3勾股定理的应用教学设计
人教版八年级数学下册《勾股定理的应用——立体图形中的最短距离》教学设计

“勾股定理的应用——立体图形中的最短距离”教学设计三、研学问题活动一:如图有一个圆柱,底面周长为18,高为12.有一只蚂蚁在它下面的A点,它想吃上底面上与A点相对的B点处的食物,教师提问A点和B点在一个曲面上最短路径还能直接连接AB两点吗?引导学生思考后回让学生通过动手操作找到最短路径,培养学生的动手能力和空间想象能力。
蚂蚁爬行的最短路径是多少?变式训练如图,若上述问题中点B在点A的正上方,蚂蚁沿圆柱侧面爬行的最短路程是多少?答。
教师启发学生利用长方形纸卷出圆柱体,引导学生观察,找出A点到B点的最短路径。
学生画出圆柱的侧面展开图与蚂蚁爬行路径,并写出完整的解题过程。
(请一位同学到黑板完成解答,其他学生点评)通过此问题进一步加深学生对两点沿“曲面”的最短路程的解决方法掌握。
1四、学以致用如图,有一个圆柱,底面周长是10厘米,高为14厘米.在距离下底面1厘米的A点有一只蚂蚁,它想吃到距离上底面1厘米且与A点相对的B点处的食物,则沿圆柱侧面爬行的最短路程是多少?教师利用多媒体展示问题。
学生动手操作,独立思考后画出侧面展开图并确定最短路径。
教师请学生代表发表想法,并与上题进行比较,得出结论:蚂蚁在侧面爬行半圈与一圈,点A与点B的位置关系。
教师利用多检查学生对前面知识的理解和掌握情况,让学生学以致用。
五、知识迁移活动二:如图,是一个长为10cm,宽为6cm,高为8cm的长方体牛奶盒,现在A处有一只蚂蚁,想沿着长方体的外表面到达B处吃食物,求蚂蚁爬行的最短距离是多少. 媒体展示问题,学生组内讨论,画图并计算。
教师利用手机拍照展示小组研究成果,请小组代表讲解解题思路。
教师利用多媒体验证学生成果的对错情况。
教师利用多媒体出示问题,在前面知识的基础上,把两点迁移到长方体上,进一步研究折面中的两点的最短距离,同时让学生利用长方体动手找出最短路径,解决问题,培养学生的动手能力,空间想象能力和小组合作探究能力,通过对问题的解决体会分类讨论、转发现规律:如图,若长方体的长,宽,高分别为a,b和c,且a>b>c,则沿长方体表面从A 到Cˊ所走的最短路程是六、强化训练如图,一个长方体盒子,其中AB=9,BC=6,BB′=5,在线通过长方体教具启发学生找出蚂蚁至少要经过几个面,学生分组利用自制长方体探究从A点到B点的不同走法,请小组代表说出不同走法。
勾股定理教案范本 勾股定理教案教学方法优秀7篇

勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
初中数学北师大八年级上册(2023年修订) 勾股定理《勾股定理的应用》最短路径问题教学设计

四川大学附属中学新城分校教学设计授课题目勾股定理的应用—最短路径授课类型专题课授课教师授课科目数学课时第四课时授课时间教学目标1. 巩固勾股定理的表达公式;2. 掌握立体图形中最短路径的解答技巧和基本思想方法;3.建立直角三角形,利用勾股定理计算最短路径的长度。
教学重点1.立体图形的平面展开与直角三角形勾股定理的结合;2.空间想象能力与文字解读能力的培养。
教学难点如何将现实生活与数学模型结合起来,建立平面直角三角形勾股定理解决最短路径的现实问题教学方法自主探究→小组合作→问题导学→分享教学教学过程教师活动学生活动设计思路学习准备:1、在直角三角形中,若两直角边的长分别为5cm,12cm ,则斜边上的高为______;2、已知直角三角形的两边长为3、4,则另一条边长的平方是________ ;知识点一:立方体中的最短路径问题例1:如图,长方体盒子长AB=2,宽BC=3,高DC=4,一只蚂蚁在盒子表面由A处向D处爬行,所走最短路程的平方是多少?【经验习得】一般将立方体沿着棱展开,最短路径便转变为了平面图形,再利用直角三角形勾股定理,计算出所求边的长度。
【即学即练】如图,长方体盒子长AB=2,宽BC=3,高DC=4,这些条件不变,这只蚂蚁在盒子表面由A处向CD中点M处爬行,所走最短路程学生活动:复习旧知,自主完成老师活动:订正答案学生活动:独自完成例题1.教师引导学生在活动中思考总结,是否只有一种方案可行,渗透分类讨论思想并做对比。
对比后,师生归纳其中规律。
设计意图:复习勾股定理中分类讨论的题型,巩固分类讨论思想的重要性设计意图:学生动手动笔,利用尺规画出路径可能存在的情况,并结合勾股定理去探索最短路径问题通过即学即练引导是。
知识点二:圆柱体中的最短路径问题例2:如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是多少?【整理提炼】圆柱体的侧面展开图为长方形,长方形的长一般等于底面圆的周长(或周长的一半),长方形的宽等于圆柱体的高。
八年级数学下册《勾股定理的应用》教学设计一等奖3篇

1、八年级数学下册《勾股定理的应用》教学设计一等奖在教学工作者实际的教学活动中,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么优秀的教学设计是什么样的呢?以下是小编整理的八年级数学下册《勾股定理的应用》教学设计范文,仅供参考,希望能够帮助到大家。
一、教学任务分析勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。
学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。
《数学课程标准》对勾股定理教学内容的要求是:1、在研究图形性质和运动等过程中,进一步发展空间观念;2、在多种形式的数学活动中,发展合情推理能力;3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、本节课的教学目标是:1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、教学重点和难点:应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。
勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。
2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。
启发学生对空间的认知,为将来学习空间几何奠定根底。
二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。
2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。
三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。
【难点】:查找长方体中最短路线。
四、教学方法本课采纳学生自主探究归纳教学法。
教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。
五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。
思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。
【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。
苏科版数学八年级上册《3.3 勾股定理的简单应用》教学设计2

苏科版数学八年级上册《3.3 勾股定理的简单应用》教学设计2一. 教材分析《苏科版数学八年级上册》第三单元《勾股定理的简单应用》是学生在学习了勾股定理之后的一个应用部分。
这部分内容主要让学生通过实际问题,运用勾股定理解决生活中的问题,培养学生的数学应用能力。
教材通过丰富的例题和练习题,让学生在解决实际问题的过程中,加深对勾股定理的理解和记忆。
二. 学情分析八年级的学生已经学习了勾股定理,对勾股定理的基本概念和运用有一定的了解。
但是,对于一些生活中的实际问题,如何运用勾股定理来解决,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 教学目标1.知识与技能:让学生掌握勾股定理的基本概念,能够运用勾股定理解决实际问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决问题的能力。
3.情感态度与价值观:让学生体验数学在生活中的应用,提高学生学习数学的兴趣。
四. 教学重难点1.重点:让学生能够运用勾股定理解决实际问题。
2.难点:如何引导学生将实际问题与勾股定理相结合,提高学生的数学应用能力。
五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生在解决问题的过程中,运用勾股定理,提高学生的数学应用能力。
同时,采用小组合作的学习方式,让学生在讨论和交流中,共同解决问题,培养学生的合作意识。
六. 教学准备1.准备相关的实际问题,用于课堂上引导学生解决。
2.准备PPT,用于展示问题和引导学生思考。
七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生的思考,引出本节课的主题。
例题:一块直角三角形的木板,两条直角边的长度分别是3分米和4分米,那么这块木板的最大面积是多少?2.呈现(10分钟)呈现PPT,展示问题,引导学生思考如何解决这个问题。
3.操练(10分钟)学生独立思考,尝试解决PPT上的问题。
教师巡回指导,解答学生的疑问。
勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
华东师大版八年级数学上册14.2勾股定理的应用教学设计

-通过动态演示或实物模型,引导学生发现直角三角形三边之间的关系,从而引出勾股定理。
-结合图形,详细讲解勾股定理的公式及其推导过程,让学生深刻理解定理的内涵。
-通过例题,展示勾股定理在实际问题中的应用,如计算斜边长度、确定直角三角形的形状等。
3.课堂练习:
-设计不同难度的练习题,让学生独立完成,巩固勾股定理的知识。
2.实践应用题:设计一道与实际生活相关的勾股定理应用题,要求同学们运用所学知识解决问题。例如,假设学校旗杆的高度不易直接测量,但我们可以测得旗杆底端到地面的水平距离以及旗杆顶端到视线的垂直距离,请计算旗杆的大致高度。
3.创新思维题:请同学们思考并尝试证明勾股定理的逆定理,即在一个三角形中,如果一边的平方等于另外两边平方和,那么这个三角形是直角三角形。鼓励同学们运用多种方法进行证明,如几何法、代数法等。
2.学生在解决实际问题时,可能难以将勾股定理与问题情境有效结合。教师应通过丰富的实例,引导学生学会运用勾股定理分析问题、解决问题。
3.学生的几何直观能力和逻辑思维能力发展不平衡,部分学生可能在学习过程中感到困难。教师应关注学生的个体差异,提供不同难度的学习任务,使每个学生都能在原有基础上得到提高。
4.学生在合作学习过程中,可能存在交流不畅、分工不明确等问题。教师应引导学生学会倾听、表达和协作,提高学生的团队协作能力。
-针对学生的错误,及时进行讲解和指导,帮助学生克服难点。
4.小组合作:
-将学生分成小组,针对实际问题进行讨论和合作,培养学生的团队协作能力和解决问题的能力。
-引导学生运用勾股定理解决实际问题,如设计建筑物的高度、测量河流宽度等。
5.课堂小结:
-通过提问、总结等方式,帮助学生梳理本节课的知识点,形成知识结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章勾股定理
教学目标:
1. 通过观察图形,探索图形间的关系,发展学生的空间观念.
2. 在将实际问题抽象成数学问题的过程中,
提高分析问题、解决问题的能力及渗
透数学建模的思想.
3. 在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.
重难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实
际问题.
第一环节:情境引入
内容:
情景:多媒体展示:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物
在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你
们想一想,蚂蚁怎么走最近?
第二环节:合作探究
内容:
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方
案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线•让学生发
现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,
引导学生体会利用数学解决实际问题的方法.
学生汇总了四种方案:
学生很容易算出:情形(1)中A-B的路线长为:AA- d,
情形(2)中A- B的路线长为:AA —
3.勾股定理的应用王彦奇
B
I
(1) (2) (3) (4)
2
所以情形(1的路线比情形(2)要短.
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线
AA 剪开圆柱得到矩形,情形(3)A -B 是折线,而情形(4)是线段,故根据两点
之间线段最短可判断(4)较短,最后通过计算比较(1)和(4)即可.
如图:
(1) 中A — B 的路线长为:AA-d .
(2) 中A — B 的路线长为:AA'・A'B >AB .
(4)中A — B 的路线长为:AB .
得出结论:利用展开图中两点之间,线段最短解 决问题.在这个环节中,可让学生沿母线剪开圆柱体, 具体观察.接下来后提问:怎样计算 AB ?
在Rt △ AA' B 中,利用勾股定理可得
AB 2 =AA 2 A'B 2,若已知圆柱体高为 12cm ,底面半径为 3cm ,n 取3,则
AB 2 =122 (3 3)2 , AB = 15
第三环节:做一做
内容:
李叔叔想要检测雕塑底座正面的 AD 边和BC 边是否分别垂 直于底边
AB ,但他随身只带了卷尺,
(1) 你能替他想办法完成任务吗?
(2) 李叔叔量得 AD 长是30厘米,AB 长是40厘米,BD 长 是
50厘米,AD 边垂直于AB 边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验 AD 边是否垂 直于AB 边吗? BC 边与AB 边呢?
解答:(2) 7 AD 2 AB^302 40 ^2500
BD 2 =2500
2 丄
2
2
.AD AB =BD
(3)中A — B 的路线长为:AO+OB>AB .
4 - d —►
i L
••• AD和AB垂直.
第四环节:小试牛刀
内容:
1. 甲、乙两位探险者到沙漠进行探险,某日早晨8 00甲先出发,他以6 km/h
的速度向正东行走,1时后乙出发,他以5 km/h 的速度向正北行走•上午10: 00, 甲、乙两人相距多远?
解答:如图:已知A 是甲、乙的出发点,10:00甲到达B 点,乙到达C 点.则:
AB=2X 6=12 (km ) AC=1 x 5=5 (km )
在 Rt A ABC 中:
••• BC=13 (km ). 即甲乙两人相距13 km .
2.如图,台阶A 处的蚂蚁要爬到B 处搬运食物,它怎么走最近?并求出最近
3.有一个高为1.5 m 半径是1m 的圆柱形油桶,在靠近边的地方有一小孔,
从孔中插入一铁棒,已知铁棒在油桶外的部分为
0.5 m,问这根铁棒有多长?
解答:设伸入油桶中的长度为x m . 2 2 + 2
则最长时:
x =1.5 2
. x =2.5.
二最长是 2.5+0.5=3 (m ). 最短时:x =1.5 .
最短是 1.5+0.5=2 (nr). 答:这根铁棒的长应在2〜3m 之间. 第五环节:举一反三
内容:
BC 2 二AC 2 AB 2 =52 122 =169 =132. 距离.
解答:.AB 2 =152 202 =625 =252.
TA
东
1.如图,在棱长为10cm的正方体的一个顶点A处有一只蚂蚁,现要向顶点B
处爬行,已知蚂蚁爬行的速度是1 cm/s,且速度保持不变,问蚂蚁能否在20 s内
从A爬到B?
解:如图,在Rt△ ABC中: AB2二AC2• BC2 =102• 202=500.
••• 500> 202 .
•••不能在20s内从A爬到B.
第六环节:交流小结
师生相互交流总结:
1. 解决实际问题的方法是建立数学模型求解.
2. 在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题. 第七环节:布置作业
1.课本习题1. 4第1,2,3题.。