制动系统设计流程

制动系统设计流程
制动系统设计流程

制动系统的开发和设计

1.设计依据和原则

1.1 根据况、使用条件及用户群体等)确定制动系统的总体方案,为系统各零部件的选型提供产品信函(或项目描述书)所描述的整车的使用情况(含道路状依据;

包括:制动形式、制动器形式、制动总、分泵(阀)形式等。

1.2 根据车型提供的整车参数,结合各项强制法规的要求,初步分析各所选制动零部件与整车匹配的合理性;

所需参数:质心距前轴a、质心高hg、总质量Ga、前轴负荷G1、前轴质量分配%、后轴负荷G2、后轴质量分配等。

1.3 根据强制法规的要求,制定试验方案进一步验证整车制动系统匹配和各制动元件选型的合理性。

2.设计方案初步规划

2.1 各主要零部件的选型及相关注意事项:

2.1.1 制动器总成

2.1.1.1 通过对所开发车型与已开发同类车型(或标杆车)的比较,初步确定系统各零部件的型式、结构和相关参数,而单纯从整车对制动力的需求方面来说,制动器的制动力越大越好,但由于制动器所产生的制动力与制动器的结构型式、制动器直径、制动器的分泵直径、制动器摩擦副的相对摩擦系数、制动管路压力等等因素有关,故在选取时应遵循以下原则;

2.1.1.2 制动器结构型式的选型原则:根据整车档次、使用地区、用户群体等确定制动器的结构型式;

2.1.1.3 制动器直径的选型原则:由于制动器的直径与轮辋直径有关,在选型时应根据整车布置及轮辋的要求,考虑制动鼓的散热问题,一般制动鼓与轮辋的间隙应不小于10mm,否则会导致制动器散热不良,引起制动鼓早期龟裂、制动衬片烧结、炭化,大大降低制动器的制动效能;另外,制动器与轮辋的间隙太小,制动过程所产生的热量也将大量传导至轮辋上,对轮胎不利。

2.1.1.4 制动器衬片摩擦系数的确定:由于制动器衬片的摩擦系数是决定制动器制动力的主要原因之一,在同型、同规格的制动器中,制动衬片的摩擦系数越高,制动器所产生的制动力越大,但对于不同结构的制动器来说,并不是摩擦系数越高越好,摩擦系数太高对制动鼓(或盘)的磨损也越大,且对于双向自增力式制动器,摩擦系数越高,制动过程越粗暴,对制动底板、制动蹄铁、制动鼓的刚性要求越高,否则在制动过程中越易产生制动器颤动、整车发抖的现象,故对于摩擦系数的选取根据本人的经验建议:双向自增力式制动器的取0.38左右,其它结构型式的制动器取0.45~0.5左右,盘式制动器取0.35左右。

2.1.1.5 制动器分泵直径的选型和确定:在上述参数选定以后,根据整车所需的各轴制动力来确定制动器分泵的直径。对于单个制动器而言,制动器所产生的制动力与制动分泵活塞的有效面积(直径的平方——液压制动器)成正比,在选取过程中应兼顾国家标准规格和社会成熟资源,液压制动器的分泵直径最大不超过32mm。

2.1.1.6 前后制动器制动分泵的选取、分配原则:从各方面的调查分析,对于一般的驾驶员来说,在正常行车的过程中实施制动的概率分布如下:制动强度在0.25以下的约占95%左右,在0.5以上的仅占0.1%。这一统计数据表明通常的制动都是在小制动减速度下进行,且此时各轴的车轮均未出现抱死现象,即制动衬片与制动鼓之间一直处于滑动摩擦阶段,而此时整个制动系统的管路压力一样,如果分泵活塞直径大,则制动器产生的制动力就大,从而导致制动衬片的磨损加大,因此,在确定前后制动分泵直径时,最佳原则时前后制动器分泵直径相等或后分泵比前分泵稍小,以确保前后制动器在正常情况下同步磨损。当然,当前后制动分泵直径相等或相差不大时,在实施较大制动强度的制动时易出现后轮先抱死甩尾,故在采取此种分配方式时必须增加阀类元件调节后管路的压力,以防止后轮先抱死。

2.1.2 真空助力器带制动总泵总成

2.1.2.1 制动总泵的选取原则:制动总泵的选取主要取决于制动分泵,在制动器间隙合适的情况下,其直径的选取将直接引响制动踏板的行程,对于单分泵制动器的系统,一般以总泵的直径与后制动器直径相当为宜,而对于双分泵制动器的系统其总泵的直径以与前制动分泵直径相当为好。

2.1.2.2 真空助力器的选用原则:真空助力器的直接作用在于降低制动踏板力,当制动踏板力太大时,仅依靠人的输入力(按照标准要求人的最大输入力不得大于700N)可能不足以使整车完全制动,而利用真空对助力器内橡胶膜片及反馈盘的作用可以成倍地放大制动踏板的输入力,即增大制动总泵活塞的输入力,从而增大制动管路的压力。

当然真空助力器助力比的选取应合适,助力比太大易使驾驶员失去踏板感,而太小又使人在制动过程中感到吃力,且对于一定规格的助力器来说,助力器的助力比越大,其最大输出拐点越低,这就容易造成整个制动过程在初期省力,但在后期特废力,严重时也会刹不住车,故真空助力器助力比的选取以使制动踏板力调整适当为宜。另当某一规格的助力器对整车制动踏板力的调整不能满足要求且适当调整助力比仍不能达到要求时应更换助力器的规格。

2.1.3 制动踏板吊挂总成:制动踏板吊挂总成的设计和选用一般根据驾驶室布置的需要而确定,其杠杆比的确定以总行程不大于150mm、踏板面至地板的高度160mm左右、与前面配置的分泵、总泵的分配原则(制动踏板的行程以不大于总行程的75%为宜)等因素进行确定,一般取5左右;

2.2 初步分析计算:(附计算模版)

2.2.1 根据以上对制动系统的初步规划和主要零部件的选型后需要对整个制动系统的匹配进行初步分析计算,考察所选配置与整车、所选配置在整车上的应用与相关法规的符合性,必要时重新调整配置;

2.2.2 分析计算过程中的相关注意事项:

2.2.2.1 整车基本参数应尽可能地准确,尤其是空、满(超)载质心的位置;2.2.2.2 制动踏板的行程:根据制动踏板的杠杆比一般情况下不得大于制动踏板总行程的75%;

2.2.2.3 制动踏板力:一般情况下制动踏板力不宜过大,在0.8制动强度下整车的制动

踏板力轻卡以不大于250N、小卡、微卡以不大于200N为宜;

2.2.2.4 制动距离:根据相关标准的要求应与其符合,必要时按法规要求在规定的制动踏板下进行部分管路失效计算;

2.2.2.5 制动器的磨损容量和热容量:一般用磨擦片的比能量耗散率[每单位衬片(衬块)磨擦面积的每单位时间耗散的能量]、比磨擦力[每单位衬片(衬块)磨擦面积的制动器的磨擦力]来衡量制动器的热容量和磨损容量。鼓式制动器的热容量以不大于

1.8w/mm2,盘式制动器不大于6w/mm2,磨损容量不大于0.48N/mm2为宜。

2.3 制动系统各总成零部件在设计和布置过程中的注意事项:

2.3.1 制动器总成:优先采用社会成熟资源,但在与整车实际应用时应考察制动器的效能、制动底板、制动蹄铁、制动鼓的刚性与整车的符合性。

2.3.2 制动总泵:应严格控制总泵的空行程、建压行程和建压曲线,一般总泵每腔的空行程以不大于1.5mm,在输出口输出压力达0.4Mpa时总泵活塞推杆的行程不得大于4mm (一般0.4Mpa的管路压力可以消除制动蹄与制动鼓之间的间隙),总泵的建压曲线越陡越好,不能过于平坦,否则会造成制动踏板感发绵、发软。

2.3.3 真空助力器:应严格控制真空助力器总成的空行程,一般以不大于1.5mm为宜。2.3.4 真空助力器带总泵总成:助力器推杆与总泵活塞窝的间隙以不大于0.5mm为宜,整个总成的建压行程应不大于6mm。

2.3.5 制动踏板吊挂总成:为确保制动过程中对踏板行程的消耗,在设计和制造过程中应严格控制各铰接(连接)处的配合间隙。一般以输出端不动的情况下,输入端(踏板面)的行程不大于3mm为宜。

2.3.6 制动管路的布置:首先以不与其它零部件干涉为前提,应尽量理顺;其次各管路的结构应合理,尤其是管路两端在整车行驶过程中有相对运动的件应考虑吸震方案,必要时采用软管连接;另外,在进行管路布置时应考虑管子的卡固,在空间允许的前提下管卡子的间隔以500~600mm为佳,当然在局部障碍部位可能要密一些。

3.试验验证

3.1 试验目的:通过性能试验验证系统的配置与整车及法规的符合性;通过可靠性试验以验证系统各零部件的工作可靠性。

3.2 试验前提:在试验前一定要将整个系统按规范进行调整完毕,即:管路系统无空气、踏板的自由行程(一般不大于15mm)符合要求、制动器的间隙合适等。

3.2 试验标准和方法:按GB12676强制标准所要求的制动系统性能要求和试验方法进行性能试验验证。

4.闭环反馈设计验证:

主要根据性能试验结果对制动系统各零部件的匹配进行重新调整(必要时),当然在重新匹配验证时要求对整车参数进行准确测定。

大学生方程式赛车制动系统设计和优化

大学生方程式赛车制动系 统设计和优化 Prepared on 22 November 2020

摘要 Formula SAE比赛由美国车辆工程师学会(SAE)于1979年创立,每年在世界各地有600余支大学车队参加各个分站赛,2011年将在中国举办第一届中国大学生方程式赛车,本设计将针对中国赛程规定进行设计。 本说明书主要介绍了大学生方程式赛车制动的设计,首先介绍了汽车制动系统的设计意义、研究现状以及设计目标。然后对制动系统进行方案论证分析与选择,主要包括制动器形式方案分析、制动驱动机构的机构形式选择、液压分路系统的形式选择和液压制动主缸的设计方案,最后确定方案采用简单人力液压制动双回路前后盘式制动器。除此之外,还根据已知的汽车相关参数,通过计算得到了制动器主要参数、前后制动力矩分配系数、制动力矩和制动力以及液压制动驱动机构相关参数。最后对制动性能进行了详细分析。 关键字:制动、盘式制动器、液压

Abstract Formula SAE race was founded in 1979 by the American cars institute of Engineers every year more than 600 teams participate in various races around the world,China will hold the first Formula one for Chinese college students,the design will be for design of the provisions of the Chinese calendar. This paper mainly introduces the design of breaking system of the Formula of all,breaking system's development,structure and category are shown,and according to the structures,virtues and weakness of drum brake and disc brake analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear , this paper also introduces the designing process of front brake and rear break,braking cylinder,parameter's choice of main components braking and channel settings and the analysis of brake performance. Key words:braking,braking disc,hydroid pressure

汽车换挡机构设计指南

目录 第二章换档机构 1 简要说明 (3) 1.1变速操纵机构综述 (3) 1.2 设计目的 (3) 1.3 适用范围 (4) 1.4 装置的零部件构成图 (4) 2 设计构想 (6) 2.1 设计原则 (6) 2.2 设计参数 (6) 2.3 软轴拉线的布置 (11) 2.4 环境条件 (11) 2.5 设计基本限制因素 (12) 2.6 零件装配设计 (13) 4.1 通过什么样的标识进行识别........................................................................ 错误!未定义书签。

第二章换档机构

1 简要说明 1.1变速操纵机构综述 1汽车变速操纵机构分为手动变速操纵机构(MT)、自动变速操纵机构 (AT&CVT&AMT)。 2按传递行程和力的方式可分为拉索式换档操纵装置、杆系换档操纵装置及电讯号直接驱动换档装置;如图 2, 杆系换档操纵装置它是由一根或者两根细长的(空心)刚性杆件组成的。因为是空间运动杆系,其运动分析和自由度的确定,无论是用作图法,或用解析法都是比较复杂的;运动件本身的干涉,及其与相邻件干涉的校核也是相当繁琐的;还好,现在可以借助于CAE使设计分析工作简化和可靠。同时,这种结构还有一个很难克服的问题,就是由于其运动链长,杆件刚度弱,铰接处存在间隙,且润滑不便等原因,容易产生振动、噪声、档位不清晰、换档操纵手感不良等现象。于是,一种拉索式换档操纵装置应运而生,并将逐渐取代杆系换档操纵装置. 如图 1,为拉索式换档操纵装置.所谓拉索式换档操纵装置,是用一种柔性的推拉软轴替代空间运动的刚性的杆件。这种换档操纵装置克服了上述刚性空间杆系存在的那些问题。同时柔性推拉软轴的走向“自如”,给汽车的总体布置和变速器操纵装置的安排带来诸多方便。而且柔性软轴具有吸振的作用,能够消除动力总成和车身传至换档操纵手柄的振动,因此能得到清晰的档位和舒适的手感。拉索式操纵因其易于布置,传递效率高,成本低廉,目前是最常用的结构. 以上两类都属于手动换档操纵机构;自动换档操纵机构中也用到拉索式操纵装置,如图1.4-3,同时也用到电讯号驱动装置以实现特殊的换档要求;在电控机械自动变速箱(AMT)上则完全使用电讯号驱动装置完成换档. 1.2 设计目的 1.在任何情况下能够可靠地实现换档,并保证换档平顺; 2.在任何行驶条件下须保证操纵机构总成可靠的操纵力及操纵行程输出; 3.布置上,应充分考虑到人机工程因素,确保最适宜的行程、力及操作位置,保证 拉线在前舱的走向应平顺,避开相关干涉,远离热源等; 4.涉及到电子通讯部分,须保证对输入信号的准确识别、可靠的信号处理及精确输 出,并具备相应的抗干扰能力; 5.满足在不同工作温度下,保证足够的传递效率及操作手感;

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

盘式制动器毕业设计

1.课题研究的目的及意义 汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。随着汽车的形式速度和路面情况复杂程度的提高,更加需要高性能、长寿命的制动系统。其性能的好坏对汽车的行驶安全有着重要影响,如果此系统不能正常工作,车上的驾驶员和乘客将会受到车祸的伤害。 汽车是现代交通工具中用得最多、最普遍、也是运用得最方便的交通工具。汽车制动系统是汽车底盘上的一个重要系统,它是制约汽车运动的装置,而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性的要求越来越高,为保证人身和车辆安全,必须为汽车配备十分可靠的制动系统。 车辆在形式过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。 现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。 2.汽车制动器的国内外现状及发展趋势 对制动器的早期研究侧重于试验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。 目前,汽车所用的制动器几乎都是摩擦式的,可分为鼓式和盘式两大类。盘式制动器被普遍使用。但由于为了提高其制动效能而必须加制动增力系统,使其造价较高,故低端车一般还是使用前盘后鼓式。汽车制动过程实际上是一个能量转换过程,它把汽车行驶时产生的动能转换为热能。高速行驶的汽车如果频繁使用制动器,制动器因摩擦会产生大量的热量,使制动器温度急剧升高,如果不能及时的为制动器散热,它的效率就会大大降低,影响制动性能,出现所谓的制动效能热衰退现象。 在中高级轿车上前后轮都已经采用了盘式制动器。不过,时下还有不少经济型轿车采用的还不完全是盘式制动器,而是前盘后鼓式混合制动器(即前轮采用盘式制动器、后轮采用鼓式制动器),这主要是出于成本上的考虑,同时也是因为轿车在紧急制动时,负荷前移,对前轮制动的要求比较高,一般来说前轮用盘式制动器就够了。当然,前后轮都使用盘式制动器是一种趋势。在货车上,盘式制动器也有被采用的,但离完全取代鼓式制动器还有相当长的一段距离。 现代汽车制动器的发展起源于原始的机械控制装置,最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,那时的汽车重量比较小,速度比较低,机械制动已经能够满足汽车制动的需要,但随着汽车自身重量的增加,助力装置对机械制动器来说越来越显得非常重

车架设计指南

奇瑞汽车有限公司底盘部设计指南 编制: 审核: 批准:

1、架的主要功能: 车架是整个汽车的基体,汽车上绝大多数部件和总成都是通过车架来固定其位置的。如:发动机、传动系统、悬架、转向、驾驶室、货箱和有关操纵机构。车架的功用是支撑连接汽车的各零部件,并承受来自车内外的各种载荷。 2、车架的类型: 主要类型 目前,汽车车架的结构形式基本上有三种:边梁式车架、中梁式车架(或称脊骨式车架)和综合式车架。其中以边梁式车架应用最广。 边梁式车架由两根位于两边的纵梁和若干根横梁组成,用铆接法或焊接法将纵梁与横梁连接成坚固的刚性构架。通常用低合金钢板冲压而成,断面形状一般为槽形,也有的做成Z字形或箱形断面。其结构特点是便于安装驾驶室、车厢及一些特种装备和布置其它总成,有利于改装变型车和发展多品种汽车。被广泛采用在载货汽车和大多数的特种汽车上。近代轿车为了保证良好的整车性能,尽量降低中心和有利于前后悬架的布置,把结构需要放在第一位,兼顾车架加工工艺性,所以车架形状设计的比较复杂而实用。 中梁式车架只有一根位于中央贯穿前后的纵梁,因此亦称为脊骨式车架,中梁的断面可以做成管型或箱型。这种结构的车架有较大的扭转刚度。使车轮有较大的运动空间,便于布置等优点因此被采用在某些轿车和货车上。 综合式车架比较复杂,应用比较广,一般轿车上使用。 车架的几种结构 车架主要有以下结构形式: 1.箱横梁和发动机支撑梁 横梁总成支撑发动机、水箱、保证车身的扭转刚度 发动机支撑梁和水箱横梁均有钢板冲压焊接而成,发动机支撑梁为封闭断面。 发动机支撑梁与车身连接处通常装有橡胶缓冲块。

材料:支撑梁上下体材料常采用为SAPH440其它BH340 表面处理为电泳。 2.车架 副车架带控制臂总成承受前轴载荷、支撑车身、动力总成、转向机、前悬挂、制动器等 副车架、控制臂均为钢板冲压焊接而成为封闭断面。 控制臂与副车架连接处采用橡胶衬套,起到改善行驶性能和舒适性。 材料:副车架上下体材料为常采用SAPH370(370为抗拉强度)其它为SPHE、SPHC,表面处理为电泳 3、纵梁 发动机纵梁总成支撑动力总成 1、动机纵梁总成均由钢板冲压焊接而成,为封闭断面。

汽车制动系统-毕业设计(论文)

1 引言汽车制动系的概述 制动系的功用是使汽车以适当的减速度降速行驶直至停车,在下坡行驶时使汽车保持适当的稳定车速,使汽车可靠地停在原地或坡道上。 制动系至少有行车制动装置和驻车制动装置。前者用来保证第一项功能和在不长的坡道上行驶时保证第二项功能,而后者则用来保证第三项功能。 除此之外,有些汽车还设有应急制动和辅助制动装置。 应急制动装置利用机械力源(如强力压缩弹簧)进行制动。在某些采用动力制动或伺服制动的汽车上,一旦发生蓄压装置压力过低等故障时,可用应急制动装置实现汽车制动。同时,在人力控制下它还能兼作驻车制动用。 辅助制动装置可实现汽车下长坡时持续地减速或保持稳定的车速,并减轻或者解除行车制动装置的负荷。 行车制动装置和驻车制动装置,都由制动器和制动驱动机构两部分组成。防止制动时车轮被抱死,有利于提高汽车在制动过程中的方向稳定性和转向操纵能力,缩短制动距离,所以近年来制动防抱死系统(ABS)在汽车上得到很快的发展和应用。此外,含有石棉的摩擦材料,因存在石棉有致癌公害问题已被逐渐淘汰,取而代之的是各种无石棉型材料并相继研制成功[1]。 1.1汽车制动系统的分类 (1) 按制动系统的作用 制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。用以使行驶中的汽车降低速度甚至停车的制动系统称为行车制动系统;用以使已停驶的汽车驻留原地不动的制动系统则称为驻车制动系统;在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统称为应急制动系统;在行车过程中,辅助行车制动系统降低车速或保持车速稳定,但不能将车辆紧急制停的制动系统称为辅助制动系统。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。 (2)按制动操纵能源 制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化

santana2000轿车制动系统的毕业设计

摘要 国内汽车市场迅速发展,而轿车是汽车发展的方向。然而随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,而制动系统则是汽车主动安全的重要系统之一。因此,如何开发出高性能的制动系统,为安全行驶提供保障是我们要解决的主要问题。另外,随着汽车市场竞争的加剧,如何缩短产品开发周期、提高设计效率,降低成本等,提高产品的市场竞争力,已经成为企业成功的关键。 本说明书主要介绍了santana2000轿车制动系统的设计。首先介绍了汽车制动系统的发展、结构、分类,并通过对鼓式制动器和盘式制动器的结构及优缺点进行分析。最终确定方案采用液压双回路前盘后鼓式制动器。除此之外,它还介绍了前后制动器、制动主缸的设计计算,主要部件的参数选择及制动管路布置形式等的设计过程。 关键字:制动;鼓式制动器;盘式制动器;液压 附录:

Abstract The rapid development of the domestic vehicle market, saloon car is an important tendency of vehicle. However, with increasing of vehicle, security issues are arising from increasingly attracting attention, the braking system is one of important system of active safety. Therefore, how to design a high-performance braking system, to provide protection for safe driving is the main problem we must solve. In addition, with increasing competition of vehicle market, how to shorten the product development cycle, to improve design efficiency and to lower costs, to improve the market competitiveness of products, and has become a key to success of enterprises. This paper mainly introduces the design of braking system of the santana2000 type of car. Fist of all, braking system’s development, structure and category are shown, and according to the structures, virtues and weakness of drum brake and disc brake, analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear drum. Besides, this paper also introduces the designing process of front brake and rear brake, braking cylinder, parameter’s choice of main components braking and channel settings. Key words: braking; brake drum; brake disc; hydroid pressure

大学生方程式赛车制动系统设计方案分析

大学生方程式赛车制动系统设计方案分析 摘要:本文介绍了大学生方程式赛车制动的设计,首先介绍了汽车制动系统的设计意义、研究现状以及设计目标,然后对制动系统进行分析与选择,确定方案采用简单人力液压制动双回路前后盘式制动器。最后对制动性能进行了详细分析。 关键词:方程式赛车,制动,盘式制动器 Abstract:This paper mainly introduces the design of breaking system of the Formula Student.First of all,breaking system's development,structure and category are shown.Then analysis and the choice of the braking system are done.At last, the plan adopting hydroid two-back-way brake with front disc and rear disc.Finally,the paper shows analysis of brake performance. Keywords:formula car,braking,braking disc 随着社会的迅速发展和人民生活水平的不断提高,汽车越来越成为现代交通工具中用得最多、最普遍、也运用得最方便的一种。汽车制动系统是汽车底盘上的一个重要系统,它是制约汽车运动的装置。汽车的制动性能直接影响汽车的行驶安全性。现在公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性的要求越来越高,为保证人身和车辆安全,汽车配备十分可靠的制动系统显得尤为重要。 一、制动系统的设计分析 车辆在形式过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐步减小到0,对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们从三个方面来对制动系统进行分析和评价:制动效能:即制动距离与制动减速度;制动效能的恒定性:即热衰退性;制动时汽车方向的稳定性。 二、制动装置的选择分析

制动系统设计指南

五、制动系统的设计 1.前言 1.1适用范围 1.2引用标准 1.3轿车制动规范对制动系统制动性的总体要求 1.4制动系统的设计方法 1.5整车参数 1.6设计期望值 2 行车制动系统的设计 2.1制动器总成的设计 2.2人力制动系和伺服制动系 2.3踏板总成的设计 2.4传感器设计 2.5 ABS的设计 3 应急制动及驻车制动的设计

五、制动系统的设计 1.前言 1.1适用范围: 本设计指南适用于在道路上行驶的汽车的制动系统 1.2引用标准 GB 7258—1997 ****** 1.3轿车制动规范对制动系统制动性的总体要求 汽车应设置足以使其减速、停车和驻车的制动系统。设置对前、后轮分别操纵的行车制动装置。应具有行车制动系。汽车应具有应急制动功能和应具有驻车制动功能。汽车行车制动、应急制动和驻车制动的各系统以某种方式相联,它们应保证当其中一个或两个系统的操纵机构的任何部件失效时(行车制动的操纵踏板、操纵连接杆件或制动阀的失效除外)仍具有应急制动功能。制动系应经久耐用,不能因振动或冲击而损坏。

1.4制动系统的设计方法1.4.2制动系统方案的确定

1.4.3制动系统方案确定的顺序 1.5整车参数 1.5.1整车制动系统布置方案

参数项目空载满载前轴负荷(kg) 后轴负荷(kg) 总质量G(kg) 重心高度hg(mm) 轴距L(mm) 车轮滚动半径(mm) 最大车速(km/h) 重心距前轴距离a(mm) 重心距后轴距离b(mm) 1.6设计期望值 1.6.1制动能力 汽车制动时,地面作用于车轮的切线力称为地面制动力F xb ,它是使汽车制动 而减速行驶的外力。在轮胎周缘克服制动器摩擦力矩M u 所需的力称为制动器制 动力F u 。 地面制动力是滑动摩擦约束反力,其最大值受附着力的限制。附着力F Φ 与 F xbmax 的关系为F xbmax =F Φ =F z ·Φ。F z 为地面垂直反作用力,Φ为轮胎—道路附着 系数,其值受各种因素影响。若不考虑制动过程中Φ值的变化,即设为一常值,则当制动踏板力或制动系压力上升到某一值,而地面制动力达最大值即等于附着力时,车轮将抱死不动而拖滑。踏板力或制动系压力再增加,制动器制动力F u 由于制动器摩擦力矩的增长,仍按直线关系继续上升,但是地面制动力达到附着力的值后就不再增加了。制动过程中,这三种力的关系,如图1所示。 汽车的地面制动力首先取决于制动器制动力,但同时又受轮胎。道路附着条件的限制。所以只有当汽车具有足够的制动器摩擦力矩,同时轮胎与道路又能提供高的附着力时,汽车才有足够的地面制动力而获得良好的制动性。 图2是汽车在水平路面上制动时的受力情形 (忽略了汽车的滚动阻力偶矩、空气阻力以及旋转质量减速时产生的惯性力偶矩) 。此外,下面的分析中还忽略制动时车轮边滚边滑的过程,附着系数只取一个定值Φ,惯性阻力为:

制动系统设计开题报告

毕业设计(论文)开题报告

1 选题的背景和意义 1.1 选题的背景 在全球面临着能源和环境双重危机的严峻挑战下世界各国汽车企业都在寻求新的解决方案一一如开发新能源技术,发展新能源汽车等等然而. 新能源汽车在研发过程中已出现!群雄争霸的局面在能源领域. 有压缩天然气,液化石油气,煤炼乙醇,植物乙醇,生物乙醇,,生物柴油,甲醇,二甲醚,合成油等等新能源动力汽车在转换能源方面有燃料电池汽车氢燃料汽车纯电动汽车轮毅电机车等等。选择哪种新能源技术作为未来汽车产业发展的主要方向是摆在中国汽车行业面前的重要课题。据有关专家分析进入新世纪以来,以汽车动力电气化为主要特征的新能源电动汽车技术突飞猛进。其中油电混合动力技术逐步进入产业化锂动力电池技术取得重大突破。新能源电动汽车技术的变革为我国车用能源转型和汽车产业化振兴提供了历史机遇[1]。 作为 21 世纪最清洁的能源———电能,既是无污染又是可再生资源,因此电动汽车应运而生,随着人民生活水平和环保觉悟的提高电动汽车越来越受到广泛关注[2]。传统车辆的转向、驱动和制动都通过机械部件连接来操纵,而在电动汽车中,这些系统操纵机构中的机械部件(包括液压件)有被更紧凑、反应更敏捷的电子控制元件系统所取代的趋势。加上四轮能实现± 90°偏转的四轮转向技术,车辆可实现任意角度的平移,绕任意指定转向点转向以及进行原地旋转。线控和四轮转向的有机结合,是当今汽车新技术领域的一大亮点,其突出特点就是操纵灵活和行驶稳定[3]。轮毂电机驱动电动车以其节能环保高效的特点顺应了当今时代的潮流,全方位移动车辆是解决日益突出的城市停车难问题的重要技术途径,因此,全方位移动的线控转向轮毂电机驱动电动车是未来先进车辆发展的主流方向之一。全方位移动车辆可实现常规行驶、沿任意方向的平移、绕任意设定点、零半径原地转向等转向功能[4]。 1.2 国内外研究现状及发展趋势 电动汽车的出现得益于19世纪末电池技术和电机技术的发展较内燃机成熟,而此时石油的运用还没有普及,电动车辆最早出现在英国,1834年Thomas Davenport 在布兰顿演示了采用不可充电的玻璃封装蓄电池的蓄电池车,此车的出现比世界上第一部内燃机型的汽车(1885年)早了半个世纪。1873年英国人Robert Davidson制造的一辆三轮车,它由一块铁锌电池向电机提供电力,这被认为是电动汽车的诞生,这也比第一部内燃机型的汽车早出现了13年。到了1881年,法国人Gustave Trouve 使用铅酸电池制造了第一辆能反复充电的电动汽车。此后三四十年间,电动汽车在当时的汽车发展中占据着重要位置,据统计,到1890年在全世界4200辆汽车中,有

汽车制动系统毕业设计

摘要 Formula SAE比赛由美国车辆工程师学会(SAE)于1979年创立,每年在世界各地有600余支大学车队参加各个分站赛,2011年将在中国举办第一届中国大学生方程式赛车,本设计将针对中国赛程规定进行设计。 本说明书主要介绍了大学生方程式赛车制动的设计,首先介绍了汽车制动系统的设计意义、研究现状以及设计目标。然后对制动系统进行方案论证分析与选择,主要包括制动器形式方案分析、制动驱动机构的机构形式选择、液压分路系统的形式选择和液压制动主缸的设计方案,最后确定方案采用简单人力液压制动双回路前后盘式制动器。除此之外,还根据已知的汽车相关参数,通过计算得到了制动器主要参数、前后制动力矩分配系数、制动力矩和制动力以及液压制动驱动机构相关参数。最后对制动性能进行了详细分析。 关键字:制动、盘式制动器、液压

Abstract Formula SAE race was founded in 1979 by the American cars institute of Engineers every year more than 600 teams participate in various races around the world,China will hold the first Formula one for Chinese college students,the design will be for design of the provisions of the Chinese calendar. This paper mainly introduces the design of breaking system of the Formula Student.First of all,breaking system's development,structure and category are shown,and according to the structures,virtues and weakness of drum brake and disc brake analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear disc.Besides, this paper also introduces the designing process of front brake and rear break,braking cylinder,parameter's choice of main components braking and channel settings and the analysis of brake performance. Key words:braking,braking disc,hydroid pressure

制动系统设计手册(NEW)

王工: 总体上写得不错,需要进一步改进的建议如下: 1.主要零部件的典型结构图。 2.分泵、总泵、吊挂助力器和阀等试验验证与试制验证的方法与标准(结合参考上次L 项目验证计划)细化与补充。 3. 分泵、总泵、吊挂助力器和阀的DFMEA分析的主要内容。 3.做到图文并茂,无经验的年轻的设计人员(《设计手册》主要读者)一看就明白。 4.附一典型车型(如L3360奥铃)的制动系统计算书。 储成高 2003.8.23 制动系统的开发和设计 1.系统概述 一般情况下汽车应具备三个最基本的机能,即:行驶机能、转弯机能和停车机能,而其停车机能则是由整车的制动装置来完成的。作为汽车重要组成部分的制动系统,其性能的好坏将直接影响汽车的行驶安全性,也就是说我们希望在轻轻地踩下制动踏板时汽车能很平稳地停止在所要停车的地方,为了达到这一目的,我们必须充分考虑制动系统的控制机构和执行机构的各种性能。 制动系统一般可分为四种,即行车制动系、应急制动系(也称第二制动系)、驻车制动系和辅助制动系统(一般用于山区、矿山下长坡时)。 各种制动系统一般有执行机构和控制机构两个部分组成。其执行机构是产生阻碍车辆的运动或运动趋势的力(制动力)的部件,通常包括制动鼓、制动蹄、制动盘、制动钳和制动轮缸等;其控制机构是为适应所需制动力而进行操纵控制、供能、调节制动力、传递制动能量的部件,一般包括助力器、踏板、制动主缸、储油杯、真空泵、真空罐、比例阀、ABS、制动管路和报警装置等,有的还包括具有压力保护和故障诊断功能的部件。在其控制机构中如果按其制动能量的传输方式制动系统又可分为:机械式、液压式、气压式和电磁式(同时采用两种以上传能方式的制动系统可称为组合式制动系统,如气顶油等)。 制动系统是影响汽车行驶安全性的重要部分,通常其应具备以下功能:可以降低行驶汽

基于MATLAB的汽车制动系统设计与分析软件开发.

基于MAT LAB 的汽车制动系统 3 设计与分析软件开发 孙益民(上汽汽车工程研究院 【摘要】根据整车制动系统开发需要, 利用MAT LAB 平台开发了汽车制动系统的设计和性能仿真软件。 该软件用户界面和模块化设计方法可有效缩短开发时间, 提高设计效率。并以上汽赛宝车为例, 对该软件的可行性进行了验证。 【主题词】制动系汽车设计 统分成两个小闭环系统, 使设计人员更加容易把 1引言 制动性能是衡量汽车主动安全性的主要指标。如何在较短的开发周期内设计性能良好的制动系统一直是各汽车公司争相解决的课题。 本文拟根据公司产品开发工作需要, 利用现有MA T LAB 软件平台, 建立一套面向设计工程师, 易于调试的制动开发系统, 实现良好的人机互动, 以提高设计效率、缩短产品开发周期。 握各参数对整体性能的影响, 使调试更具针对性。 其具体实施过程如图1所示。 3软件开发

与图1所示的制动系统方案设计流程对应, 软件开发也按照整车参数输入、预演及主要参数确定, 其他参数确定和生成方案报告4个步骤实现。3. 1车辆参数输入 根据整车产品的定位、配置及总布置方案得出空载和满载两种条件下的整车质量、前后轴荷分配、质心高度, 轮胎规格及额定最高车速。以便获取理想的前后轴制动力分配及应急制动所需面临的极限工况。 3. 2预演及主要参数确定 在获取车辆参数后, 设计人员需根据整车参数进行制动系的设计, 软件利用MAT LAB 的G U I 工具箱建立如图2所示调试界面。左侧为各主要参数, 右侧为4组制动效能仿真曲线, 从曲线可以查看给定主要参数下的制动力分配、同步附着系数、管路压力分配、路面附着系数利用率随路况的变化曲线, 及利用附着系数与国标和法规的符合现制动器选型、性能尺寸调节, 查看液压比例阀、感载比例阀、射线阀等多种调压工况的制动效能, 并通过观察了 2汽车制动系统方案设计流程的优化 从整车开发角度, 制动系统的开发流程主要包括系统方案设计、产品开发和试验验证三大环节。制动系统的方案设计主要包含结构选型、参数选择、性能仿真与评估, 方案确定4个环节。以前, 制动系统设计软件都是在完成整个流程后, 根据仿真结果对初始设计参数修正。因此, 设计人员往往要反复多次方可获得良好的设计效果, 而且, 在调试过程中, 一些参数在特定情况下的相互影响不易在调试中发现, 调试的尺度很难把握。 本文将整车设计流程划分为两个阶段:主要参数的预演和确定、其他参数的预演和参数确定。即根据模块化设计思想, 将原来一个闭环设计系 收稿日期:2004-12-27 3本文为上海市汽车工程学会2004年(第11届学术年会优秀论文。

城市轨道车辆制动系统设计毕业设计(开题报告)

毕业设计(论文) 开题报告 题目跨座式城市单轨交通车辆 制动系统设计 专业城市轨道车辆工程 班级08级城轨1班 学生戴学宇 指导教师赵树恩 重庆交通大学 2012年

1. 选题的目的和意义 随着我国城市化进程的加快,城市交通拥堵、事故频繁、环境污染等交通问题日益成为城市发展的难题。城市轨道交通以其大运量、高速准时、节省空间及能源等特点,已逐渐成为我国城市交通发展的主流。在城市轨道交通系统中,跨坐式单轨交通制式因其路线占地少,可实现大坡度、小曲率线径运行,且线路构造简单、噪声小、乘坐舒适、安全性好等优点而逐渐受到关注。 在我国城市轨道交通迅速发展的同时,其运营安全保障已成为目前面临的重要问题。车辆作为城市轨道交通运输的载体,由于速度快、载客量大、环境复杂,其运行安全状况不容乐观——车辆故障不断出现、事故常有发生,这些故障不但严重的影响到正常运营,一旦引发事故将会带来巨大的人员伤亡和经济损失。制动系统是城市轨道交通车辆的关键系统,直接影响其安全运行,为提高车辆运行的安全性,对制动系统的设计便显得尤为关键。 2.国内外研究现状及分析 基础制动装置是确保城市轨道交通车辆行车安全的措施之一。在分析城市轨道车辆运输特点基础上, 李继山,李和平,严霄蕙(2011)《盘形制动是城市轨道车辆基础制动装置的发展趋势》[1]结合城市轨道车辆基础制动装置具体类型,分析了城市轨道车辆踏面制动与盘形制动的优缺点, 用有限元模拟城轨车辆车轮 踏面温度场及热应力, 表明速度100 km/ h 及以上的城轨列车基础制动不适宜采用踏面制动, 指出盘形制动是城市轨道交通车辆基础制动的发展的必然趋势。丁锋(2004)在《城市轨道交通车辆制动系统的特点及发展趋势》[2]一文中介绍并分析了我国城市轨道交通车辆制动系统的形式、构成、技术特点及发展趋势。吴萌岭,裴玉春,严凯军(2005)在《我国城市轨道车辆制动技术的现状与思考》[3]中较为详细地回顾了我国城市轨道车辆制动系统的发展历程,分析了目前我国新型城市轨道车辆制动系统的特点,并与我国自主研发适用于高速动车组的同类型制动系统作了技术比较。分析了我国自主研发城市轨道车辆制动系统的技术基础,指出国内技术与产品和国外相比存在着系统理念、设计经验和系统可靠性方面的差距,同时指出自主研发城市轨道车辆制动系统存在的问题,并提出了建议。邹金财(2010)《一种轨道车辆空气制动系统优化及仿真》[4]利用Simulationx 仿真软件对工矿窄轨土渣车的空气制动系统的改进前以及改进方案进行仿真,在与试验真实值对比后得到了正确的结论,通过对该空气制动系统优化中仿真手段应用过程的阐述,为机车车辆系统优化方法提供了参考。师蔚,方宇(2010)《城

制动系统设计计算报告

编号:-DPJS-011制动系统设计计算报告 项目名称:A级三厢轿车设计开发项目代 号: 编制: 日期: 校对: 日期: 审核: 日期: 批准: 日期: 2011年03月

目录 1 系统概述. ............................................ 错误! 未定义书签 系统设计说明.......................... 错误! 未定义书签 系统结构及组成........................ 错误! 未定义书签 系统设计原理及规范....................... 错误! 未定义书签 2 输入条件. ............................................ 错误! 未定义书签 整车基本参数.......................... 错误! 未定义书签 制动器参数........................... 错误! 未定义书签 制动踏板及传动装置参数 ...................... 错误! 未定义书签 驻车手柄参数.......................... 错误! 未定义书签 3 系统计算及验证. ......................................... 错误! 未定义书签 理想制动力分配与实际制动力分配 .................. 错误! 未定义书签 附着系数、制动强度及附着系数利用率 ................. 错误! 未定义书签管路压强计算.......................... 错误! 未定义书签 制动效能计算.......................... 错误! 未定义书签 制动踏板及传动装置校核 ...................... 错误! 未定义书签 驻车制动计算.......................... 错误! 未定义书签 衬片磨损特性计算......................... 错误! 未定义书签 4 总结. ................................................ 错误! 未定义书签 5 制动踏板与地毯距离. ...................................... 错误! 未定义书签 参考文献. ............................................ 错误! 未定义书签

制动系统设计(DOC)

第七章 制动系统匹配与设计 第七章 制动系统设计 制动系是汽车的一个重要的组成部分。它直接影响汽车的行驶安全性。为了保证汽车有良好的制动效能,应该合理地确定汽车的制动性能及制动系结构。 7.1 制动动力学 7.1.1 稳定状态下的加速和制动 加速力和制动力通过轮胎和地表的接触面从车辆传送到路面。惯性力作用于车辆的重心,引起一阵颠簸。在这个过程中当刹车时,前后轮的负载各自增加或减少;而当加速时,情况正好相反。制动和加速的过程只能通过纵向的加速度a x 加以区分。下面,我们先来分析一辆双轴汽车的制动过程。 最终产生结果的前后轮负载ZV F '和Zh F ',在制动过 程中,图7.1随着静止平衡和制动减速的条件而变为: ()l h ma l l l mg F x V ZV --=' (7.1a ) l h ma l l mg F x V Zh +=' (7.1b ) 设作用于前后轴的摩擦系数分别为f V 和f h ,那么制动力为:

V ZV XV f F F '= (7.2a ) h Zh Xh f F F '=' (7.2b ) 图7.1双轴汽车的刹车过程 它们的总和便是作用于车辆上的减速力。 x Xh XV ma F F =+ (7.3) 对于制动过程,f V 和f h 是负的。如果要求两轴上的抓力相等,这种相等使 f V =f h =a x /g ,理想的制动力分配是: )/(])([gl h a l l g ma F x v x XV --= (7.4) )/(][gl h a gl ma F x v x Xh += (7.5) 这是一个抛物线F xh (F xv )和参数a x 的参数表现。在

轿车鼓式制动器设计毕业设计

第1章绪论 1.1制动系统设计的意义 汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。 通过查阅相关的资料,运用专业基础理论和专业知识,确定汽车制动器的设计方案,进行部件的设计计算和结构设计。使其达到以下要求:具有足够的制动效能以保证汽车的安全性;同时在材料的选择上尽量采用对人体无害的材料。 1.2制动系统研究现状 车辆在行驶过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐渐减小至零,对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们主要从三个方面来对制动过程进行分析和评价: (1)制动效能:即制动距离与制动减速度; 1

(2)制动效能的恒定性:即抗热衰退性; (3)制动时汽车的方向稳定性; 目前,对于整车制动系统的研究主要通过路试或台架进行,由于在汽车道路试验中车轮扭矩不易测量,因此,多数有关传动系!制动系的试验均通过间接测量来进行汽车在道路上行驶,其车轮与地面的作用力是汽车运动变化的根据,在汽车道路试验中,如果能够方便地测量出车轮上扭矩的变化,则可为汽车整车制动系统性能研究提供更全面的试验数据和性能评价。 1.3制动系统设计内容 (1)研究、确定制动系统的构成 (2)汽车必需制动力及其前后分配的确定 前提条件一经确定,与前项的系统的研究、确定的同时,研究汽车必需的制动力并把它们适当地分配到前后轴上,确定每个车轮制动器必需的制动力。 (3)确定制动器制动力、摩擦片寿命及构造、参数 制动器必需制动力求出后,考虑摩擦片寿命和由轮胎尺寸等所限制的空间,选定制动器的型式、构造和参数,绘制布置图,进行制动力制动力矩计算、摩擦磨损计算。 (4)制动器零件设计 零件设计、材料、强度、耐久性及装配性等的研究确定,进行工作图设计。 1.4制动系统设计要求 制定出制动系统的结构方案,确定计算制动系统的主要设计参数制动器主要参数设计和液压驱动系统的参数计算。利用计算机辅助设计绘制装配图 2

相关文档
最新文档