制动系统结构与设计

合集下载

动车组制动系统的组成与功能

动车组制动系统的组成与功能

动车组制动系统的组成和功能高速列车的制动能量和速度的平方成正比,传统的纯空气制动已不能满足需要,因其制动能力由于以下因素而受到影响:●制动热容量和机械制动部件磨耗寿命的限制●摩擦材料的性能对粘着利用的局限性,以及对旅客乘坐舒适性的不利影响●纯空气制动作用情况下,紧急制动距离不可避免的延长因此,高速列车必须采用能提供强大制动力并能更好利用粘着的复合制动系统;制动时电制动和空气制动联合作用,且以电制动为主。

复合制动系统通常由电制动系统、空气制动系统、防滑装置、制动控制系统等组成,下面就这几部分分别加以介绍:电制动空气制动防滑装置制动控制系统电制动电制动是将列车的动能转变为电能后,再变成热能消耗掉或反馈回电网的制动方式,使用在200公里动车组上的主要有电阻制动和再生制动两种。

电阻制动和再生制动都是让列车的动轮带动动力传动装置(牵引电动机),让其产生逆作用,消耗或回收列车动能,习惯上也称为动力制动。

下面分别就这两种制动方式加以介绍:一、电阻制动(一)系统构成(二)工作原理司机室或ATC装置发出制动指令后,制动控制装置首先对列车运行速度进行判断。

当速度大于25km/h时,制动主回路构成(PB转换器转为制动位置),然后制动接触器动作(B11闭合、P11打开、P13打开),随后依次是励磁削弱接触器打开、预励磁接触器投入,最后,断路器投入(L1闭合)。

此时,由电枢绕组、励磁绕组和主电阻器构成电阻制动主回路,并使电流向增加原牵引时剩磁的方向流动,再由主电阻器最终将电枢转动发出的电能变为热能消散掉。

二、再生制动(一)系统构成(二)工作原理和电阻制动相比,再生制动的主回路中没有了主电阻器。

制动时回路中各部件的动作和电阻制动时一样,只是电枢转动产生的电能要回馈到电网。

电制动具有摩擦部件少(仅有轴承)、维修工作量少、可以反复使用等优点,担负着动车组制动减速时的大部分能量。

但由于增加了控制装置和制动电阻等设备,使重量增加;而且,如果条件不具备就不能产生制动作用(即电制动失效)。

《汽车构造》课件——14.制动原理

《汽车构造》课件——14.制动原理

辽 制动系统原理(鼓式制动器)
15.1 制动原理


3.车轮制动器


主要由旋转部分、固定部分和张开机构组成。
业 技
旋转部分是制动鼓,它固定在车轮上,随车轮旋转。
术 学
固定部分包括制动蹄和制动底板等。在固定不

动的制动底板上,有两个支承销,支承着两个弧形
制动蹄的下端。
制动蹄的外圆面上装有摩擦片,上端用制动蹄
院 动机动作,并带动制动卡钳活塞移动产生机械夹紧力从而完成驻车。可以看到,EPB
电子手刹和手动拉线式手刹都是对后轮进行制动。
辽 电子手刹
15.1 制动原理


只要启用AUTO HOLD功能,便会启动相应的自动驻车功能。AUTO HOLD自动驻车

职 功能可使车辆在等红灯或者上下坡停车时自动启动四轮制动。即使是在D档或者N档,

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%

术 的传递动力,基本原理是驾驶员踩下刹车踏板,向刹车总泵中的刹车油施加压力,

院 液体将压力通过管路传递到每个车轮刹车卡钳的活塞上,卡钳夹紧刹车盘从而产生
巨大摩擦力令车辆减速。
一般制动系的基本结构与工作原理, 可用一种简单的液压行车制动系的结构 和工作原理示意图来说明。

职 1.机械式手刹

技 我们在驾校时,教练几乎都会重复“停车拉手刹”的教导,作为最常见的一种
术 学
驻车制动类型,你几乎可以在绝大多数车上见到。

传统手刹由制动杆、拉索、制动机构和回
位弹簧组成,作用于传动轴或者后轮制动,达
到稳定车辆的目的。

制动系

制动系
《汽车设计》 PowerPoint版 版权所有者:南航赵又群 14
课程结束! 课程结束!
《汽车设计》 PowerPoint版 版权所有者:南航赵又群 15
二、盘式制动器的设计计算
1、制动器制动力矩 2、衬块的平均半径 3、衬块的有效半径 4、m=R1/R2的选取 5、制造工艺
《汽车设计》 PowerPoint版 版权所有者:南航赵又群 12
§8-4 制动器设计与计算 (p203-210)
三、衬片磨损特性的计算 p207-209 1. 有效因素 2. 能力负荷 3. 评价指标一:比能量耗散率 4. 评价指标二:比摩擦力 四、前、后轮制动器制动力矩的确定 p209 五、应急制动和驻车制动所需的制动力矩 p209210
制动系
《汽车设计》 PowerPoint版
版权所有者:南航赵又群
1
第八章 制动系设计
第八章 制动系设计 8-1 概述 8-2 制动器结构方案分析 8-3 制动器主要参数的确定 8-4 制动器的设计计算 8-5 制动驱动机构 制动力调节机构( 8-6 制动力调节机构(略) 制动器的主要结构元件( 8-7 制动器的主要结构元件(略)
《汽车设计》 PowerPoHale Waihona Puke nt版 版权所有者:南航赵又群 3
§8-2 制动器结构方案分析
(p196-201) p196-201)
分类:
按耗散汽车能量的方式分:摩擦式、液力式、 电磁式和电涡流式等几种。 摩擦式制动器就其摩擦副的结构型式可分为鼓 式、盘式和带式三种。带式的只用作中央制动器。 目前,货车行车制动器大多数用鼓式制动器,并安 装在汽车车轮处。但是,用独立悬架的汽车也有少 数行车制动器安装在驱动桥的半轴上。
《汽车设计》 PowerPoint版 版权所有者:南航赵又群 4

动车组制动系统组成及原理

动车组制动系统组成及原理

④电磁阀
电磁阀由供排气阀部和电磁阀部组成,它通 过电磁阀部线圈的励磁和消磁使可动铁心动 作,开闭供排气阀。 电磁阀由ON型和OFF型两种
⑤管路 管路的作用是将空气压缩机输出的压缩空气 送给风缸及制动控制阀等各种用气设备,各 设备根据空气流量的大小,可采用相应的管 路来输送压缩空气。 ⑥制动缸 动车组上的制动缸由液压制动缸和气压制动 缸两种,动车组的制动缸也采用了一定得措 施来实现小型轻量化,如采用铝合金结构等。

CRH2型电动车组的制动减速度特性参数
m / s2
速度分段
制动级位 常用制动 1级
0~70km/h
0.1667
70~118km/h
0.2072-0.0005787v
118~200km/h
0.1765-0.0003185v
2级 3级
4级 5级 6级
0.2639 0.3611
0.4583 0.5528 0.6500
T 车 必 需的制 动力FT
T车空气 制动力 再 生 制 动 力 的 上 限 FE
M车空气 M车必 需的制 动力FM 制动力
D 0
C B A FC FM 再生制动力
100%
高级位时制动力的控制状态一览表
再生点
M车制动力
再生制动力 空气制动力 0 0
T车制动力
A B
FE FM
FMT-FE FT
C D
FC 0
FM-FC FM
FT FT
低级位(所需制动力<再生制动力的上限) T车必需 的制动力 FT
1M1T 单 元 必 需 的 制 动 力 FMT
T车空气 制动力
M车必需 的制动力 FM
M车空气 制动力

纯电动车的制动系统毕业设计

纯电动车的制动系统毕业设计

纯电动车的制动系统引言纯电动车的制动系统是保证车辆安全行驶的一个重要组成部分。

随着纯电动车辆市场的不断扩大,制动系统的性能和可靠性变得尤为重要。

本文将详细介绍纯电动车的制动系统的原理、结构和优化方法,并讨论目前制动系统面临的挑战和未来的发展方向。

制动系统的原理制动系统的基本原理是利用摩擦力将车辆的动能转化为热能,以减速和停车。

纯电动车的制动系统主要包括机械制动系统和电子制动系统。

机械制动系统机械制动系统是通过踩踏脚踏板来传递力量,使刹车片与刹车盘接触产生摩擦力,从而减速或停车。

机械制动系统包括刹车踏板、刹车总泵、刹车助力器、刹车盘和刹车片等组件。

电子制动系统电子制动系统是通过电气信号来控制车辆的制动力,实现自动化和智能化的刹车控制。

电子制动系统包括刹车控制单元、电子刹车器、刹车感应器等。

制动系统的结构纯电动车的制动系统通常采用混合制动系统,即机械制动系统和电子制动系统的结合。

这样可以充分利用两种制动方式的优势,提高制动效果和能量回收效率。

机械制动系统的结构机械制动系统的核心组件是刹车盘和刹车片。

刹车盘与车轮相连,刹车片则通过刹车踏板和刹车总泵施加力量,使刹车盘与刹车片之间产生摩擦力。

刹车助力器可以提供额外的力量,增加制动效果。

电子制动系统的结构电子制动系统主要包括刹车控制单元、电子刹车器和刹车感应器。

刹车控制单元负责控制制动力的大小和分配,电子刹车器通过电气信号来实现制动力的传递。

刹车感应器可以检测车辆的速度和制动力,控制制动系统的工作状态。

制动系统的优化方法为了提高纯电动车的制动效果和能量回收效率,可以采取以下优化方法:1.使用高性能刹车片和刹车盘,提高摩擦力和散热性能;2.采用可调节刹车力的刹车控制单元,根据不同的行驶情况调整制动力的大小;3.引入能量回收系统,将制动时产生的能量转化为电能储存起来,供车辆使用;4.优化整个制动系统的协调控制算法,提高制动系统的响应速度和稳定性。

制动系统面临的挑战纯电动车制动系统在面临以下挑战时需要进一步改进:1.纯电动车辆的重量比传统燃油车辆更大,需要更高的制动力;2.随着电动车市场的发展,制动系统的可靠性和耐久性要求也越来越高;3.刹车片和刹车盘的摩擦材料对环境的污染较大,需要寻找更环保的替代材料;4.制动系统的智能化和自动化程度需要进一步提高。

电动汽车制动系统

电动汽车制动系统

特点
03
04
05
• 盘式制动器:盘式制 动器具有散热性好、 制动性能稳定、维护 方便等优点,因此在 电动汽车中得到广泛 应用。
• 鼓式制动器:鼓式制 动器具有制动力矩大 、制动距离短等优点 ,但散热性能较差, 因此在某些特定应用 场景下仍具有优势。
• 线控制动系统:线控 制动系统采用电子控 制技术实现制动力的 传递和控制,具有响 应速度快、控制精度 高等优点,是未来电 动汽车制动系统的重 要发展方向。
实现车辆减速或停车。
03
电动汽车制动系统性能评价与 优化方法
制动性能评价指标体系建立
制动距离
评价车辆在一定初速度下完全制动停止所需 的最短距离。
制速度。
制动力矩
评价车辆在制动过程中所能够产生的最大制 动力矩。
制动效能稳定性
评价车辆在制动过程中制动效能的稳定性和 可靠性。
功能
制动系统的主要功能是确保电动汽车在行驶过程中能够安全、稳定地减速、停 车和保持车辆静止,同时提供驾驶员对车辆制动力和制动性能的准确控制。
发展历程与趋势
发展历程
随着电动汽车技术的不断发展和普及,电动汽车制动系统也经历了不断改进和完 善的过程。早期电动汽车制动系统主要依赖于传统燃油车的制动系统进行改进, 而现代电动汽车制动系统则更加注重能量回收和再生制动技术的运用。
02
电动汽车制动系统结构与原理
制动系统结构组成
制动踏板模块
包括制动踏板和制动踏 板臂,用于传递驾驶员
的制动意图。
真空助力器
利用发动机进气歧管产 生的真空度,为制动系
统提供助力。
制动主缸
将踏板模块输入的力转 化为制动液压力,并传
递给制动轮缸。

汽车制动系统的设计-开题报告

供能装置主要是指制动能源,制动能源有人力制动、伺服制动、动力制动或者上述任两者的 结合使用。人力制动是开始有制动系统时的制动能源,它有机械式制动、液压式制动两种形式。 机械式制动主要用于驻车制动系统中,驻车制动系统中要求用机械锁止方法保证汽车在原地停止 不动,在任何情况下不至于滑动。液压式制动是通过制动踏板推动制动主缸,进而使制动器进入 工作状态。控制装置的发展最早是由人力制动,通过机械的连接产生制动动作。发展到人力控制 制动,通过踩制动踏板启动制动,再由传力装置把制动踏板力传到真空助力器,经过真空助力器 的助力扩大后,传递到制动主缸产生液压力,然后通过油路把液压力传递到每个轮缸,开始制动。 随着清洁能源汽车和电动汽车的研究应用,以及电子技术在汽车上面的广泛应用,制动系统的控 制装置也出现了电子化的趋势,其中电制动完全改变了制动系统的控制和管理,会使汽车制动系 统发生革命性的变化,它采用电子控制,可以更加准确、更高效率地实现制动。传动装置的发展 的初期人力制动时代是采用机械式的传动装置,气(液)压制动是利用气(液)压力和连接管路把制 动力传递到制动器。电子制动则是利用制动电机产生制动力直接作用到制动器,它的控制信号来 自控制单元(ECU),用信号线传递制动信号和制动力信息。
型的制动器。作为一种新的制动器型式,势必引起制动器型式的变革。电制动系统制动器是基于 传统的制动器,也分为盘式电制动器和鼓式电制动器,鼓式电制动器由于制动热衰减性大等缺点, 将来汽车上会以盘式电制动器为主。
车辆制动控制系统的发展主要是控制技术的发展。一方面是扩大控制范围、增加控制功能; 另一方面是采用优化控制理论,实施伺服控制和高精度控制。已经普遍应用的液压制动现在已经 是非常成熟的技术,随着人们对制动性能要求的提高,防抱死制动系统、驱动防滑控制系统、电 子稳定性控制程序、主动避撞技术等功能逐渐融人到制动系统当中,需要在制动系统上添加很多 附加装置来实现这些功能,这就使得制动系统结构复杂化,增加了液压回路泄漏的可能以及装配、 维修的难度,制动系统要求结构更加简洁,功能更加全面和可靠,制动系统的管理也成为必须要 面对的问题,电子技术的应用是大势所趋。从制动系统的供能装置、控制装置、传动装置、制动 器 4 个组成部分的发展历程来看,都不同程度地实现了电子化。人作为控制能源,启动制动系统, 发出制动企图;制动能源来自储存在蓄电池或其它供能装置;采用全新的电子制动器和集中控制 的电子控制单元(ECU)进行制动系统的整体控制,每个制动器有各自的控制单元。机械连接逐渐 减少,制动踏板和制动器之间动力传递分离开来,取而代之的是电线连接,电线传递能量,数据 线传递信号,所以这种制动又叫做线控制动。这是自从 ABS 在汽车上得到广泛应用以来制动系统 又一次飞跃式发展。

制动系设计


第二节 制动器的结构方案分析
4. 盘式制动器
与鼓式制动器相比盘式制动器具有: ① 热稳定性好 ② 水稳定性好 ③ 制动力矩与汽车运动方向无关 ④ 易于构成双回路制动系 ⑤ 尺寸小、质量小、散热良好 ⑥ 衬块磨损均匀 ⑦ 更换衬块容易;缩短了制动协调时间
⑧ 易于实现间隙自动调整。
第二节 制动器的结构方案分析
第一节 概述
6. 制动系设计应满足的要求
① 具有足够的制动效能(行车制动以制动减速度和制动距离为 评价指标;驻车制动以可靠停使的最大坡度为评价指标)
② 工作可靠 ③ 制动时不应当丧失操纵性和方向稳定性 ④ 防止水和污泥进入制动器工作表面 ⑤ 热稳定性良好 ⑥ 操纵轻便,并具有良好的随动性
第二节 制动器的结构方案分析
作业
如右图所示,车辆的质量为m,制动减速度为a, 地面附着系数为φ,其余参数如图所示,试求车
辆在制动时,前后桥制动器的最大制动力。
本章主要内容
第一节 概述 第二节 制动器的结构方案分析 第三节 制动器的设计 第四节 制动驱动系统
第一节 概述
1. 制动系的功能
① 能够以控制和重复的形式降低车速,在需要时可将车停下来 ② 能够在下坡时保证车辆以稳定车速行驶 ③ 使汽可靠地停在原地或坡道上
第一节 概述
2. ABS防抱死刹车系统
第三节 制动器设计
1. 行车制动
第三节 制动器设计
2. 制动力分配曲线
第三节 制动器设计
3. 驻车制动
第三节 制动器设计
4. 弹簧式盘式制动器
第三节 制动器设计
5. 多片湿式制动器设计
第四节 制动驱动系统
1. 驱动形式
① 机械制动 ② 气压制动 ③ 液压制动

制动系统教案

有行车制动和驻车制动两种装置,主要由制动器、制动操纵机构、制动传动机构和制动力的调节机构四部分组成。

二、制动系的工作原理制动系的工作原理是:非旋转元件和车身或车架相连,旋转元件与车轮或传动轴相连,依靠旋转元件与非旋转元件之间的相互摩擦,来阻止车轮的转动或转动的趋势,并将运动着的汽车的动能转化为摩擦副的热能散到大气中。

图19-1-1 是一种简单的液压制动系示意图,驾驶员踩下制动踏板,通过推杆推动主缸活塞,使主缸内的油液在一定压力下流入轮缸,并通过两个轮缸活塞推动两制动蹄绕支承销旋转,上端向两边分开而以其摩擦片压紧在制动鼓的内端面上,使制动鼓减小转动速度,或保持不动。

三、对制动系的要求为保证汽车能在安全条件下发挥出高速行驶的能力,制动系统必须具有优良的制动性能、操纵轻便、制动稳定性好、制动平顺性好和散热性好等特点。

一、鼓式制动器( 1 )领从蹄式制动器:在制动鼓正向旋转和反向旋转时 , 都有一个领蹄和一个从蹄的制动器即称为领从蹄式制动器,图19-2-1 所示为其结构示意图。

图中箭头所示为汽车前进时制动鼓的旋转方向,即制动鼓的正向旋转方向。

制动轮缸 6 所施加给制动蹄 1 的促动力Fs 使得该制动蹄绕支承点 3 张开时的旋转方向与制动鼓的旋转方向相同。

具有这种属性的制动蹄称为领蹄。

与此相反 , 制动轮缸 6 所施加给制动蹄 2 的促动力Fs 使得该制动蹄绕支承点 4 张开时的旋转方向与制动鼓的旋转方向相反。

具有这种属性的制动蹄称为从蹄。

当汽车倒驶 , 即制动鼓反向旋转时 , 蹄 1 变成从蹄 , 而蹄 2 则变成领蹄。

制动时两活塞对两个制动蹄所施加的促动力是相等的,凡两蹄所受促动力相等的领从蹄式制动器称为等促动力制动器。

制动时,领蹄 1 和从蹄 2 在促动力 FS 的作用下,分别绕各自的支承点 3 和 4 旋转到紧压在制动鼓 5 上。

旋转着的制动鼓即对两制动蹄分别作用着法向反力 N1 和 N2 ,以及相应的切向反力 T1 和 T2 ,两蹄上的这些力分别为各自的支点 3 和 4 的支点反力Sl 和 S2 所平衡,领蹄上的切向力T1 所造成的绕支点3的力矩与促动力Fs 所造成的绕同一支点的力矩是同向的。

高速列车车辆制动系统的结构与组成部件解析

高速列车车辆制动系统的结构与组成部件解析概述随着科技的不断进步,高速列车的制动系统也在不断发展和完善。

高速列车的制动系统对于确保列车行车安全和减少制动时的能量消耗起着至关重要的作用。

本文将对高速列车车辆制动系统的结构与组成部件进行详细解析。

一、制动系统的作用和原理制动系统是高速列车行车安全的重要保障,主要作用是通过减速和停车来确保列车在行驶过程中的安全。

制动系统的工作原理是通过施加制动力或阻力来减慢或停止列车的速度。

制动系统一般包括制动装置、控制装置、供应装置和监控装置。

二、制动系统的结构与组成部件1. 制动装置制动装置是制动系统中最核心的部分,主要由制动器、制动齿轮和制动盘组成。

制动器通过施加压力将制动齿轮紧密地压在制动盘上,产生摩擦来减速或停止列车。

高速列车的制动器一般有电子控制制动器和气压制动器两种。

2. 制动盘与制动齿轮制动盘是制动装置中的重要组成部分,它与车轮相连,并根据列车运行速度和制动力的要求进行设计和制造。

制动盘一般采用高强度的合金材料,以确保其在高速运行过程中的耐磨性和耐高温性能。

制动齿轮则负责将制动力传递给制动盘,通过摩擦产生的阻力来减速或停止列车。

3. 制动控制装置制动控制装置是高速列车制动系统中起控制和调节作用的组成部分。

它通过控制制动装置的工作状态和工作力度,以实现列车的减速、停车和保持行车安全。

制动控制装置一般采用电子控制和气动控制两种方式,具有自动化程度高、响应速度快和控制精度高的特点。

4. 制动供应装置制动供应装置是供给制动系统所需的压力和能量的装置。

在高速列车的制动过程中,需要大量的液压或气压能量来提供制动装置所需的制动力度。

制动供应装置一般采用液压泵或空气压缩机等设备,通过输送液压油或压缩空气来提供制动装置的动力。

5. 制动系统监控装置制动系统监控装置用于监测和控制整个制动系统的工作状态和性能。

它通过传感器和控制器来实时监测制动器的工作压力、制动盘的温度和制动力的变化等参数,并对其进行处理和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.1 行车制动系:将行驶中的车辆减速或停止的零部件的总成。行车制动系应该包含有相互
独立的管路系统,保证车辆在某一管路失效时,制动系统仍有一定的制动能力,以保证车辆和人
员的安全。
3.3.2 驻车制动系:将停驶的车辆保持在原地不动的零部件的总成。
3.3.3 应急制动系:在行车制动系部分失效的情况下能使在行驶中的车辆减速或停驶的零部件
调压阀结构及工作原理示意图。(图2) 技术参数: 工 作 温 度:-400C~1200C 切 断 压 力:810±20KPa 压 力调 节范围:60~100KPa 安全阀开启压力:1.2~1.3MPa
制动系统各零部件作用及工作原理
1.2 调压阀工作原理:
空气压缩机输出的压缩空气从1口进入A腔经由滤清器8,单向阀门从21口输出,同时一部分
压缩空气到达B腔。当B腔压力达到810±20Kpa时,膜片总成4克服弹簧3的预压力而上移,阀门5
打开,气压推动活塞6下移,打开排气门7,气流经排气门7从3口排出,空压机来的压缩空气直
接排入大气。当21口的压力下降了60~100KPa时,由于B腔压力下降,膜片总成4下移,将阀门5
关闭,活塞6上移将排气门7关闭,空压机恢复向系统供气。 总结:气压达到一定值后,顶着活
塞往上走!
向轮胎充气时,拔下调压阀充气口上的橡胶护套
接上轮胎充气装置盖,此时附加阀杆9向里运动,将
阀门10打开,A腔中的压缩空气通过阀杆中间的孔向
轮胎充气。(见图3)
图3 调压阀结构原理图
制动系统各零部件作用及工作原理
2、四回路保护阀
2.1 四回路保护阀的作用:在双回路制动系统中,来自空气压缩机的压缩空气可经四回 路保护阀分别向各回路的储气筒充气,四个出气口各自独立,当有一回路损坏漏气时,压力保 护阀能保证其余完好回路不会降到很低的压力,还能正常进行相关操作。四回路保护阀的每个 回路开启压力可以根据需要由生产厂家调定,为使用安全,四回路阀的调整螺钉不能随意调整。
制动系统结构与设计


一、制动系统概述 二、制动系统结构及工作原理 三、制动系统各零部件作用及工作原理 四、制动系统管路布置时注意事项


1、制动系统的作用:保证汽车以适当的减速度使汽车降低到所需的速度或下坡时使汽车保持
稳定的速度行驶;保证汽车可靠地停在原地或坡道上。
2、制动系统的组成
供能装置:供给、调节制动系统所需要的能量及改善传能介质状态的各种部件。如空压机、 真空泵、人等。
制动系统结构及工作原理
1、制动系统的结构组成
图1 典型气压制动系统示意图
制动系统结构及工作原理
气压制动系统是发展较早的一种伺服式制动系统,在车辆的制动形式中最为常见,也是我 厂现在采用的最主要的制动形式。上图为气压制动系统的基本结构示意图。
2、工作原理
由发动机驱动的活塞式空气压缩机将经过压缩后的压缩气体通过调压阀进入到湿储气筒, 压缩空气在湿筒内经过冷却和油水分离后,再通过与湿筒连接的四回路保护阀分别向前桥储气 筒、后桥储气筒、驻车储气筒及辅助管路(排气制动、离合助力、气喇叭等)供气,将气路分 为四个部分。前、后桥的储气筒分别与制动阀的上下腔相连,当驾驶员踩下制动踏板时,前桥 储气筒内的气体通过制动阀下腔经快放阀到达前桥制动气室,实现前桥制动;后桥储气筒的气 体通过制动阀上腔,1、打开继动阀控制口,使后桥储气筒中的压缩空气 2、直接经继动阀进 入后桥制动气室,实现后桥制动;驻车储气筒与手控阀相连,在正常行车状态,驻车储气筒与 手控阀和弹簧气室处于常通状态,当车辆停止时,将手刹手柄达到停车位置,阻断气源,弹簧 气室内的压缩空气通过快放阀排入大气,实现驻车制动。
控制装置:包括产生各种制动动作和控制效果的各种部件。如制动踏板、驻车手柄等。 传动装置:将制动能量传递到制动器的各个部件。如制动总泵、制动分泵、各种气阀、制动 气室等。 制动装置:产生阻碍车辆运动或运动趋势的力的部件。如制动器、排气制动阀。
3、制动系统的分类
3.1按照制动能源分类 3.1.1 人力制动系:以驾驶员的身体为唯一制动能源的制动系。由于完全依靠驾驶员的力量 来使制动器产生制动力,造成驾驶员的过度疲劳,同时由于传动效率低、传动比小,该制动系在 行车制动中已经不采用。由于其造价低、结构简单、故障低,现多应用于车辆的驻车制动装置中。
的总成。应急制动系可以是独立的,也可以和行车制动系或驻车制动系共用一套控制系统。现在
广泛采用的是将应急制动和驻车制动系共用。
3.3.4 辅助制动:能使行驶的车辆特别是下长坡时持续的减低或稳定车辆速度的零部件的总成。


4、对制动系统的一般要求
1)符合法规要求,GB7258---该法规网—内网,更加详细的见GB12676、GB13594。 2)产生足够的制动力。 3)行车制动系至少有两套相互独立---???的驱动制动器的管路。 4)在任何速度和各种载荷条件下制动,汽车都不能丧失操纵性和方向稳定性。 5)防止水和污物进入制动器工作表面,以免影响制动性能。 6)制动器的热稳定性较好。 7)操纵轻便。 8)作用滞后性,包括产生制动和解除制动所需要的时间要尽可能的短(气制动车型不得超 过0.6s,汽车列车不超过0.8s)。 9)当制动驱动装置的任何元件产生故障,应有报警装置。


3.1.2 动力制动系 :完全由发动机的动力转化而成的气压或液压形式的势能进行制动的制动
系。
3.1.3 伺服制动系 :兼用人力和发动机动力进行制动的制动系。现在广泛采用的液压制动、
气压制动等均为伺服式制动系。
3.2 按照能源的传动方式分类
1)机械式 2)液压式 3)气压式
4)电磁式
3.3 按照用Βιβλιοθήκη 、功能分类制动系统各零部件作用及工作原理
气压制动系统虽然其制动原理是相同的,但由于车辆用途的不同,所用的制动气阀也不同。 根据车辆配置的高低,车辆使用气阀的多少也会发生相应的变化。下面针对我厂轻型工程车的 基本配置简单介绍一下各个制动气阀的作用及工作原理。
图2 调压阀结构原理图
1、调压阀
1.1 调压阀的作用:能自动调节制动系统的工作压力, 防止气路过载,即压力过载保护,去除部分水、油等污染 物,并能向轮胎充气。
相关文档
最新文档