
s( xn )
sn ( xn )
1. 2
只要取 1 ,不论n 多么大,在(0,1)总存在
2 点 xn, 使得 rn( xn ) ,
因此级数在( 0, 1 )内不一致连续.
说明: 虽然函数序列 sn ( x) xn 在( 0, 1 )内处处 收敛于 s( x) 0 , 但 sn ( x)在( 0, 1 )内各点处收
称s( x)为函数项级数的和函数.
s( x) u1( x) u2( x) un( x) (定义域是?)
函数项级数的部分和 sn ( x), 余项 rn ( x) s( x) sn ( x)
lim
n
sn
(
x)
s(
x)
lim
n
rn
(
x)
0
(x在收敛域上)
注意 函数项级数在某点x的收敛问题,实质上 是数项级数的收敛问题.
敛于零的“快慢”程度是不一致的.
从下图可以看出:
y y sn ( x) x n (1,1)
n1
n2
n n410
n 30
o
1x
注意:对于任意正数r 1,这级数在[0,r] 上 一致收敛.
小结 一致收敛性与所讨论的区间有关.
三一致收敛性判别
1.用定义 2.一致收敛的柯西准则 定理13-1(函数列一致收敛的柯西准则)
得当 n N 时,对一切 x D,都有
fn (x) f (x)
由上确界的定义,亦有
sup fn (x) f (x)
xD
则有
lim
n
su
xD
pf
n
(x)
f (x)
0.
[充分性] 由假设,对任给的 0 ,
存在正整数 N ,使得当 n N ,有
sup fn (x) f (x)
由
Th1,
函数 f (x) 在区间[ a , b ] 上连续,因此可积.
我们要证
lim
n
b
a fn (x)dx
b f (x)dx .
a
注意到
b
b
b
a f n a f
|
a
fn
f
|,
可见只要
|
fn (x)
f
(x) |
ba
在[ a , b ] 上成立.
例 1.定义在[0,1]上的函数列
函数列 fn在数集 D 上一致收敛的充要条件是:
对任给的正数 ,总存在正数 N ,使得
当 n, m N 时,对一切 xD ,都有
fn(x) fm(x)
证 [必要性] 设 fn (x)
u ur
f (x)
(n ), x D,
即对任给 0 ,存在正数 N ,使得当 n N
时,对一切 x D,都有
一 点态收敛
现在我们将级数的概念从数推广到函数上去. (一)函数项级数的一般概念
1.定义:
设 u1( x), u2( x), ,un( x), 是定义在 I R 上的
函数,则 un( x) u1( x) u2 ( x) un( x)
n1
称为定义在区间I 上的(函数项)无穷级数.
例如级数 xn 1 x x2 ,
定理13-3(函数项级数一致收敛的柯西准则) 函对数于项级 数 0n,1 unN(x,) 在使D得上当一n致收N敛时, 对一切 x D和一切正整数 p ,都有
Sn p (x) Sn (x)
即 un1(x) un2 (x) unp (x) . 特别地,当 p 1时,得到函数项级数 un (x)
xD
因为对一切 x D,总有
fn (x) f (x) sup fn (x) f (x)
xD
故
fn (x) f (x) .
于是 fn 在 D 上一致收敛于 f .
例 4.定义在[0,1]上的函数列
2n 2 x,0
x
1 2n
f n (x)
2n
2n 2 x,
1 2n
x
1 n
0,
1 n
x 1
n
1,2,
由于
fn (0)
0
,故
f
(0)
lim
n
fn (0)
0.
当
0
x
1时,只要
n
1 x
,就有
fn
(x)
0
,
故在
(0,1]
上有
f
(x)
lim
n
fn
(x)
0
.于是函数列
在[0,1]上的极限函数 f (x) 0,又由于(n )
sup
x[0,1]
fn (x)
f (x)
f
n
(
1 2n
)
n
所以,所给函数列在[0,1]上不一致收敛.
一 一致收敛函数列的性质 二 函数项级数的性质
一. 一致收敛函数列的解析性质
1 函数及限与序列极限交换定理
fn
x
f
x
lim
x x0
fn
x
an
lim
n
an
(即nlim
lim
xx0
lim xx0
fn x
f
x 存在
lim
xx0
lim
n
fn
x)
讨论单侧极限是, 只要把以上定理中的
第十三章
函数列与函数项级数
13.1 一致收敛性
一 点态收敛 二 函数项级数(或函数序列)的基本问题 三 函数项级数(或函数列)的一致收敛性 四 一致收敛性判别 五 小结
问题的提出
问题: 有限个连续函数的和仍是连续函数,有限 个函数的和的导数及积分也分别等于他们的导数 及积分的和.对于无限个函数的和是否具有这些 性质呢?
于是当 n, m
N
fn (x)
,就有
f
(x)
2
fn (x)
fm (x)
fn (x) f (x)
f (x)
fm
(x)
2
2
[充分性] 若 fn (x) fm(x) 成立,由数列收
敛的柯西准则, fn在 D 上任一点都收敛,
记其极限函数为 f (x) , x D .现固定上式中的
n ,让 m ,于是当 n N 时,对一切 x D
例3 研究级数
x ( x2 x) ( x3 x2 ) ( xn xn1 )
在区间( 0 , 1]内的一致收敛性.