制动系统设计流程
制动系统设计规范

本规范介绍了制动器的设计计算、各种制动阀类的功能和匹配、以及制动管路的布置。
本规范合用于天龙系列车型制动系统的设计。
本规范主要是在满足下列标准的规定(或者强制)范围之内对制动系统的零、部件进行设计和整车布置。
汽车制动系统结构、性能和试验方法机动车和挂车防抱制动性能和试验方法机动车运行安全技术条件在设计制动系统时,应首先考虑满足零部件的系列化、通用化和零件设计的标准化。
先从《产品开辟项目设计定义书》上获取新车型在设计制动系统所必须的下列信息。
再设计制动器、匹配各种制动阀,以满足整车制动力和制动法规的要求。
确定了制动器的规格和各种制动阀之后,再完成制动器在前、后桥上的安装,各种制动阀在整车上的布置,以及制动管路的连接走向。
3.1 车辆类型:载货汽车、工程车、牵引车3.2 驱动形式:4×2、6×4、8×43.3 主要技术及性能参数:长×宽×高、轴距、空/满载整车重心高坐标、轮距、整备质量、额定载质量、总质量、前/后桥承载吨位、 (前/后)桥空载轴荷、 (前/后)桥满载轴荷、最高车速、最大爬坡度等。
3.4 制动系统的配置:双回路气/液压制动、弹簧制动、鼓/盘式制动器、防抱制动系统、手动/自动调整臂、无石棉磨擦衬片、感载阀调节后桥制动力、缓速器、排气制动。
本规范仅对鼓式制动器的各主要元件和设计计算加以阐述,盘式制动器的选型和计算将暂不列入本规范的讨论范围之内。
4.1 鼓式制动器主要元件:4.1.1 制动鼓:由于铸铁耐磨,易于加工,且单位体积的热容量大,所以,重型货车制动鼓的材料多用灰铸铁。
不少轻型货车和轿车的制动鼓为组合式,其圆柱部份用铸铁,腹板则用钢压制件。
制动鼓在工作载荷下将变形,使蹄、鼓间单位压力不均,带来少许踏板行程损失。
制动鼓变形后的不圆柱度过大,容易引起制动时的自锁或者踏板振动。
所以,在制动鼓上增加肋条,以提高刚度和散热性能。
中型以上货车,普通铸造的制动鼓壁厚为 13~18㎜。
(完整word版)制动系统设计

GD12A电动汽车行车制动系统设计毕业设计说明书姓名:俞翼鸿专业:汽车维修与检测班级:(2)指导老师: 邹章鸣南昌理工学院机械工程系1.。
目录摘要Troduction前言第一章绪论 (6)1。
1 制动系统设计的意义 (6)1。
2 制动系统研究现状 (6)1.3 本次制动系统应达到的目标 (6)1.4 本次制动系统设计要求 (6)第二章制动系统方案论证分析与选择 (7)2.1 制动器形式方案分析 (7)2。
1.1 鼓式制动器 (7)2。
1。
2 盘式制动器 (9)2。
2 制动驱动机构的结构形式选择 (10)2.2.1 简单制动系 (10)2。
2。
2 动力制动系 (10)2。
2。
3 伺服制动系 (11)2。
3 液压分路系统的形式的选择 (11)2.3.1 II型回路 (11)2.3.2 X型回/路 (12)2。
3。
3 其他类型回路 (12)2。
4 液压制动主缸的设计方案 (12)第三章制动系统设计计算 (15)3.1 制动系统主要参数数值 (15)3.1.1 相关主要技术参数 (15)3.1.2 同步附着系数的分析 (15)3.2 制动器有关计算 (16)3.2。
1 确定前后轴制动力矩分配系数β (16)3。
2。
2制动器制动力矩的确定 (16)3.2。
3 后轮制动器的结构参数与摩擦系数的选取 (17)3.2.4 前轮盘式制动器主要参数确定 (18)3。
3 制动器制动因数计算 (19)3.3.1 前轮盘式制动效能因数 (19)3.3。
2 后轮鼓式制动器效能因数 (19)3。
4 制动器主要零部件的结构设计 (20)第四章液压制动驱动机构的设计计算 (22)4。
1 后轮制动轮缸直径与工作容积的设计计算 (22)4.2 前轮盘式制动器液压驱动机构计算 (23)4.3 制动主缸与工作容积设计计算 (24)4.4 制动踏板力与踏板行程 (24)4.4。
1 制动踏板力 (24)4.4.2 制动踏板工作行程 (25)第五章制动性能分析 (26)5.1 制动性能评价指标 (26)5.2 制动距离S (26)5。
制动系统的优化设计与仿真分析

制动系统的优化设计与仿真分析随着汽车工业的发展,制动系统的设计和制造技术也在不断进步。
制动系统是汽车行驶过程中最关键的安全系统之一,能够在紧急情况下尽快将车辆停止,保障车辆和行人的安全。
因此,制动系统的优化设计和仿真分析对于汽车行业至关重要。
一、制动系统的构成制动系统主要由制动器、制动盘/鼓、制动液、制动管路、制动泵等几个部分组成。
其中,制动器可以分为基本制动器和辅助制动器两类。
基本制动器主要包括气压制动器、液压制动器和机械制动器等。
其工作原理是通过施加制动力使车轮停止旋转,从而阻止汽车运动。
辅助制动器则是指制动制动器处理无法满足制动要求时所使用的辅助装置。
主要包括泊车制动器和驻车制动器等。
制动盘/鼓是制动系统主要能量转换的地方,它将制动液通过制动器送到刹车片与制动盘接触的位置,转化为制动力。
制动管路是用于传输制动液的管道,而制动泵则是产生并提供制动液压力的终端设备。
二、制动系统的优化设计在实际的汽车制动系统应用中,制动系统需要满足多种复杂的要求。
如何实现较好的制动性能和较低的成本是设计者需要解决的首要问题。
因此,下面分别从黏着力、稳定性和制动力三个方面探讨制动系统的优化设计。
1.黏着力在制动系统中,刹车片和制动盘必须要有良好的黏着力才能实现高效的制动效果。
所谓黏着力,指的是刹车片表面和制动器内壁之间的摩擦力,它决定了汽车能够在多大范围内停止。
优化黏着力的方法主要有以下几个方面:(1)选择合适的材料。
选择合适的刹车片材料可以改善制动器与制动盘之间的黏着力,从而提高制动性能。
目前主流的刹车片材料有金属、有机和陶瓷等,不同材料的优缺点也不同。
(2)改善制动盘表面。
制动盘表面会因为使用而损耗,会影响刹车片与制动盘之间的黏着力。
对制动盘进行适当的处理或涂层处理可以改善黏着性能。
(3)优化刹车片结构。
刹车片的厚度和面积也会影响制动性能。
适当增加刹车片的面积或者采用具有弹性可调的刹车片结构可以增强黏着性能。
汽车制动系统设计说明书

目录1、汽车制动系统概述及设计要求 (4)1.1 概述 (4)1.1.1制动系统的组成 (4)1.1.2 制动系统的类型 (4)1.2 设计制动系统时应满足的要求 (5)2、整车性能参数: (6)3、制动器形式的选择 (6)4、鼓式与盘式制动器主要参数的确定 (8)4.1制动鼓内径D (8)4.2摩擦衬片宽度b和包角β (8)4.3摩擦衬片起始角 0 (9)4.4制动器中心到张开力0F作用线的距离e (10)4.5制动蹄支撑点位置坐标a和c (10)4.6摩擦片摩擦系数 (10)4.7制动盘直径D (10)4.8制动盘的厚度h (11)4.9摩擦衬块内外半径的确定 (11)4.10制动衬块工作面积A (11)5、鼓式制动器主要零部件的设计 (12)5.1制动蹄 (12)5.2制动鼓 (12)5.3摩擦衬片 (13)5.4摩擦材料 (14)5.5蹄与鼓之间的间隙自动调整装置 (14)5.6制动支承装置 (16)5.7制动轮缸 (16)5.8张开机构 (16)6、盘式制动器主要零部件设计计算 (17)6.1 滑动钳体 (17)6.2 固定支架 (17)6.3 制动盘 (17)6.4 制动块 (17)6.5同步附着系数的确定 (19)6.6地面对前、后轮的法向反作用力 (19)6.7制动力分配系数的确定β[]4 (20)6.8前、后制动器制动力矩的确定[]4 (20)6.9应急制动和驻车制动所需的制动力矩[]1 (21)6.9.1应急制动 (21)6.9.2驻车制动 (22)6.9.3衬片磨损特性的计算 (23)7、制动驱动机构的设计与计算 (25)7.1 制动驱动机构的形式 (25)7.2 分路系统 (26)7.3 液压制动驱动机构的设计计算 (28)7.3.1 制动轮缸直径的确定 (28)7.3.2 制动主缸直径的确定 (29)7.3.3制动踏板力p F和制动踏板工作行程p S (30)7.3.4真空助力器的设计计算 (31)8、制动性能分析 (31)8.1制动性能评价指标 (31)8.2 制动效能 (31)8.3 制动效能的恒定性 (32)8.4 制动时汽车的方向稳定性 (32)8.5制动器制动力分配曲线分析 (32)8.6制动减速度j和制动距离S (34)参考文献 (35)1、汽车制动系统概述及设计要求1.1 概述使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。
汽车制动系统设计说明书

目录第一章绪论 (1)1.1 本次制动系统设计的意义 (2)1.2 本次制动系统应达到的目标 (2)1.3 本次制动系统设计容 (3)1.4 汽车制动系统的组成 (3)1.5 制动系统类型 (3)1.6 制动系工作原理 (3)第二章汽车制动系统方案确定 (4)2.1 汽车制动器形式的选择 (5)2.2 鼓式制动器的优点及其分类 (6)2.3 盘式制动器的缺点 (8)2.4 制动驱动机构的结构形式 (8)2.4.1 简单制动系 (9)2.4.2 动力制动系 (9)2.4.3 伺服制动系 (10)2.5 制动管路的形式选择 (10)2.6 液压制动主缸方案的设计 (12)第三章制动系统主要参数的确定 (14)3.1 轻型货车主要技术参数 (14)的确定 (14)3.2 同步附着系数的3.3 前、后轮制动力分配系数 的确定 (15)3.4 鼓式制动器主要参数的确定 (16)3.5 制动器制动力矩的确定 (18)3.6 制动器制动因数计算 (19)3.6.1 制动器制动因数计算 (19)3.6.1 制动器制动因数计算 (20)3.7 鼓式制动器零部件的结构设计 (21)第四章液压制动驱动机构的设计计算 (24)4.1 制动轮缸直径d的确定 (24)的计算 (25)4.2 制动主缸直径d4.3 制动踏板力F (26)P4.4 制动踏板工作行程Sp (26)第五章制动性能分析 (27)5.1 制动性能评价指标 (27)5.2 制动效能 (27)5.3 制动效能的恒定性 (27)5.4 制动时汽车的方向稳定性 (28)5.5 前、后制动器制动力分配 (28)5.5.1 地面对前、后车轮的法向反作用力 (29)5.6 制动减速度j (29)5.7 制动距离S (29)5.8 摩擦衬片(衬块)的磨损特性计算 (30)5.9 汽车能够停留在极限上下坡角度计算 (32)第六章总结 (33)参考文献 (34)一.绪论汽车工业是一个综合性产业,汽车工业的生产水平,能够代表一个国家的整个工业水平,汽车工业的发展,能够带动各行各业的发展,进而促进我国工业生产的总体水品。
汽车制动系统装配工艺流程

汽车制动系统装配工艺流程汽车制动系统装配工艺流程是指对汽车制动系统各个零部件进行装配的一系列工序。
下面将分为几个步骤详细介绍汽车制动系统装配工艺流程。
一、准备工作在开始装配工艺之前,首先需要准备好相关的零部件和工具。
这包括制动系统的主要零部件,例如制动盘、刹车片、刹车钳等,以及螺丝刀、扳手等装配工具。
同时还要做好工作环境整理和准备,确保装配过程中的安全和工作效率。
二、拆卸工序如果是更换已经使用一段时间的制动系统,首先需要将原有的制动系统进行拆卸。
拆卸过程中需要非常小心,不要损坏任何零部件,并妥善保管好拆卸下来的零部件。
三、清洗工序在拆卸完成后,需要对相关的零部件进行清洗。
这是为了去除零部件表面可能存在的灰尘、油污等杂质,从而保证在后续装配过程中的卫生和质量。
四、安装工序在完成清洗工序后,就可以开始进行零部件的安装工作了。
首先,将刹车盘安装在车轮上,然后将刹车片固定到刹车盘上。
接着,将刹车钳安装在刹车片上,并使用螺丝将其固定。
五、调整工序在安装完成后,需要对制动系统进行调整,确保其正常工作。
这包括校正刹车片与刹车盘之间的间隙,检查刹车钳是否被正确地安装,以及调整刹车踏板的位置等。
六、测试工序在完成调整后,需要对汽车制动系统进行测试,以确保其正常工作。
测试内容可以包括刹车踏板的行程测试、行驶中的刹车性能测试等。
通过测试,可以判断制动系统是否安装正确,并对可能存在的问题进行修复。
七、整理工序在完成测试后,需要对工作现场进行整理。
这包括清理工作台、清洗使用的工具,并将不需要的零部件妥善存放起来。
总结:汽车制动系统装配工艺流程是一个细致严谨的过程,需要在每个环节严格遵循相关工艺要求,以确保制动系统的质量和安全性。
在实际操作过程中,需要注意安全措施和细节处理,确保零部件的正确装配和调整。
只有通过严谨的工艺流程,才能保证汽车制动系统的正常运作和驾驶安全。
八、质量检验工序在完成装配过程后,需要进行质量检验,确保汽车制动系统的工作质量符合相关标准。
异步电动机起动,调速,制动一体化设计方案

异步电动机起动,调速,制动一体化设计方案注:本文将介绍如何设计一个异步电动机的起动、调速和制动一体化系统,将会涉及到电机的基本原理以及一些控制算法。
在不清楚一些专业术语的情况下,查看文末的专业术语解释。
一、设计目标异步电动机起动、调速、制动一体化(以下简称ATB)系统的设计目标是为了实现高效率、高性能、高安全性的电动机运行控制,同时提升运动性能的稳定性和可控性。
具体来说,该ATB系统需要满足以下要求:1.起动阶段,实现平稳起动,避免空载启动造成冲击负荷,同时保证整个起动过程的安全性和可控性。
2.调速阶段,可以实现电机的转速调节及运动状态的实时监测,并通过电控系统动态平衡地调整供电电压、频率、电流等参数,以满足各种运动需求。
3.制动阶段,实现平稳的制动操作,避免电机的超速滑转造成的危险情况或回转惯性超过极限造成电机反转损伤。
二、基础理论1.异步电动机的基本原理异步电动机是将三个交流电源线连接到电机的定子上,并通过电流在定子绕组中产生旋转磁场,进而驱动转子旋转的电机。
定子绕组产生的旋转磁场的频率称为同步转速,转子旋转的实际转速略低于同步转速,因此被称为异步电动机。
2.电机控制的基本原理在AC电机中,控制电机的变量主要有电压、频率、电流等。
因此可以通过控制这些变量来调节电机的转速和输出功率。
通过改变电压和频率来调整供电电源的电压和频率,改变电流来调整电动机的输出功率。
通过对电压、频率和电流等变量的实时监测和动态调整,可以实现丰富的运动控制。
3.电机起动的基本原理电机起动是指将电机从静止状态转变为运动状态的过程。
在电机起动前,电机的转子处于静止状态,因此需要通过适当的控制方法来保证起动时的稳定性和安全性。
一般来说,电机起动的控制方法包括:全电压启动、降压启动、直接柿突启动和变阻启动等。
4.电机制动的基本原理电机制动是指将电机从运动状态转变为静止状态的过程。
在制动前,电机的转子处于旋转状态,因此需要采用正确的制动方法,以平稳完成制动操作而避免电机因制动而受损。
制动系统设计手册(NEW)

总体上写得不错,需要进一步改进的建议如下:
1.主要零部件的典型结构图。
2.分泵、总泵、吊挂助力器和阀等试验验证与试制验证的方法与标准(结合参考上次L项目验证计划)细化与补充。
3.分泵、总泵、吊挂助力器和阀的DFMEA分析的主要内容。
3.做到图文并茂,无经验的年轻的设计人员(《设计手册》主要读者)一看就明白。
3.3.6制动管路的布置:
首先以不与其它零部件干涉为前提,应尽量理顺;其次各管路的结构应合理,尤其是管路两端在整车行驶过程中有相对运动的件应考虑吸震方案,必要时采用软管连接;另外,在进行管路布置时应考虑管子的卡固,在空间允许的前提下管卡子的间隔以500~600mm为佳,当然在局部障碍部位可能要密一些。
真空助力器的直接作用在于降低制动踏板力,当制动踏板力太大时,仅依靠人的输入力(按照标准要求人的最大输入力不得大于700N)可能不足以使整车完全制动,而利用真空对助力器内橡胶膜片及反馈盘的作用可以成数倍(取决于真空助力器的助力比)地放大制动踏板的输入力,即增大制动总泵活塞的输入力,从而增大制动管路的压力。当然真空助力器助力比的选取应合适,助力比太大易使驾驶员失去踏板感,而太小又使人在制动过程中感到吃力,且对于一定规格的助力器来说,助力器的助力比越大,其最大输出拐点越低,这就容易造成整个制动过程在初期省力,但在后期特废力,严重时也会刹不住车,故真空助力器助力比的选取以使制动踏板力调整适当为宜。另当某一规格的助力器对整车制动踏板力的调整不能满足要求且适当调整助力比仍不能达到要求时应更换助力器的规格。
3.3制动系统各总成零部件在设计和布置过程中的注意事项:
3.3.1制动器总成:
优先采用社会成熟资源,但在与整车实际应用时应考察制动器的效能、制动底板、制动蹄铁、制动鼓的刚性与整车的符合性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制动系统的开发和设计
1.设计依据和原则
1.1 根据况、使用条件及用户群体等)确定制动系统的总体方案,为系统各零部件的选型提供产品信函(或项目描述书)所描述的整车的使用情况(含道路状依据;
包括:制动形式、制动器形式、制动总、分泵(阀)形式等。
1.2 根据车型提供的整车参数,结合各项强制法规的要求,初步分析各所选制动零部件与整车匹配的合理性;
所需参数:质心距前轴a、质心高hg、总质量Ga、前轴负荷G1、前轴质量分配%、后轴负荷G2、后轴质量分配等。
1.3 根据强制法规的要求,制定试验方案进一步验证整车制动系统匹配和各制动元件选型的合理性。
2.设计方案初步规划
2.1 各主要零部件的选型及相关注意事项:
2.1.1 制动器总成
2.1.1.1 通过对所开发车型与已开发同类车型(或标杆车)的比较,初步确定系统各零部件的型式、结构和相关参数,而单纯从整车对制动力的需求方面来说,制动器的制动力越大越好,但由于制动器所产生的制动力与制动器的结构型式、制动器直径、制动器的分泵直径、制动器摩擦副的相对摩擦系数、制动管路压力等等因素有关,故在选取时应遵循以下原则;
2.1.1.2 制动器结构型式的选型原则:根据整车档次、使用地区、用户群体等确定制动器的结构型式;
2.1.1.3 制动器直径的选型原则:由于制动器的直径与轮辋直径有关,在选型时应根据整车布置及轮辋的要求,考虑制动鼓的散热问题,一般制动鼓与轮辋的间隙应不小于10mm,否则会导致制动器散热不良,引起制动鼓早期龟裂、制动衬片烧结、炭化,大大降低制动器的制动效能;另外,制动器与轮辋的间隙太小,制动过程所产生的热量也将大量传导至轮辋上,对轮胎不利。
2.1.1.4 制动器衬片摩擦系数的确定:由于制动器衬片的摩擦系数是决定制动器制动力的主要原因之一,在同型、同规格的制动器中,制动衬片的摩擦系数越高,制动器所产生的制动力越大,但对于不同结构的制动器来说,并不是摩擦系数越高越好,摩擦系数太高对制动鼓(或盘)的磨损也越大,且对于双向自增力式制动器,摩擦系数越高,制动过程越粗暴,对制动底板、制动蹄铁、制动鼓的刚性要求越高,否则在制动过程中越易产生制动器颤动、整车发抖的现象,故对于摩擦系数的选取根据本人的经验建议:双向自增力式制动器的取0.38左右,其它结构型式的制动器取0.45~0.5左右,盘式制动器取0.35左右。
2.1.1.5 制动器分泵直径的选型和确定:在上述参数选定以后,根据整车所需的各轴制动力来确定制动器分泵的直径。
对于单个制动器而言,制动器所产生的制动力与制动分泵活塞的有效面积(直径的平方——液压制动器)成正比,在选取过程中应兼顾国家标准规格和社会成熟资源,液压制动器的分泵直径最大不超过32mm。
2.1.1.6 前后制动器制动分泵的选取、分配原则:从各方面的调查分析,对于一般的驾驶员来说,在正常行车的过程中实施制动的概率分布如下:制动强度在0.25以下的约占95%左右,在0.5以上的仅占0.1%。
这一统计数据表明通常的制动都是在小制动减速度下进行,且此时各轴的车轮均未出现抱死现象,即制动衬片与制动鼓之间一直处于滑动摩擦阶段,而此时整个制动系统的管路压力一样,如果分泵活塞直径大,则制动器产生的制动力就大,从而导致制动衬片的磨损加大,因此,在确定前后制动分泵直径时,最佳原则时前后制动器分泵直径相等或后分泵比前分泵稍小,以确保前后制动器在正常情况下同步磨损。
当然,当前后制动分泵直径相等或相差不大时,在实施较大制动强度的制动时易出现后轮先抱死甩尾,故在采取此种分配方式时必须增加阀类元件调节后管路的压力,以防止后轮先抱死。
2.1.2 真空助力器带制动总泵总成
2.1.2.1 制动总泵的选取原则:制动总泵的选取主要取决于制动分泵,在制动器间隙合适的情况下,其直径的选取将直接引响制动踏板的行程,对于单分泵制动器的系统,一般以总泵的直径与后制动器直径相当为宜,而对于双分泵制动器的系统其总泵的直径以与前制动分泵直径相当为好。
2.1.2.2 真空助力器的选用原则:真空助力器的直接作用在于降低制动踏板力,当制动踏板力太大时,仅依靠人的输入力(按照标准要求人的最大输入力不得大于700N)可能不足以使整车完全制动,而利用真空对助力器内橡胶膜片及反馈盘的作用可以成倍地放大制动踏板的输入力,即增大制动总泵活塞的输入力,从而增大制动管路的压力。
当然真空助力器助力比的选取应合适,助力比太大易使驾驶员失去踏板感,而太小又使人在制动过程中感到吃力,且对于一定规格的助力器来说,助力器的助力比越大,其最大输出拐点越低,这就容易造成整个制动过程在初期省力,但在后期特废力,严重时也会刹不住车,故真空助力器助力比的选取以使制动踏板力调整适当为宜。
另当某一规格的助力器对整车制动踏板力的调整不能满足要求且适当调整助力比仍不能达到要求时应更换助力器的规格。
2.1.3 制动踏板吊挂总成:制动踏板吊挂总成的设计和选用一般根据驾驶室布置的需要而确定,其杠杆比的确定以总行程不大于150mm、踏板面至地板的高度160mm左右、与前面配置的分泵、总泵的分配原则(制动踏板的行程以不大于总行程的75%为宜)等因素进行确定,一般取5左右;
2.2 初步分析计算:(附计算模版)
2.2.1 根据以上对制动系统的初步规划和主要零部件的选型后需要对整个制动系统的匹配进行初步分析计算,考察所选配置与整车、所选配置在整车上的应用与相关法规的符合性,必要时重新调整配置;
2.2.2 分析计算过程中的相关注意事项:
2.2.2.1 整车基本参数应尽可能地准确,尤其是空、满(超)载质心的位置;2.2.2.2 制动踏板的行程:根据制动踏板的杠杆比一般情况下不得大于制动踏板总行程的75%;
2.2.2.3 制动踏板力:一般情况下制动踏板力不宜过大,在0.8制动强度下整车的制动
踏板力轻卡以不大于250N、小卡、微卡以不大于200N为宜;
2.2.2.4 制动距离:根据相关标准的要求应与其符合,必要时按法规要求在规定的制动踏板下进行部分管路失效计算;
2.2.2.5 制动器的磨损容量和热容量:一般用磨擦片的比能量耗散率[每单位衬片(衬块)磨擦面积的每单位时间耗散的能量]、比磨擦力[每单位衬片(衬块)磨擦面积的制动器的磨擦力]来衡量制动器的热容量和磨损容量。
鼓式制动器的热容量以不大于
1.8w/mm2,盘式制动器不大于6w/mm2,磨损容量不大于0.48N/mm2为宜。
2.3 制动系统各总成零部件在设计和布置过程中的注意事项:
2.3.1 制动器总成:优先采用社会成熟资源,但在与整车实际应用时应考察制动器的效能、制动底板、制动蹄铁、制动鼓的刚性与整车的符合性。
2.3.2 制动总泵:应严格控制总泵的空行程、建压行程和建压曲线,一般总泵每腔的空行程以不大于1.5mm,在输出口输出压力达0.4Mpa时总泵活塞推杆的行程不得大于4mm (一般0.4Mpa的管路压力可以消除制动蹄与制动鼓之间的间隙),总泵的建压曲线越陡越好,不能过于平坦,否则会造成制动踏板感发绵、发软。
2.3.3 真空助力器:应严格控制真空助力器总成的空行程,一般以不大于1.5mm为宜。
2.3.4 真空助力器带总泵总成:助力器推杆与总泵活塞窝的间隙以不大于0.5mm为宜,整个总成的建压行程应不大于6mm。
2.3.5 制动踏板吊挂总成:为确保制动过程中对踏板行程的消耗,在设计和制造过程中应严格控制各铰接(连接)处的配合间隙。
一般以输出端不动的情况下,输入端(踏板面)的行程不大于3mm为宜。
2.3.6 制动管路的布置:首先以不与其它零部件干涉为前提,应尽量理顺;其次各管路的结构应合理,尤其是管路两端在整车行驶过程中有相对运动的件应考虑吸震方案,必要时采用软管连接;另外,在进行管路布置时应考虑管子的卡固,在空间允许的前提下管卡子的间隔以500~600mm为佳,当然在局部障碍部位可能要密一些。
3.试验验证
3.1 试验目的:通过性能试验验证系统的配置与整车及法规的符合性;通过可靠性试验以验证系统各零部件的工作可靠性。
3.2 试验前提:在试验前一定要将整个系统按规范进行调整完毕,即:管路系统无空气、踏板的自由行程(一般不大于15mm)符合要求、制动器的间隙合适等。
3.2 试验标准和方法:按GB12676强制标准所要求的制动系统性能要求和试验方法进行性能试验验证。
4.闭环反馈设计验证:
主要根据性能试验结果对制动系统各零部件的匹配进行重新调整(必要时),当然在重新匹配验证时要求对整车参数进行准确测定。