苏教版九年级数学上册期中试卷及答案
苏教版九年级数学上册期中试卷及答案【完美版】

苏教版九年级数学上册期中试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .502.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x =-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<4.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知点A (m ,n )在第二象限,则点B (|m|,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,5,8OC cm CD cm ==,则AE =( )A .8cmB .5cmC .3cmD .2cm9.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)10.如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是( )A .EG=4GCB .EG=3GC C .EG=52GCD .EG=2GC二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭____________. 2.分解因式:3244a a a -+=__________.3x 1+有意义,则x 的取值范围是_______. 4.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE =__________度.5.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点P (m ,n )在第二象限的概率为__________.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.已知关于x 的一元二次方程x 2+x +m ﹣1=0.(1)当m =0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m 的取值范围.3.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.6.我区“绿色科技公司”研发了一种新产品,该产品的成本为每件3000元.在试销期间,营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为3200元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y 元,求y与x之间的函数表达式;(3)在试销期间销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使销售数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、B5、D6、A7、D8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、2(2)a a -;3、x 1≥-且x 0≠4、22.5°5、3166、245三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、(1)x 1=12-+,x 2=12-(2)m <543、(1)略(2-14、(1)略;(2)4.95、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)90;(2)2200(90)5650(1090)≥⎧=⎨-+<<⎩x x y x x x ;(3)3325元.。
苏教版九年级上册数学期中试题附答案

九年级上册数学期中试题一 选择题:(每题3分,共24分)1、下列各式正确的是----------------------------------------------( ) A.a a =2 B.a a ±=2 C.a a =2D.22a a =2、 对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得;x 甲=x 乙,S 2甲=0.025, S 2乙=0.026,下列说法正确的是---------------------------------------( ) A.甲短跑成绩比乙好 B.乙短跑成绩比甲好 C.甲比乙短跑成绩稳定 D.乙比甲短跑成绩稳定 3、下列命题中不成立...的是------------------------------------------( ) A.矩形的对角线相等 B.一组对边平行,另一组对边相等的四边形一定是平行四边形 C.邻边相等的矩形一定是正方形 D.菱形的对角线互相垂直4、⊙O 的半径为5,点A 在直线l 上,若OA=5,则直线l 与⊙O 的位置关系是( ) A .相切 B .相交 C .相切或相交 D .相离5、三角形的外心是三角形中-----------------------------------------( ) A. 三条高的交点 B. 三条中线的交点 C. 三条角平分线的交点 D. 三边垂直平分线的交点6、已知⊙O 的半径为3,OP=2,OQ=3,OR=4,经过这三点中的一点任意作直线,总是与⊙O 相交,这个点是----------------------------------------------------( ) A. P B. Q C. R D. P 或Q7、若方程ax 2+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是( ) A. 1,0 B.-1,0 C.1,-1 D.无法确定8、如图,P(x ,y)是以坐标原点为圆心,5为半径的圆周上的点,若x ,y 都是整数,则这样的点共有----------------( ) A. 4个 B. 8个 C. 12个 D. 16个二 填空题(每题3分,共30分)9、一组数据-1、2、5、x 的极差为8,则 x= 。
2024-2025学年九年级数学上学期期中测试卷(江苏通用,测试范围:苏科版九上第1章-第2章)解析

2024-2025学年九年级数学上学期期中模拟卷(江苏通用)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版九年级上册第1章-第2章。
5.难度系数:0.75。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若关于x 的一元二次方程23510x x a +++= 有一个根为0,则a 的值为( )A .1±B .1C .1-D .02.直线 l 与半径为 r 的 O e 相交,且点 O 到直线 l 的距离为 6,则 r 的取值范围是( )A .6r <B .6r =C .6r >D .6r ³【答案】C【详解】解:∵直线 l 与半径为 r 的 O e 相交,且点 O 到直线 l 的距离为 6,∴6r >.故选:C .3.关于x 的一元二次方程22310x kx +-=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .只有一个实数根【答案】A【详解】解:在关于x 的一元二次方程22310x kx +-=中,2a =,3b k =,1c =-,22Δ498b ac k =-=+,因为20k >,所以22Δ4980b ac k =-=+>,所以关于x 的一元二次方程22310x kx +-=根的情况是有两个不相等的实数根.故选A .4.如图,在 O e 中,A ,B ,D 为 O e 上的点,52AOB Ð=°,则ADB Ð的度数是 ( )A .104°B .52°C .38°D .26°5.若12x x ,是一元二次方程20x x +-=的两个实数根,则12124x x x x +-的值为( )A .4B .3-C .0D .7【答案】D【详解】解:∵12x x ,是一元二次方程220x x +-=的两个实数根,∴121x x +=-,122x x =-,∴()121241427x x x x +-=--´-=,故选:D .6.如图,等边三角形ABC 和正方形DEFG 均内接于O e ,若2EF =,则BC 的长为( )A.B.C D7.把一根长50cm的铁丝围成一个等腰三角形,使其中一边的长比另一边的2倍少5cm,则该三角形的边长不可能为()A .12cmB .19cmC .22.5cmD .13cm8.如图,AB 是O e 的直径,4AB =,点C 是上半圆AB 的中点,点D 是下半圆AB 上一点,点E 是BD的中点,连接AE CD 、交于点F .当点D 从点A 运动到点B 的过程中,点F 运动的路径长是( )A 2BC .πD .【答案】B【详解】解:连接,,,AC BC BD OE ,∵AB 是O e 的直径,点C 是上半圆 AB 的中点,∴ AC BC=,90ACB Ð=°,∴点F 的轨迹为 AB 的长90=故选B .第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。
苏科版九年级上册数学期中考试试卷附答案

苏科版九年级上册数学期中考试试题一、单选题1.若()22230m x x --+=是关于x 的一元二次方程,则m 的取值范围是()A .m>2B .m≠0C .m≤2D .m≠22.用配方法解一元二次方程2870x x -+=,方程可变形为()A .2(4)9x +=B .2(4)9x -=C .2(8)16x -=D .2(8)57x +=3.小红连续5天的体温数据如下(单位相C ︒):36.6,36.2,36.5,36.2,36.3.关于这组数据下列说法正确的是()A .中位数是36.5C ︒B .众数是36.2C ︒C .平均数是36.2C︒D .极差是0.3C︒4.关于x 的一元二次方程220x kx --=(k 为实数)根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定5.若关于x 的方程x 2+3x+a=0有一个根为-1,则另一个根为()A .-2B .2C .4D .-36.某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是()A .50(1+x )²=182B .50+50(1+x )+50(1+x )²=182C .50(1+2x )=182D .50+50(1+x )+50(1+2x )²=1827.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心,若18ADB ∠=︒,则这个正多边形的边数为()A .10B .11C .12D .138.如图,在长为100m ,宽为80m 的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644m 2,则道路的宽应为多少米?设道路的宽为x m ,则可列方程为()A .100×80-100x -80x=7644B .(100-x)(80-x)+x 2=7644C .(100-x)(80-x)=7644D .100x +80x -x 2=76449.我国古代数学著作《九章算术》中记载了弓形面积的计算方法.如图,弓形的弦长AB为,拱高(弧的中点到弦的中点之间的距离)CD 为15cm ,则这个弓形的面积是()cm 2.A .B .C .D .10.如图,在矩形ABCD 中,AB =4,AD =8,点E 、点F 分别在边AD ,BC 上,且EF ⊥AD ,点B 关于EF 的对称点为G 点,连接EG ,若EG 与以CD 为直径的⊙O 恰好相切于点M ,则AE 的长度为()A .3BC .D .6二、填空题11.某中学为了选拔一名运动员参加市运会100米短比赛,有甲、乙两名运动员备选,他们最近测试的10次百米跑平均时间都是12.83秒,他们的方差分别是21.3S=甲(秒2)2 1.7S =乙(秒2),如果要选择一名成绩优秀且稳定的人去参赛,应派______去.12.已知a 是关于x 方程x 2﹣2x ﹣8=0的一个根,则2a 2﹣4a 的值为_______.13.将半径为6cm ,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径为______cm .14.如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.15.设12,x x 是关于x 的方程230x x k -+=的两个根,且122x x =,则k =_______.16.在△ABC 中,∠BAC=60°,∠ABC=45°,AB=2,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB 、AC 于E 、F ,连接EF ,则线段EF 长度的最小值是________.17.如图,P 为⊙O 外一点,PA 切⊙O 于A ,若PA =3,∠APO =45°,则⊙O 的半径是_____.三、解答题18.解下列方程:(1)2(1)40--=x (2)x 2﹣6x ﹣3=0(3)3x (x ﹣1)=2(1﹣x )(4)2x 2﹣5x+3=019.如图,在平面直角坐标系中,M 经过原点,且与x 轴交于点(4,0)A -,与y 轴交于点(0,2)B ,点C 在第二象限M 上,且60AOC ∠=︒,则OC =__.20.因国际马拉松赛事即将在某市举行,某商场预计销售一种印有该市设计的马拉松图标的T 恤,已知这种T 恤的进价为40元一件.经市场调查,当售价为60元时,每天大约可卖出300件;售价每降低1元,每天可多卖出20件.在鼓励大量销售的前提下,商场还想获得每天6080元的利润,问应将这种T 恤的销售单价定为多少元?21.如图,已知圆O 的直径AB 垂直于弦CD 于点E ,连接CO 并延长交AD 于点F ,且CF ⊥AD ,连结AC .(1)△ACD 为等边三角形;(2)请证明:E 是OB 的中点;(3)若AB =8,求CD 的长.22.某篮球队员在篮球联赛中分别与甲队、乙队对阵各四场,下表是他的技术统计.场次对阵甲队对阵乙队得分(分)失误(次)得分(分)失误(次)第一场252273第二场300311第三场273202第四场262264(1)他在对阵甲队和乙队的各四场比赛中,平均每场得分分别是多少?(2)利用方差判断他在对阵哪个队时得分比较稳定;(3)根据上表提供的信息,判断他在对阵哪个队时总体发挥较好,简要说明理由.23.如图,四边形ABCD 内接于O ,AC 为O 的直径,D 为 AC 的中点,过点D 作DE AC ,交BC 的延长线于点E .(1)判断DE 与O 的位置关系,并说明理由;(2)若O 的半径为5,8AB ,求CE 的长.24.如果关于x 的一元二次方程ax 2+bx +c =0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x 2+x =0的两个根是x 1=0,x 2=﹣1,则方程x 2+x =0是“邻根方程”.(1)通过计算,判断方程2x 2﹣+1=0是否是“邻根方程”?(2)已知关于x 的方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,求m 的值;25.如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA=∠CBD .(1)求证:CD 2=CA•CB ;(2)求证:CD 是⊙O 的切线;(3)过点B 作⊙O 的切线交CD 的延长线于点E ,若BC=12,tan ∠CDA=23,求BE 的长.26.如图,在△ABC 中,∠ACB =90°,以点B 为圆心,BC 的长为半径画弧,交线段AB于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,设BC =a ,AC =b .(1)请你判断:线段AD 的长度是方程x 2+2ax ﹣b 2=0的一个根吗?说明理由;(2)若线段AD =EC ,求ab的值.参考答案1.D 【解析】【详解】解:∵()22230m x x --+=是关于x 的一元二次方程,∴20m -≠,∴2m ≠.故选:D 【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有一个未知数,且未知数的最高次数为2的整式方程叫做一元二次方程是解题的关键.2.B 【解析】【分析】先将常数项移到等号的右边,在方程两边加上一次项系数一半平方,将方程左边配成一个完全平方式即可.【详解】解:x 2-8x+7=0,x 2-8x=-7,x 2-8x+16=-7+16,(x-4)2=9.故选:B .【点睛】本题考查了运用配方法解一元二次方程,解答时熟练掌握配方法的步骤是关键.3.B 【解析】【分析】根据众数、中位数的概念求得众数和中位数,根据平均数和方差、极差公式计算平均数和极差即可得出答案.【详解】A .将这组数据从小到大的顺序排列:36.2,36.2,36.3,36.5,36.6,则中位数为36.3C ︒,故此选项错误B .36.2出现了两次,故众数是36.2C ︒,故此选项正确;C .平均数为1(36.236.236.336.536.6)36.365++++=(C ︒),故此选项错误;D .极差为36.6-36.2=0.4(C ︒),故此选项错误,故选:B .【点睛】本题主要考查了中位数、众数、平均数和极差,熟练掌握它们的计算方法是解答的关键.4.A 【解析】【分析】根据一元二次方程根的判别式,可判断根的情况.【详解】一元二次方程20(a 0)++=≠ax bx c 中,24b ac -叫做一元二次方程()200++=≠ax bx c a 的根的判别式,通常用“∆”来表示,即2=4∆-b ac ,当0∆>时,方程有2个实数根,当=0∆时,方程有1个实数根(2个相等的实数根),当∆<0时,方程没有实数根.方程220x kx -+=根的判别式()22=-41(2)80k k ∆-⨯⨯-=+>,所以有两个不相等的实数根.【点睛】本题考查根据一元二次方程根的判别式判断根的个数.5.A 【解析】【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a 的值和另一根.【详解】设一元二次方程的另一根为x 1,∵关于x 的方程x 2+3x+a=0有一个根为-1,∴﹣1+x 1=﹣3,解得:x 1=﹣2.故选A .6.B 【解析】【分析】设平均每月的增长率为x ,则二月份生产零件501x +()万个,三月份生产零件()2501x +万个,由此可得出方程.【详解】解:设二、三月份平均每月的增长率为x ,则二月份生产零件501x +()个,三月份生产零件2501x +()个,则得:250501501182x x ++++=()().故答案为:B .【点睛】本题主要考查了求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为21a x b ±=().7.A 【解析】【分析】作正多边形的外接圆,连接AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.【详解】解:如图,作正多边形的外接圆,连接AO,BO,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数为36036°°=10.故选:A.【点睛】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.8.C【解析】【分析】可以根据图形平移的规律,把阴影部分的分别平移到最边上,把剩下的面积变成一个新的长方形【详解】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是读懂题意,把道路进行平移后找到等量关系.9.D【解析】【分析】设弧ACB 所在圆的圆心为O ,连接OC 、OA 、OB ,在构造的Rt △OAD 中,利用垂径定理和勾股定理即可求出弧ACB 的半径长,即弓形面积=扇形AOB 面积-△AOB 面积.【详解】解:设弧ACB 所在圆的圆心为O ,连接OC 、OA 、OB ,∵CD ⊥AB ,∴C ,D ,O 三点共线,在Rt △OAD 中,设OA=xcm ,则OD=x-CD=(x-15)cm ,12AD AB ==cm ),∴222OA OD AD =+,即222(15)x x =-+,解得:3x =0,∴OD=15cm ,AO=30,∴∠OAD=30°,∴∠AOD=60°,∴∠AOB=120°,∴2212030300360AOBS cmππ⨯⨯==扇形,21152AOB S =⨯⨯= ,所以所求弓形面积2(300cm π=-,故选:D .【点睛】此题考查弓形面积求解,涉及知识点有垂径定理,扇形面积公式,30°所对直角边等于斜边一半,勾股定理等,通过构造辅助线求出半径长是解此题的关键.10.D 【解析】【分析】设AE =x ,则ED =8﹣x ,易得四边形ABFE 为矩形,则BF =x ,利用对称性质得FG =BF=x,则CG=8﹣2x,再根据切线长定理得到EM=ED=8﹣x,GM=GC=8﹣2x,所以EG =16﹣3x,在Rt△EFG中利用勾股定理得到42+x2=(16﹣3x)2,然后解方程可得到AE的长.【详解】解:设AE=x,则ED=8﹣x,∵EF⊥AD,∴四边形ABFE为矩形,∴BF=x,∵点B关于EF的对称点为G点,∴FG=BF=x,∴CG=8﹣2x,∵∠ADC=∠BCD=90°,∴AD和BC为⊙O的切线,∵EG与以CD为直径的⊙O恰好相切于点M,∴EM=ED=8﹣x,GM=GC=8﹣2x,∴EG=8﹣x+8﹣2x=16﹣3x,在Rt△EFG中,42+x2=(16﹣3x)2,整理得x2﹣12x+30=0,解得x1=6,x2=,即AE的长为6.故选:D.【点睛】本题考查了切线长定理、矩形的性质与判定、勾股定理、以及轴对称的知识.经过圆外一点的切线,这一点和切点之间的线段的长叫做这点到圆的切线长,从圆外一点引圆的两条切线,它们的切线长相等.11.甲【解析】【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵21.3S =甲,2 1.7S =乙,∴S 2甲<S 2乙,∴选择一名成绩优秀且稳定的人去参赛,应派甲去.故答案为:甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.16【解析】【分析】根据一元二次方程的根的定义“使一元二次方程左右两边相等的未知数的值叫一元二次方程的解,也叫一元二次方程的根”得2280a a --=,则228a a -=,再将224a a -提出公因数2,即可得.【详解】解:∵a 是一元二次方程2280x x --=的一个根,∴2280a a --=,∴228a a -=∴22242(2)2816a a a a -=-=⨯=,故答案为:16.【点睛】本题考查了一元二次方程的根和代数式求值,解题的关键是掌握一元二次方程的根的定义.13.2【解析】【分析】根据弧长公式、圆锥的性质分析,即可得到答案.【详解】解:根据题意,得圆锥底面周长12064180ππ︒⨯⨯==︒cm ,∴这个圆锥底面圆的半径422ππ==cm,故答案为:2.【点睛】本题考查了扇形、圆锥的知识;解题的关键是熟练掌握弧长公式、圆锥的性质,从而完成求解.14.25【解析】【分析】连接OC,根据等腰三角形的性质和三角形内角和定理得到∠BOC=100°,求出∠AOC,根据等腰三角形的性质计算.【详解】解:连接OC,∵OC=OB,∴∠OCB=∠OBC=40°,∴∠BOC=180°-40°×2=100°,∴∠AOC=100°+30°=130°,∵OC=OA,∴∠OAC=∠OCA=25°,故答案为:25.【点睛】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.15.2【解析】【分析】先利用根与系数的关系中两根之和等于3,求出该方程的两个根,再利用两根之积得到k 的值即可.【详解】解:由根与系数的关系可得:123x x +=,12·x x k =,∵122x x =,∴233x =,∴21x =,∴12x =,∴122k =⨯=;故答案为:2.【点睛】本题考查了一元二次方程根与系数之间的关系,解决本题的关键是牢记公式,即对于一元二次方程()200ax bx c a ++=≠,其两根之和为b a-,两根之积为c a .16.2【解析】【分析】过O 点作OH ⊥EF ,垂足为H ,连接OE ,OF ,由圆周角定理可知∠EOH =12∠EOF =∠BAC=60°,即可求出EF =,所以当半径OE 最短时,EF 最短.而由垂线段的性质可知,当AD 为△ABC 的边BC 上的高时,直径AD 最短,所以只要在Rt △ADB 中,解直角三角形求出最短直径AD ,即可得到最短半径OE ,进而求出线段EF 长度的最小值.【详解】解:如图,连接OE ,OF ,过O 点作OH ⊥EF ,垂足为H ,∴12EH EF =,∵OE=OF ,OH ⊥EF ,∠BAC=60°∴1===602EOH FOH EOF BAC =︒∠∠∠∠,∴∠OEH=30°,∴12OH OE =,∴EH =,∴EF =,∴要使EF 要最小,即半径OE 最小,即直径AD 最小,∴由垂线段的性质可知,当AD 为△ABC 的边BC 上的高时,直径AD 最短,∵在Rt △ADB 中,∠ABC =45°,AB =2,∴AD =BD ,222BD AD AB +=,∴224AD =,∴AD BD ==∴22EF AD ==【点睛】本题主要考查了垂径定理,圆周角定理,垂线段最短,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够把求EF 的最小值转化成求直径AD 的最小值.17.3.【解析】【分析】连接OA ,根据切线的性质得出OA ⊥PA ,由已知条件可得△OAP 是等腰直角三角形,进而可求出OA 的长,问题得解.【详解】解:连接OA ,∵PA 切⊙O 于点A ,∴OA ⊥PA ,∴∠OAP =90°,∵∠APO =45°,∴OA =PA =3,故答案为:3.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.18.(1)11x =-,23x =(2)13x =+23x =-(3)11x =,223x =-(4)132x =,21x =【解析】【分析】(1)原方程运用因式分解法求解即可;(2)原方程运用配方法求解即可;(3)原方程移项后运用因式分解法求解即可;(4)原方程运用公式法求解即可.(1)2(1)40--=x [(1)2][(1)2]0x x -+--=(1)(3)0x x +-=10x +=,30x -=∴11x =-,23x =(2)x 2﹣6x ﹣3=0263x x -=26912x x -+=2(3)12x -=3x -=±∴13x =+23x =-(3)3x (x ﹣1)=2(1﹣x )3(1)2(1)0x x x -+-=(1)(32)0x x -+=10x -=,320x +=∴11x =,223x =-(4)2x 2﹣5x+3=0在这里2,5,3a b c ==-=2=4252410b ac ∆-=-=>∴514x ±=∴132x =,21x =【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法、公式法解一元二次方程.19.【解析】【分析】连接AC ,CM ,AB ,过点C 作CH ⊥OA 于H ,设OC=a .利用勾股定理构建方程解决问题即可.【详解】解:连接AC ,CM ,AB ,过点C 作CH ⊥OA 于H ,设OC=a .∵∠AOB=90°,∴AB 是直径,∵A (-4,0),B (0,2),∴AB ∴=∵∠AMC=2∠AOC=120°,AC =∴=,在Rt △COH 中,1cos 60,22OH OC a CH a ︒=⋅===,142AH a ∴=-,在Rt △ACH 中,AC 2=AH 2+CH 2,∴22115(4)()22a a =-+,∴或OC >OB ,所以,∴OC=2+,故答案为:.【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.20.应将这种T 恤的销售单价定为56元/件.【解析】【分析】设应将这种T 恤的销售单价定为x 元/件,则每天大约可卖出[300+20(60-x )]件,根据总利润=每件的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】解:设应将这种T 恤的销售单价定为x 元/件,则每天大约可卖出[300+20(60-x )]件,根据题意得:(x-40)[300+20(60-x )]=6080,整理得:x 2-115x+3304=0,解得:x 1=56,x 2=59.∵鼓励大量销售,∴x=56.答:应将这种T 恤的销售单价定为56元/件.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(1)见解析(2)见解析(3)【解析】【分析】(1)根据垂直平分线的性质证明AC =AD =CD 即可(2)要证明:E 是OB 的中点,只要求证OE =12OB =12OC ,即证明∠OCE =30°即可;(3)在直角△OCE 中,根据勾股定理就可以解得CE 的长,进而求出CD 的长.(1)证明:连接AC ,如图∵直径AB 垂直于弦CD 于点E ,∴ AC AD,AC =AD ,∵过圆心O 的线CF ⊥AD ,∴AF =DF ,即CF 是AD 的中垂线,∴AC =CD ,∴AC=AD=CD.即:△ACD是等边三角形,(2)△ACD是等边三角形,CF是AD的中垂线,∴FA FD=ACF DCF∴∠=∠=30°,在Rt△COE中,OE=12 OC,∴OE=12 OB,∴点E为OB的中点;(3)解:在Rt△OCE中,AB=8∴OC=12AB=4,又∵BE=OE,∴OE=2,∴CE==∴CD=2CE=【点睛】本题考查了垂径定理、勾股定理、中垂线性质、30°所对的直角边是斜边的一半,等边三角形的判定和性质.解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.22.(1)他对阵甲队的平均每场得分为27分,对阵乙队的平均每场得分为26分;(2)他在对阵甲队时得分比较稳定;(3)他在对阵甲队时总体发挥较好,理由见解析.【解析】【分析】(1)根据平均数的计算公式分别进行计算即可;(2)根据方差公式进行计算,再根据方差的意义即可得出答案;(3)根据失误次数和方差的意义即可得出答案.【详解】(1)解:x 甲=253027264+++=27,x 乙=273120264+++=26.答:他对阵甲队的平均每场得分为27分,对阵乙队的平均每场得分为26分.(2)解:2S 甲=2222(2527)(3027)(2727)(2627)4-+-+-+-=3.5,2S 乙=2222(2726)(3126)(2026)(2626)4-+-+-+-=15.5.由可知22S S <甲乙,他在对阵甲队时得分比较稳定.(3)解:他在对阵甲队时总体发挥较好.理由:由x x >乙甲可知他对阵甲队时平均得分较高;由22S S <甲乙可知,他在对阵甲队时得分比较稳定;计算得他对阵甲队平均失误为1.75次,对阵乙队平均失误为2.5次,由1.75次<2.5次可知他在对阵甲队时失误较少.【点睛】考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.23.(1)详见解析;(2)254CE =.【解析】【分析】(1)连接OC ,由AC 为O 的直径,得到90ADC ∠= ,根据 AD CD =,得到AD CD =,根据平行线的性质得到45CDE DCA ∠=∠=o ,求得90ODE ∠= ,于是得到结论;(2)根据勾股定理得到AD CD ==90ABC ∠= ,求得6BC =,根据相似三角形的性质即可得到结论.【详解】(1)DE 与O 相切,理由如下:如图,连接OD ,∵AC 为O 的直径,∴90ADC ∠= ,∵D 为 AC 的中点,∴ AD CD =,∴AD CD =,∴45ACD ∠= ,∵O 是AC 的中点,∴45ODC ∠=o ,∵DE AC ,∴45CDE DCA ∠=∠=o ,∴90ODE ∠= ,∴DE 与O 相切;(2)∵O 的半径为5,∴10AC =,∴52AD CD ==∵AC 为O 的直径,∴90ABC ∠= ,∵8AB =,∴6BC =,∵BAD DCE ∠=∠,45ABD CDE ∠=∠=o ,∴ABD CDE ∆∆:,∴ABADCD CE =,252CE =,∴254CE =.【点睛】本题考查直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.24.(1)2x 2﹣+1=0是“邻根方程”;(2)m =0或−2【解析】【分析】(1)根据解一元二次方程的方法解出已知方程的解,再比较两根的差是否为1,从而确定方程是否为“邻根方程”;(2)先解方程求得其根,再根据新定义列出m 的方程,注意有两种情况【详解】解:(1)2x 2﹣+1=0,∵21a b c ==-=,,∴(22=442=4b ac -=--⨯ ,∴x =,∵1=+122,∴2x 2﹣+1=0是“邻根方程”;(2)解方程得:(x−m )(x +1)=0,∴x =m 或x =−1,∵方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,∴m =−1+1或m =−1−1,∴m =0或−2.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法以及正确理解“邻根方程”的定义,本题属于中等题型.25.(1)见解析;(2)见解析;(3)BE 的长为5.【解析】【分析】(1)通过相似三角形(△ADC∽△DBC)的对应边成比例来证得结论.(2)如图,连接OD.欲证明CD是⊙O的切线,只需证明CD⊥OA即可.(3)通过相似三角形△EBC∽△ODC的对应边成比例列出关于BE的方程,通过解方程来求线段BE的长度即可.【详解】解:(1)证明:∵∠CDA=∠CBD,∠C=∠C,∴△ADC∽△DBC,∴AC DCDC BC,即CD2=CA•CB.(2)证明:如图,连接OD,∵AB是⊙O的直径,∴∠ADB=90°.∴∠1+∠3=90°.∵OA=OD,∴∠2=∠3.∴∠1+∠2=90°.又∵∠CDA=∠CBD,即∠4=∠1,∴∠4+∠2=90°,即∠CDO=90°.∴OD⊥OA.又∵OA是⊙O的半径,∴CD是⊙O的切线.(3)如图,连接OE,∵EB、CD均为⊙O的切线,∴ED=EB,OE⊥DB.∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°.∴∠ABD=∠OEB .∴∠CDA=∠OEB .∵tan ∠CDA=23,∴OB 2tan OEB BE 3∠==.∵Rt △CDO ∽Rt △CBE ,∴CD OD OB 2CB BE BE 3===.∵BC=12,∴CD=8.在Rt △CBE 中,设BE=x ,∴(x+8)2=x 2+122,解得x=5.∴BE 的长为5.考点:切线的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理.26.(1)线段AD 的长度是方程x 2+2ax ﹣b 2=0的一个根,理由详见解析;(2)34.【解析】【分析】(1)方程变形即可得到22222x ax a a b ++=+,根据勾股定理得到22()x a AB +=,由BD BC a ==,即可得到结论;(2)由题意得,12AD b =,根据勾股定理列出2221()2a b a b +=+,整理得到34a b =,即可求得34a b =.【详解】解:(1)∵在△ABC 中,∠ACB =90°,∴AB 2=AC 2+BC 2,∵BC =a ,AC =b .∴AB 2=a 2+b 2,方程x 2+2ax ﹣b 2=0变形为:x 2+2ax+a 2=a 2+b 2,∴(x+a )2=AB 2,∵BD =BC =a ,∴(x+BD )2=AB 2,∵(AD+BD )2=AB 2,∴线段AD 的长度是方程x 2+2ax ﹣b 2=0的一个根;(2)∵AD =EC ,∴AC =2AD =2AE =b ,12AD b ∴=,12AB a b ∴=+,222AB AC BC =+ ,2221()2a b a b ∴+=+整理得34a b =,∴34ab =.【点睛】本题考查了解一元二次方程的应用,根据题意列出一元二次方程并利用配方法得到22()x BD AB +=是解题的关键.。
苏教版九年级数学上册期中考试及答案【汇总】

苏教版九年级数学上册期中考试及答案【汇总】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是()A .13B .13C .3D .32.若a ≠b ,且22410,410a a bb 则221111ab的值为()A .14B .1C ..4D .33.下列计算正确的是()A .a 2+a 3=a5B .3221C .(x 2)3=x5D .m 5÷m 3=m24.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A .平均数B .中位数C .众数D .方差5.如果分式||11x x 的值为0,那么x 的值为()A .-1B .1C .-1或1D .1或0 6.对于二次函数,下列说法正确的是()A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3 C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A→B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是()A.B.C.D.8.如图,已知AB AD,那么添加下列一个条件后,仍无法判定ABC ADC≌的是()A.CB CD B.BAC DACC.BCA DCA D.90B D9.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.2510.如图,在矩形ABCD中,AB=10,4AD,点E从点D向C以每秒1个单位长度的速度运动,以AE为一边在AE的左上方作正方形AEFG,同时垂直于CD 的直线MN也从点C向点D以每秒2个单位长度的速度运动,当点F落在直线MN上,设运动的时间为t,则t的值为()A.103B.4 C.143D.163二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是__________.2.因式分解:a3-a=_____________.3.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.4.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为__________.5.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__________.6.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.三、解答题(本大题共6小题,共72分)1.解分式方程:22x1x4x22.先化简,再求值:822224x xxx x,其中12x.3.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.4.如图,?ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、D4、D5、B6、B7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、a(a-1)(a + 1)3、如果两个角是等角的补角,那么它们相等.4、140°5、136、2 5三、解答题(本大题共6小题,共72分)1、x32、3.3、(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.4、(2)略;(2)四边形EBFD是矩形.理由略.5、(1)90人,补全条形统计图见解析;.(2)48;(3)560人.6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。
苏教版九年级数学上册期中考试(及参考答案)

苏教版九年级数学上册期中考试(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是()A .13B .13C .3D .32.若分式211xx的值为0,则x 的值为()A .0B .1C .﹣1D .±13.如果a 与1互为相反数,则|a+2|等于()A .2B .-2C .1D .-14.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是()A .32bB .32bC .32b D .-3<b<-26.若3x >﹣3y ,则下列不等式中一定成立的是()A .0xyB .0xy C .0xy D .0xy 7.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是()A .3cmB .6 cmC .2.5cmD .5 cm8.如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为,把△ABO 缩小,则点A 的对应点A ′的坐标是()A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18) D.(―1,2)或(1,―2)9.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A .45°B .60°C .75°D .85°10.如图,四边形ABCD 内接于⊙O ,F 是CD 上一点,且DFBC ,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC=105°,∠BAC=25°,则∠E 的度数为()A .45°B .50°C .55°D .60°二、填空题(本大题共6小题,每小题3分,共18分)1.计算:201820195-252的结果是__________.2.分解因式:2x 2﹣8=_______. 3.已知关于x 的分式方程233x k x x 有一个正数解,则k 的取值范围为________.4.把长方形纸片ABCD 沿对角线AC 折叠,得到如图所示的图形,AD 平分∠B ′AC,则∠B′CD=__________.5.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为___________.6.如图.在44的正方形方格图形中,小正方形的顶点称为格点.ABC的顶点都在格点上,则BAC的正弦值是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:3211x x x2.先化简,再求值:22122()121x x x xx x x x,其中x满足x2-2x-2=0.3.如图,在?ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF (1)求证:?ABCD是菱形;(2)若AB=5,AC=6,求?ABCD的面积.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.6.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、C5、A6、A7、D8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、522、2(x+2)(x﹣2)3、k<6且k≠34、30°5、36、5 5三、解答题(本大题共6小题,共72分)1、1x2、1 23、(1)略;(2)S平行四边形ABCD=244、河宽为17米5、(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.6、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
caCBA苏州市景范中学2016-2017学年第一学期初三年级数学期中考试试卷一.选择题:(每小题3分,共30分) 1.下列方程中是关于x 的一元二次方程的是 A .2210x x += B .()()121x x -+= C .20ax bx c ++= D .223x x --2.在Rt ABC ∆中,各边都扩大3倍,则角A 的正弦值A .扩大3倍B .缩小3倍C .不变D .不能确定 3.已知二次函数22(3)1y x =-+,下列说法正确的是A .开口向上,顶点坐标(3,1)B .开口向下,顶点坐标(3,1)C .开口向上,顶点坐标(3,1)-D .开口向下,顶点坐标(3,1)-4.如图,ABC ∆中,90C ∠=︒,且2c a =,则sin B 的值为A .12B .2C .22D .325.方程2310x x -+=的根的情况为 A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根6.如图,一个小球由地面沿着坡比1:3i =的坡面向上前进了5m ,此时小球距离地面的高度为A . mB .10mC .3mD .5m7.二次函数2y ax bx c =++,自变量x 与函数y 的对应值如表:x … ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 … y…4﹣2﹣24…下列说法正确的是A .抛物线的开口向下B .当3x >-时,y 随x 的增大而增大4CB AC .二次函数的最小值是2-D .抛物线的对称轴是52x =-8.如图,二次函数2(0)y ax bx c a =++≠和一次函数1y x =-的图象交于(2,3)A --、(1,0)B 两点,则方程2(1)10(0)ax b x c a +-++=≠的根为A .122,3x x =-=-B .121,0x x ==C .122,1x x =-=D .123,0x x =-=9.如图,坐标平面上,二次函数24y x x k =-+-的图象与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且0k >.若ABC ∆与ABD ∆的面积比为1:4,则k 的值为 A .1 B .12C .43 D .4510.如图,矩形ABCD 中,2AB =,将矩形ABCD 绕点D 逆时针旋转90°,点A 、C 分 别落在点A '、C '处,如果点A '、C '、B 在同一条直线上,那么tan CBA '∠的值为 A .12B .51-C .5D .251-二.填空题:(每小题3分,共24分) 11.一元二次方程23x x =的根是____________ 12.如图,在Rt △ABC 中,∠C =90°,AC =4,4cos 5A =,则BC =____________ 13.二次函数243y x x =+-的对称轴是直线____________ 14.若方程25320x x --=的两个实数根为m 、n ,则11m n+ 的值为___________ 15.若关于x 的一元二次方程210ax bx ++=的一个解是2x =-,则代数式20162a b -+的B(1,0)A(-2,-3)yxDCBA第8题第9题第10题值为____________16.如图,在正方形网格中,ABC ∆的顶点都落在格点上,则tan A 的值为____________17.如图,二次函数2y ax bx c =++的图象与x 轴相交于A 、B 两点,与y 轴相交于点C ,其中点B 坐标为(2,0)B m +,若点D 是该抛物线上一点,且坐标为(1,)D m c -,则点A 的坐标是____________18.如图,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点(1,0)A -,与y 轴的交点B 在(0,2)-和(0,1)-之间(不包括这两点),对称轴为直线1x =.下列结论:①0abc >;②420a b c ++>;③2416ac b a -<;④1233a <<;⑤bc >. 其中正确结论的序号是____________ 三.解答题:(本大题共76分)19.解方程:(第(1)、(2)题,每题3分,第(3)题5分,共11分)(1)2320x x --= (2)())3(432-=-x x x (3)()3222x xx x-=+- 20.计算:(每小题3分,共6分)(1)2tan 452sin 30cos 45︒-︒︒ (2)cos3021tan 601sin 30︒-+-︒-︒21.(本题6分)已知关于x 的一元二次方程2420kx x -+=有实数根. (1)求k 的取值范围;(2)等腰ABC ∆中,2AB AC ==,若AB 、BC 的长是方程2420kx x -+=的两根,求BC 的长.CBA第16题第18题第17题yxOCDB A22.(本题6分)如图,在Rt ABC ∆中,90ACB ∠=︒,3AC BC ==,点D 在边AC 上,且2AD CD =,DE AB ⊥,垂足为点E ,联结CE .求:(1)线段BE 的长;(2)cos ECB ∠的值.23.(本题6分)已知二次函数2y x bx c =++的图象与y 轴交于点(0,3)C -,与x 轴的一个交点坐标是(1,0)A -.(1)求二次函数的解析式,并写出顶点D 的坐标; (2)将二次函数的图象沿x 轴向左平移32个单位长度,当 0y <时,求x 的取值范围.24.(本题7分)如图,在南北方向的海岸线MN 上,有A 、B 两艘巡逻船,现均收到故障船C 的求救信号.已知A 、B 两船相距33)海里,船C 在船A 的北偏东60°方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75°方向上. (1)分别求出A 与C ,A 与D 之间的距离AC 和AD (如果运算结果有根号,请保留根号).(2)已知距观测点D 处200海里范围内有暗礁.若巡逻船A 沿直线AC去营救船C 2 1.4≈31.7≈)25.(本题7分)某批发商以每件50元的价格购进800件T 恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出20件,但最低单价应高于购进的价格,并且已知第二月后T 恤还有剩余;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x 元. (1)填表(2)如果批发商希望通过销售这批T 恤获利12000元,那么第二个月的单价应是多少元?26.(本题8分)已知:关于x 的一元二次方程22(21)20x m x m m -+++-=. (1)求证:不论m 取何值,方程总有两个不相等的实数根; (2)若方程的两个实数根12x x ,满足12211m x x m +-=+-,求m 的值.27.(本题9分)如图,已知抛物线2(0)y ax bx c a =++≠与x 轴交于(3,0)A -、(5,0)B 两点,与y 轴交于点(0,5)C . (1)求此抛物线的解析式;(2)若把抛物线2(0)y ax bx c a =++≠向下平移133个单位长度,再向右平移(0)n n >个单位长度得到新抛物线,若新抛物线的顶点M 在ABC ∆内,求n 的取值范围;(3)设点P 在y 轴上,且满足OPA OCA CBA ∠+∠=∠,求CP 的长.时间第一个月 第二个月清仓时 单价(元)80 40 销售量(件)20028.(本题10分)如图,已知抛物线213y x bx c =++经过ABC ∆的三个顶点,其中点(0,1)A ,点(9,10)B -,//AC x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与ABC ∆相似,若存在,求出点Q 的坐标;若不存在,请说明理由.O yxFEPCBA l苏州市景范中学2016-2017学年第一学期题号 1 2 3 4 5 6 7 8 9 10 答案BCADDADCDB二、填空(每题3分)11、120,3x x == 12、 3 13、 x =—2 14、 32- 15、 16、 1317、 (3,0)- 18、 ①③④⑤ 三、解答 19、(1)1,23172x ±=(2)123,1x x ==- (3)123,1x x == 无检验扣2分 20、(1)22 (2)1 21、(1)2k ≤且0k ≠ (2)23BC = 22、(1)22BE = (2)523、(1)223y x x =-- (1,4)D - (2)5322x -<< 24、(1)2003,200(33)AC AD ==- (2)作DF AC ⊥于F ,210200DF ≈>,所以没有触礁的危险25、(1)(2)1210,20x x ==(舍去) 第二个月单价应为70元 26、(1)略 (2)4m =27、(1)y=﹣x 2+x+5 (2)0<n <3 (3)PC 的长为7或17 28、(1)y=x 2+2x+1 (2)当m=﹣时,四边形AECP 的面积的最大值是,此时点P (﹣,﹣) (3)Q (﹣4,1)或Q (3,1)时间第一个月 第二个月 清仓时 单价(元) 80 80—x 40 销售量(件) 200200+20x400—20x。