基于51单片机的数字温度计的设计

合集下载

基于MCS51系列单片机的数字温度计设计

基于MCS51系列单片机的数字温度计设计

基于MCS-51系列单片机的数字温度计设计基于MCS-51系列单片机的数字温度计设计摘要本文提出了基于MCS-51系列单片机的数字温度计的制作电路和编程思想。

该数字温度计以宏晶公司的STC89C52 单片机为主控,配以达拉斯公司的DS18B20数字温度传感器,采用1602双行英文字符液晶作显示。

实现了对温度的测量,显示,和报警等功能。

关键词:STC89C52单片机;数字传感器DS18B20;显示器LCD;目录摘要 (I)ABSTRACT ........................... 错误!未定义书签。

1 绪论 (4)1.1 选题的背景 (4)1.2 数字温度计简介 (4)1.2.1 数字温度计的特征 (4)1.2.2 设计实现的目标 (5)2 数字温度计的方案设计 (6)2.1 设计方案论证与比较 (6)2.1.1 显示电路方案 (6)2.1.2 测温电路方案 (6)2.2 系统总体方案 (6)3 数字温度计的硬件电路设计 (8)3.1 控制电路 (8)3.1.1 MCU简介 (8)3.2.2 最小系统模块 (9)3.3 温度传感器设计 (10)3.3.1 DS18B20简介 (10)3.3.2 温度传感器与单片机的连接 (12)3.3.3 复位信号及外部复位电路 (13)3.4 单片机与报警电路 (13)3.5 显示电路 (13)4 软件设计 (15)4.1 DS18b20的读操作 (15)4.2 DS18b20的温度数据处理 (16)4.3 1602显示部分 (17)5 数据测试 (20)参考文献 (22)附录1 程序源代码................ 错误!未定义书签。

1 绪论1.1 选题的背景随着现代信息技术的飞速发展和传统工业改造的逐步实现.能够独立工作的温度检测和显示系统应用于诸多领域。

传统的温度检测以热敏电阻为温度敏感元件。

热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差。

51单片机数字温度计设计与应用

51单片机数字温度计设计与应用

51单片机数字温度计设计与应用数字温度计在现代生活中有着广泛的应用,它能够将环境温度转换为数字信号,提供直观、准确的温度数据。

本文将介绍基于51单片机的数字温度计的设计与应用。

设计思路:1. 硬件设计首先,我们需要选取一个合适的温度传感器,例如DS18B20。

该传感器具有高精度、数字输出、带有内部校准和非易失性存储器等特点,非常适合作为数字温度计的传感器。

其次,我们需要引入一个51单片机,常用的有AT89C51、AT89S52等。

单片机负责控制传感器和显示器,并处理温度数据。

接下来,我们需要一个LED数码管或液晶显示屏作为温度显示器。

数码管简单且易于操作,而液晶显示屏可以提供更多的信息显示。

最后,我们还需添加一些辅助电路,如稳压电路、时钟电路等,以确保正常的运行。

2. 软件设计在单片机的程序设计方面,我们需要考虑以下几个步骤:(1)初始化各个引脚和外部设备,如温度传感器和显示屏。

(2)读取温度传感器输出的数字信号,通过数据线将其与单片机相连。

(3)通过一系列算法将数字信号转换为实际的温度值。

因为DS18B20传感器提供数字输出,所以支持该类算法的编程非常简单。

(4)将计算得到的温度值通过数码管或液晶显示屏进行显示。

如果是数码管,可以通过数码管驱动芯片来实现多位数的显示。

(5)可选的增加报警功能,当温度超过一定阈值时,触发报警。

应用场景:数字温度计可以在许多场景中应用,下面介绍几个常见的应用场景:1. 家庭温度监测在家庭中,我们可以将数字温度计放置在客厅、卧室等常用区域,用于监测室内温度。

通过数字温度计,我们可以实时了解室内的温度状况,根据需要进行调节,提供舒适的生活环境。

2. 温室控制在温室种植中,保持适宜的温度对于植物的生长至关重要。

数字温度计可以帮助种植者实时监测温室内的温度,并及时采取相应的措施,维持温室内的温度在适宜的范围内。

3. 实验室温度监测实验室需要严格控制温度,以确保实验的准确性和稳定性。

基于51单片机的数字温度计设计与实现

基于51单片机的数字温度计设计与实现

基于51单片机的数字温度计设计与实现数字温度计是一种能够测量环境温度并将其以数字形式显示出来的仪器。

它被广泛应用于各种领域,例如家庭、工业和实验室。

本文将介绍基于51单片机的数字温度计的设计与实现。

首先,我们需要了解51单片机的基本知识。

51单片机是一种8位微控制器,具有强大的计算和控制能力。

它是目前应用最广泛的单片机之一。

接下来,我们需要选择合适的温度传感器。

常用的温度传感器有热电偶、半导体温度传感器和热敏电阻等。

在本设计中,我们将使用LM35半导体温度传感器。

LM35具有精确度高、响应快的特点,非常适合用于数字温度计。

设计硬件电路是实现数字温度计的重要一步。

电路的核心是将传感器输出的模拟电压转换成数字信号。

我们可以使用ADC(模数转换器)将模拟信号转换为数字信号。

51单片机的内部有一个8位ADC,可以用来实现此功能。

在编程方面,我们可以使用C语言来编写单片机的程序。

使用51单片机的开发环境,如Keil C等,可以帮助我们更方便地编写程序。

算法的编写是实现数字温度计的关键。

我们需要将ADC转换出的数字信号进行处理,得到具体的温度数值。

这个数值可以通过一些公式来计算得出。

以LM35传感器为例,根据其数据手册可以得知,输出电压与温度之间的关系为温度(℃)=(传感器输出电压-0.5)/0.01。

通过这个公式,我们可以将ADC转换出的数字信号转换为实际的温度数值。

最后,我们需要将得到的温度数值以数字形式显示出来。

此时,我们可以使用数码管来进行显示。

51单片机具有多个IO口,可以直接驱动数码管进行数字的显示。

综上所述,基于51单片机的数字温度计的设计与实现主要包含选择温度传感器、设计硬件电路、编写单片机程序和显示温度数值这几个步骤。

通过合理的硬件设计和算法编写,我们可以实现一个准确可靠的数字温度计。

同时,我们也可以通过不断改进和增加功能,使其适应更多的应用场景。

希望本文对您的数字温度计设计与实现提供了一些参考。

基于51单片机的数字温度计

基于51单片机的数字温度计

引言:数字温度计是一种基于51单片机的温度测量装置,它通过传感器感知环境的温度,并使用单片机将温度值转换为数字形式,并显示在液晶屏上。

本文将详细介绍数字温度计的设计原理、硬件连接、软件编程以及应用领域。

概述:数字温度计基于51单片机的设计理念,其基本原理是通过传感器将温度转换为电信号,然后通过ADC(模数转换器)将电信号转换为数字信号,最后使用单片机将数字信号转换为温度值。

同时,数字温度计还将温度值显示在液晶屏上,方便用户直观地了解环境温度。

正文内容:1. 硬件连接:1.1 使用温度传感器感知环境温度:常用的温度传感器有NTC热敏电阻和DS18B20数字温度传感器。

通过将传感器连接到51单片机的引脚上,可以实现对环境温度的感知。

1.2 连接ADC进行模数转换:ADC是将模拟信号转换为数字信号的关键部件。

通过将51单片机的引脚连接到ADC芯片的输入端,可以将模拟的温度信号转换为数字信号。

1.3 连接液晶屏显示温度值:通过将51单片机的引脚连接到液晶屏的控制引脚和数据引脚,可以将温度值以数字形式显示在液晶屏上。

2. 软件编程:2.1 初始化引脚和ADC:在软件编程中,需要初始化51单片机的引脚设置和ADC的工作模式。

通过设置引脚为输入或输出,以及设置ADC的参考电压和工作模式,可以确保硬件正常工作。

2.2 温度测量算法:根据传感器的工作原理和电压-温度特性曲线,可以编写相应的算法将ADC测得的电压值转换为温度值。

例如,对于NTC热敏电阻,可以使用Steinhart-Hart公式进行温度计算。

2.3 温度值显示:将温度值以数字形式显示在液晶屏上。

通过设置液晶屏的控制引脚和数据引脚,可以控制液晶屏的显示内容,并将温度值以数字形式显示在屏幕上。

3. 基于51单片机的数字温度计应用:3.1 家庭温度监测:数字温度计可以安装在家庭中的不同区域,实时监测室内温度,并通过数字显示提供直观的温度信息。

这对于家庭的舒适性和节能都有重要意义。

基于51单片机数字温度计设计

基于51单片机数字温度计设计

课题:基于51单片机数字温度计设计专业:电子信息工程班级:(1)班学号:姓名:峰指导教师:周冬芹设计日期:成绩:重庆大学城市科技学院电气学院基于51单片机数字温度计设计一、设计目的1、掌握单片机电路的设计原理、组装与调试方法。

2、掌握LED数码显示电路的设计和使用方法。

3、掌握DS18B20温度传感器的工作原理及使用方法。

二、设计要求1、本次单片机课程设计要求以51系列单片机为核心,以开发板为平台。

2、设计一个数字式温度计,要求使用DS18B20温度传感器测量温度。

3、经单片机处理后,要求用4位一体共阴LED数码管来设计显示电路,以显示测量的温度值。

4、另外还要求在设计中加入报警系统,如果我们所设计的系统用来监控某一设备,当设备的温度超过或低于我们所设定的温度值时,系统会产生报警。

5、要求在设计中加入上下限警报温度设置电路。

三、设计的具体实现1数字温度计设计的方案在做数字温度计的单片机电路中,对信号的采集电路大多都是使用传感器,这是非常容易实现的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。

采集之后,通过使用51系列的单片机,可以对数据进行相应的处理,再由LED显示电路对其数据进行显示。

2系统设计框图温度计电路设计总体设计方框图如下图所示,控制器采用单片机A T89C51,温度传感器采用DS18B20,用4位一体共阴LED数码管以串口传送数据实现温度显示。

此外,还添加了报警系统,对温度实施监控。

3主控器AT89C51芯片对于单片机的选择,可以考虑使用8031与8051系列,由于8031没有内部RAM,系统又需要大量内存存储数据,因而不适用。

AT89C51 以低价位单片机可为提供许多高性价比的应用场合,可灵活应用于各种控制领域,对于简单的测温系统已经足够。

单片机AT89C51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要该器件是INTEL公司生产的MCS一5l系列单片机中的基础产品,采用了可靠的CMOS工艺制造技术,具有高性能的8位单片机,属于标准的MCS—51的CMOS产品。

51单片机数字温度计的设计与实现

51单片机数字温度计的设计与实现

51单片机数字温度计的设计与实现温度计是一种广泛使用的电子测量仪器,它能够通过感知温度的变化来提供精准的温度数值。

本文将介绍如何使用51单片机设计并实现一款数字温度计。

一、硬件设计1. 采集温度传感器温度传感器是用来感知环境温度的关键器件。

常见的温度传感器有DS18B20、LM35等。

在本次设计中,我们选择DS18B20温度传感器。

通过电路连接将温度传感器与51单片机相连,使51单片机能够读取温度传感器的数值。

2. 单片机选型与连接选择适合的51单片机型号,并根据其引脚功能图对单片机进行合理的引脚连接。

确保温度传感器与单片机之间的数据传输通畅,同时保证电源和地线的正确连接。

3. 显示模块选型与连接选择合适的数字显示模块,如数码管、液晶显示屏等。

将显示模块与51单片机相连,使温度数值能够通过显示模块展示出来。

4. 电源供应为电路提供稳定的电源,保证整个系统的正常运行。

选择合适的电源模块,并根据其规格连接电路。

二、软件设计1. 温度传感器读取程序编写程序代码,使用单片机GPIO口将温度传感器与单片机连接,并通过相应的通信协议读取温度数值。

例如,DS18B20采用一线制通信协议,需要使用单总线协议来读取温度数值。

2. 数字显示模块驱动程序编写程序代码,通过单片机的GPIO口控制数字显示模块的数码管或液晶显示屏进行温度数值显示。

根据显示模块的规格,编写合适的驱动程序。

3. 温度转换算法将温度传感器读取到的模拟数值转换为实际温度数值。

以DS18B20为例,它输出的温度数值是一个16位带符号的数,需要进行相应的转换操作才能得到实际的温度数值。

4. 系统控制程序整合以上各部分代码,编写系统控制程序。

该程序通过循环读取温度数值并进行数据处理,然后将处理后的数据送到数字显示模块进行实时显示。

三、实现步骤1. 硬件连接按照前文所述的硬件设计,将温度传感器、51单片机和数字显示模块进行正确的连接。

确保连接无误,并进行必要的电源接入。

基于51单片机的数字温度计设计及优化

基于51单片机的数字温度计设计及优化

基于51单片机的数字温度计设计及优化数字温度计是一种常见的电子测量设备,用于测量周围环境的温度,并将温度以数字形式显示。

本文将介绍一种基于51单片机的数字温度计的设计及其优化。

首先,为了设计一个基于51单片机的数字温度计,我们需要以下材料和器件:51单片机、温度传感器、LCD显示屏、电阻、电容、晶体振荡器等。

在电路设计方面,我们可以将温度传感器连接到单片机的模拟输入引脚上,通过读取模拟输入,可以获取传感器测量到的温度值。

接下来,我们可以通过串口通信将温度值发送到PC机,并通过PC机上的软件进行温度的实时显示和记录。

在软件设计方面,我们需要首先编写单片机的程序,以读取传感器的模拟信号,并将其转换为数字温度值。

然后,我们可以通过串口通信将温度值发送给PC机。

在PC机上的软件中,我们需要编写一个接收温度数据的程序,并通过图形界面显示温度值。

为了进一步优化数字温度计设计,我们可以考虑以下几个方面:1. 精度优化:通过选用更高精度的温度传感器,可以提高温度测量的准确性。

此外,在单片机的程序中,我们可以进行数学运算和滤波算法的优化,以提高温度测量的精度。

2. 功耗优化:在设计数字温度计时,我们应该尽可能降低系统的功耗。

例如,可以选择低功耗的单片机,合理设置时钟频率和休眠模式,以减少系统能耗。

3. 可靠性优化:数字温度计在长时间使用时应保持可靠性,尽量减少出现故障的可能性。

为此,我们可以对电路进行严格的电气设计,使用高质量的电子元器件,并进行必要的温度校准和测试。

4. 功能扩展:基于数字温度计的设计还可以考虑添加一些额外的功能,如报警功能、记录功能和远程监测功能等。

这些功能可以通过扩展硬件和改进软件来实现。

总结一下,本文介绍了基于51单片机的数字温度计的设计及其优化。

通过合理的电路设计和软件编程,我们可以实现一个精度高、功耗低、可靠性强的数字温度计。

此外,我们还可以通过优化算法和添加额外功能来进一步提升数字温度计的性能。

基于51单片机数字温度计系统设计与实现

基于51单片机数字温度计系统设计与实现

基于51单片机数字温度计系统设计与实现数字温度计是一种可以测量环境温度并将结果以数字方式显示的设备。

在本次任务中,我们将基于51单片机设计和实现一个数字温度计系统。

本文将介绍数字温度计的原理、硬件设计、软件设计以及系统的实施过程。

首先,让我们来了解一下数字温度计的工作原理。

数字温度计通过传感器获取环境温度的模拟信号,然后将其转换为数字信号进行处理,并最终在数字显示器上显示温度值。

通常,我们使用的传感器是温度敏感电阻或数字温度传感器。

接下来,我们将讨论硬件设计。

在本次任务中,我们使用的是51单片机作为主控制器。

我们需要连接一个温度传感器来测量温度,并将温度值转换为数字信号。

同时,我们还需要连接一个数字显示器,用于显示温度值。

为了实现这些功能,我们需要设计一个电路板,并正确布局电子元件。

另外,我们还需要通过键盘或按钮来控制系统的操作,例如切换温度单位等。

在软件设计方面,我们需要编写程序来完成以下任务:首先,我们需要初始化51单片机的引脚和中断。

然后,我们需要编写一个温度转换的函数,将传感器输出的模拟信号转换为数字信号。

接下来,我们需要编写一个显示函数,将转换后的数字温度值显示在数字显示器上。

最后,我们还可以添加一些功能,例如设置温度单位(摄氏度或华氏度)和存储温度数据等。

在系统实施过程中,我们需要按照以下步骤进行操作:首先,进行硬件的连接和组装。

确保所有电子元件正确连接并固定在电路板上。

然后,烧录编写好的程序到51单片机中。

接下来,我们可以通过设置开关或按键来控制系统的操作。

最后,我们可以测试系统的功能和性能,确保数字温度计正常工作。

值得注意的是,在设计和实现数字温度计系统时,我们需要考虑一些问题。

例如,温度传感器的精度和响应时间,数字显示器的显示精度和分辨率,以及系统的稳定性和可靠性等。

通过合理的设计和选择高质量的元件,我们可以提高系统的性能和可靠性。

总结起来,本次任务中我们基于51单片机设计和实现了一个数字温度计系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DS18B20的性能特点如下:
●独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯
●DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温
●DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内
四.硬件电路设计
本设计由DS18B20温度传感器芯片测量当前的温度并将转换后的结果送入单片机。然后通过A89C51单片机驱动两位共阳极8段LED数码管显示测量温度值。如附录中本设计硬件电路图所示,本电路主要有DS18B20温度传感器芯片,两位共阳极数码管,AT89C51单片机及相应外围电路组成。其中DS18B20采用“一线制”与单片机相连。
●在DS18B20的有关资料中均未提及单总线上所挂DS18B20数量问题,容易使人误认为可以挂任意多个DS18B20,在实际应用中并非如此,当单总线上所挂DS18B20超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要加以注意。
●在DS18B20测温程序设计中,向DS18B20发出温度转换命令后,程序总要等待DS18B20的返回信号,一旦某个DS18B20接触不好或断线,当程序读该DS18B20时,将没有返回信号,程序进入死循环,这一点在进行DS18B20硬件连接和软件设计时也要给予一定的重视。
●在实际使用中发现,应使电源电压保持在5V左右,若电源电压过低,会使所测得的温度精度降低。
●较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。在使用PL/M、C等高级语言进行系统程序设计时,对DS1820操作部分最好采用汇编语言实现。
图4.2外部封装形式图4.3 传感器电路图
3.3.2 DS18B20使用中的注意事项
DS18B20虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:
●DS18B20从测温结束到将温度值转换成数字量需要一定的转换时间,这是必须保证的,不然会出现转换错误的现象,使温度输出总是显示85。
●P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入“1”后,电位被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。
●P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚电位被内部上拉电阻拉高,且作为输入。作为输入时,P2口的管脚电位被外部拉低,将输出电流,这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉的优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
●适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电
●温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃
●零待机功耗
●可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温
●在9位分辨率时最多在93.75ms内把温Байду номын сангаас转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快
平时间。
●ALE / PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令时ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。
●测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力
●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作
以上特点使DS18B20非常适用与多点、远距离温度检测系统。
DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列、各种封装形式如图4.2所示,DQ为数据输入/输出引脚。开漏单总线接口引脚。当被用着在寄生电源下,也可以向器件提供电源;GND为地信号;VDD为可选择的VDD引脚。当工作于寄生电源时,此引脚必须接地。其电路图4.3所示.。
温度传感器DS18B20的测量范围为-55℃~+125℃,在-10℃~+85℃时精度为±0.5℃。因为本设计只用于测量环境温度,所以只显示0℃~+85℃。
4.2、显示电路
本设计显示电路采用两位共阳极LED数码管来显示测量得到的温度值。LED数码管能在低电压下工作,而且体积小、重量轻、使用寿命长,因次本设计选用此数码管作为显示器件。
控制工作,还可以与PC机通信上传数据,另外AT89S51在工业控制上也有着广泛的应用,编程技术及外围功能电路的配合使用都很成熟。
该系统利用AT89C51芯片控制温度传感器DS18B20进行实时温度检测并显示,能够实现快速测量环境温度。
实验器材
3.1、 单片机的选择
对于单片机的选择,可以考虑使用8031与8051系列,由于8031没有内部RAM,系统又需要大量内存存储数据,因而不适用。AT89C51是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4kbytes的可编程的Flash只读程序存储器,兼容标准8051指令系统及引脚。它集Flash程序存储器既可在线编程(ISP),也可用传统方法进行编程,所以低价位AT89C51单片机可为提供许多高性价比的应用场合,可灵活应用于各种控制领域,对于简单的测温系统已经足够。单片机AT89C51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。主要特性如下图-1所示:
实验分工:
实验方案:
采用数字温度芯片DS18B20测量温度,输出信号全数字化。便于单片机处理及控制,省去传统的测温方法的很多外围电路。且该芯片的物理化学性很稳定,它能用做工业测温元件,此元件线形较好。在0—100摄氏度时,最大线形偏差小于1摄氏度。DS18B20的最大特点之一采用了单总线的数据传输,由数字温度计DS18B20和微控制器AT89C51构成的温度测量装置,它直接输出温度的数字信号,可直接与计算机连接。这样,测温系统的结构就比较简单,体积也不大。采用51单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,硬件实现简单,安装方便。既可以单独对多DS18B20
《单片机原理与接口技术》课程设计
题 目:基于51单片机的数字温度计的设计。
指导教师签名: 2010 年 6 月 10 日
实验目的:
随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术,本实验主要介绍了一个基于89C51单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量。
P3.1 TXD(串行输出口)
P3.2 INT0(外部中断0)
P3.3 INT1(外部中断1)
P3.4 T0(记时器0外部输入)
P3.5 T1(记时器1外部输入)
P3.6 WR (外部数据存储器写选通)
P3.7 RD (外部数据存储器读选通)
同时P3口同时为闪烁编程和编程校验接收一些控制信号。
●RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高
●XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
●XTAL2:来自反向振荡器的输出
3.3、温度传感器的选择
3.3.1
DALLAS最新单线数字温度传感器DS18B20是一种新型的“一线器件”,其体积更小、更适用于多种场合、且适用电压更宽、更经济。DALLAS半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。温度测量范围为-55~+125摄氏度,可编程为9位~12位转换精度,测温分辨率可达0.0625摄氏度,分辨率设定参数以及用户设定的报警温度存储在EEPROM中,掉电后依然保存。被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可以在远端引入,也可以采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。
4.1、温度检测电路
DS18B20最大的特点是单总线数据传输方式,DS18B20的数据I/O均由同一条线来完成。DS18B20的电源供电方式有2种:外部供电方式和寄生电源方式。工作于寄生电源方式时, VDD和GND均接地,他在需要远程温度探测和空间受限的场合特别有用,原理是当1 W ire总线的信号线DQ为高电平时,窃取信号能量给DS18B20供电,同时一部分能量给内部电容充电,当DQ为低电平时释放能量为DS18B20供电。但寄生电源方式需要强上拉电路,软件控制变得复杂(特别是在完成温度转换和拷贝数据到E2PROM时) ,同时芯片的性能也有所降低。外部电源供电方式是DS18B20最佳的工作方式,工作稳定可靠,抗干扰能力强,而且电路也比较简单,可以开发出稳定可靠的多点温度监控系统。因此本设计采用外部供电方式。如下图所示:
相关文档
最新文档