小学五年级下册基础奥数教程含答案(精品)

合集下载

小学五年级下册奥数题型分类讲义(附答案)

小学五年级下册奥数题型分类讲义(附答案)

小学五年级下册奥数题型分类讲义(附答案)图形问题专题1长方形、正方形的周长一、专题解析同学们都知道,长方形的周长=(长+宽)×2,正方形的周长=边长×4.长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长。

那么如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长呢?还需同学们灵活应用已学知识,掌握转化的思考方法,把复杂的图形转化为标准的图形,以便计算它们的周长。

二、精讲精练例题1】有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。

思路导航】根据题意,我们可以把每个正方形的边长的一半同时向左、右、上、下平移(如图b),转化成一个大正方形,这个大正方形的周长和原来5个小正方形重叠后的图形的周长相等。

因此,所求周长是18×4=72厘米。

操演11、右图由8个边长都是2厘米的正方形组成,求这个图形的周长。

2、右图由1个正方形和2个长方形组成,下方长方形长为50cm,求这个图形的周长。

3、有6块边长是1厘米的正方形,如例题中所说的这样重叠着,求重叠后图形的周长。

1例题2】一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。

现在这块木板的周长是多少厘米?思路导航】把截掉的192平方厘米分红A、B、C三块(如图),个中AB的面积是192-4×4=176(平方厘米)。

把A和B移到一同拼成一个宽4厘米的长方形,而此长方形的长就是这块木板剩下部分的周长的一半。

176÷4=44(厘米),现在这块木板的周长是44×2=88(厘米)。

练21、有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分恰好是一个正方形。

求这个正方形的周长。

2、有两个相同的长方形,长是8厘米,宽是3厘米,如果按下图叠放在一起,这个图形的周长是几何?3、有一块长方形广场,沿着它不同的两条边各划出2米做绿化带,剩下的部分仍是长方形。

五年级数学下册奥数50题、附解析及参考答案

五年级数学下册奥数50题、附解析及参考答案

五年级数学下册奥数50题、附解析及参考答案一、工程问题1.甲乙两个水管单独开,注满一池水需要20小时和16小时。

丙水管单独开,排一池水要10小时。

如果水池没水,同时打开甲乙两水管,5小时后再打开排水管丙,问水池注满还需要多少小时?答:甲水管每小时注入1/20的水量,乙水管每小时注入1/16的水量,丙水管每小时排出1/10的水量。

在5小时内,甲乙两水管共注入了5/20+5/16=19/40的水量,水池中水量为19/40.再打开丙水管后,每小时水池中的水量减少1/10-1/20-1/16=3/80,所以注满整个水池还需要(1-19/40)/(3/80)=16小时。

2.修一条水渠,甲队单独修需要20天完成,乙队单独修需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低。

甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?答:设甲队合作x天,乙队合作XXX,则有以下两个方程:20x/(5/4)+30y/(10/9)=1.(甲、乙两队合作完成1个单位的工程)20x/(5/4)+(30-y)/(1/3)=16.(甲、乙两队合作16天完成工程)解得x=8,y=6,所以两队需要合作8天。

3.一件工作,甲、乙合做需4小时完成,乙、XXX做需5小时完成。

现在先请甲、XXX做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?答:设甲、乙、丙每小时完成的工作量分别为a、b、c,则有以下三个方程:2(a+c)+6b=1.(甲、乙、丙合作完成1个单位的工作)4(a+b)=1.(甲、乙合作完成1个单位的工作)5(b+c)=1.(乙、丙合作完成1个单位的工作)解得a=1/20,b=1/60,c=1/12,所以乙单独做完这件工作需要6b=6/60=1/10小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

高斯小学奥数五年级下册含答案第01讲_圆与扇形初步

高斯小学奥数五年级下册含答案第01讲_圆与扇形初步

第一讲圆与扇形初步- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -圆是宇宙中最简单的图形:天上的太阳、月亮、行星和恒星,它们在太空中呈现圆和球形;地上的滚滚车轮,家里的盘子、碗、钟表也都是圆的.在自然界中,没有像圆那样美的图形了.圆匀称、饱满、光滑、对称,常用来象征吉祥如意,表达人们的良好愿望:圆满、圆梦、团圆……古希腊毕达哥拉斯学派认为:“一切立体图形中最美的是球体,一切平面图形中最美的是圆形”.他们认为,圆是神创造出来的最完美的东西.在纸上画一点O ,并在纸上找到所有与O 距离为1的点,如A 、B 、C 、D 、E 、F 、G ……等.这些点合到一起,就构成一个圆..点O 就称为该圆的圆心..;圆心与圆周上任意一点的连线(例如线段OA 、OB 、OC 、OD 等)叫半径..;通过圆心,并且两端都在圆上的线段叫直.径..直径长恰好是半径长的两倍.圆心确定了圆所在的位置,半径长度确定了圆的大小.一个圆只要确定了“圆心”和“半径”,就能完全确定下来.圆周长与直径的比值是一个固定不变的数,我们称之为圆周率...,用希腊字母π表示.很早的时候,人们就利用滚圆法知道了π大约是3.随着科学的进步,现在我们已经知道圆周率是一个无限不循环小数,无法写成分数的形式.在实际问题的计算中,常常取近似值3.14.直径长度通常用字母d 来表示,半径长度通常用r 来表示,圆周长通常用C 来表示.于是有圆周长公式:习惯上,圆面积用字母S 来表示.它的计算公式为:这一计算公式可以通过圆的周长公式推导出来.大家仔细观察下图,想想看应该如何推导?练一练下面的题目中,π都取为3.14.1.已知一个圆的半径为3厘米,那么这个圆的周长为_______厘米;2.已知一个圆的周长为50.24厘米,那么这个圆的直径为_______厘米;3.已知一个圆的半径为3厘米,那么这个圆的面积为_______平方厘米;4.已知一个圆的面积为78.5平方厘米,那么这个圆的半径为_______厘米.扇形是指圆上被两条半径和半径之间的弧所包围的部分.其中,圆的半径也称为扇形的半径,而两条半径所成的夹角称为扇形的圆心角.扇形是圆的一部分.要想知道扇形的弧长与面积,只要知道它是所在圆的几分之几就可以.它是圆的几分之几,它的弧长就是圆周长的几分之几,它的面积也同样就是圆面积的几分之几.需要注意的是,扇形的弧长不是它的周长...........,扇形的周长还必须加上两条半径!练一练5. 已知一个扇形的半径是2厘米,圆心角是45°,那么这个扇形所在圆的面积是_______平方厘米;扇形的圆心角占圆周角的____分之____,它的面积占圆面积的____分之____,这个扇形的面积是______.6. 已知一个扇形的半径为6厘米,圆心角为120°,那么这个扇形的弧长为________厘米,周长是_______厘米;面积为_______平方厘米.7. 已知一个扇形的半径为4厘米,面积为12.56平方厘米,它的弧长等于_______厘米,周长等于______厘米.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题1.有一个圆形花坛,直径为20米,一只小蜜蜂沿着花坛外周飞了一圈,请问它飞了多少米?如果小蜜蜂沿着图中的虚线,飞一个“8”字,路线构成过花坛圆心的两个小圆,那么这次它飞了多少米?(π取3.14) 分析:小圆的直径是多少?练习1.半径分别为1、2、3、4厘米的四个圆的周长之和是多少厘米?(π取3.14)例题2.如图,在一块面积为28.26平方厘米的圆形铝板中,裁出了7个同样大小的圆铝板.问:余下的边角料的总面积是多少平方厘米?(π取3.14) 分析:大圆的半径是多少?小圆的半径又是多少?练习2.如图,在一块面积为12.56平方厘米的纸板中,裁出了2个同样大小的圆纸板.问:余下的纸板的总面积是多少平方厘米?(π取3.14)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -一个规则的圆或扇形直接利用公式就可以求解,但一个不规则图形就没那么容易.在求解之前,先得当一回“裁缝”,将图形拆分、重组,然后再利用规则图形的相加或相减来进行求解.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3.如图,图中的三角形都是等腰直角三角形,求各图中阴影部分的面积.(π取3.14)分析:经过适当的分割和移动,图中不规则的阴影部分可以拼成规则的几何图形.练习3.图中的4个圆的圆心恰好是正方形的4个顶点,如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?(π取3.14)444例题4.如图是一个直径是3厘米的半圆,AB 是直径.如图所示,让A 点不动,把整个半圆逆时针转60°,此时B 点移动到C 点.请问:图中阴影部分的面积是多少平方厘米?(π取3.14)分析:图(2)中整个图形的面积是多少,空白部分的面积又是多少?先列出算式,看看有没有可以抵消的部分.练习4.下图(1)是一个半径为3厘米的半圆,AB 是直径.如图(2)所示,让A 点不动,把整个半圆顺时针转30°,此时B 点移动到C 点.请问:图中阴影部分的面积是多少平方厘米?小知识圆有很多有意思的性质:➢ 圆心到圆上的每个点的距离都相等,这是圆的定义.➢ 每条经过圆心的直线都把圆平分为两半,都是圆的对称轴,因而圆有无数条对称轴. ➢ 圆绕着圆心任意旋转,所得的图形与原来的圆重合.➢ 所有的圆之间都可以通过缩放相互转换,因而圆只有唯一一种形状,任意两个圆都是相似的.➢ 所有平面图形在周长相同的情况下,圆的面积是最大的.因而圆也被称为平面上最完美的图形.A BB (1)(1) A A B B (2)例题5.图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?分析:图中的阴影部分虽然很对称,但并不规则,无法用公式直接计算.那能不能通过恰当的割补将其变为一个规则图形进行求解呢?同学们不妨动手试一试.- - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例6. 右图是由一个圆与一个直角扇形重叠组成的,其中圆的直径与扇形的半径都是4.图中阴影部分的面积是多少?(π取3.14)分析:阴影部分的两个小弓形可以拼到哪里?圆的历史圆形,是一个看来简单,实际上十分奇妙的图形.古代人最早是从太阳、阴历十五的月亮得到圆的概念的.在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆.到了陶器时代,许多陶器都是圆的.圆的陶器是将泥土放在一个转盘上制成的.当人们开始纺线,又制出了圆形的石纺锤或陶纺锤.古代人还发现搬运圆的木头时滚着走比较省劲.后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多.约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆形的木盘.大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子.会作圆,但不一定就懂得圆的性质.古代埃及人就认为:圆,是神赐给人的神圣图形.一直到两千多年前我国的墨子(约公元前468~前376年)才给圆下了一个定义:圆,一中同长也.意思是说:圆有一个圆心,圆心到圆周的长都相等.这个定义比希腊数学家欧几里得(约公元前330~前275年)给圆下定义要早100年.任意一个圆的周长与它直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示.它是一个无限不循环小数,π=3.1415926535…但在实际运用中一般只取它的近似值,即π≈3.14.如果用C表示圆的周长:C=πd或C=2πr.《周髀算经》上说“周三径一”,把圆周率看成3,但是这只是一个近似值.美索不达米亚人在作第一个轮子的时候,也只知道圆周率是3.魏晋时期的刘徽于公元263年给《九章算术》作注时,发现“周三径一”只是圆内接正六边形周长和直径的比值.他创立了割圆术,认为圆内接正多边形边数无限增加时,周长就越逼近圆周长.他算到圆内接正3072边形的圆周率,π=3927/1250.刘徽把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就.祖冲之(公元429~500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率.在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值.现在有了电子计算机,圆周率已经算到了小数点后12400亿位了.作业1. 面积为78.5平方厘米的圆,周长是多少厘米?(π取3.14)作业2. 一个半径为3分米的扇形,面积为6.28平方分米,那么它的圆心角是多少度?(π取3.14) 作业3. 如图,三角形ABC 为等边三角形,边长为2,D 为BC 边中点.分别以B 、C 为圆心、1为半径作两个扇形(即图中阴影部分).那么阴影部分的面积是多少?(π取近似值3.14,结果保留2位小数) 作业4. 如图,ABCD 是正方形,且F A =AD =DE =1,阴影部分的面积是多少?(π取3.14)作业5. 图中阴影部分的面积是多少平方厘米?(图中长度单位为厘米,π取3.14)第4题图第3题图第一讲 圆与扇形初步例题1.答案:62.8米详解:小圆半径是5米,飞行路线为两个小圆周长,所以是2π5262.8⨯⨯=米.无论小圆有多少个,大小是否相等,只要所有小圆的直径之和等于大圆,那么它们的周长之和也等于大圆. 例题2.答案:6.28平方厘米详解:228.26 3.143÷=,大圆半径是3厘米.小圆半径是1厘米,所以边角料面积为228.2671 3.14 6.28-⨯⨯=平方厘米.例题3.答案:4;4.56;8详解:(1)割补法,将右边的弓形补到左边,两块阴影面积之和恰好为等腰直角三角形面积的一半.即44224⨯÷÷=.(2)割补法,如图,将图中的叶子形从中间分成面积相等的两个小弓形,阴影部分可拼成一个完整弓形,面积为1144 3.1444 4.5642⨯⨯⨯-⨯⨯=. (3)割补法.正好是把第二问的过程反过来,把两个小弓形补到空白部分,阴影部分面积之和正好是等腰直角三角形的面积,即4428⨯÷=.例题4.答案:4.71详解:图中阴影部分面积为整个图形面积减去半圆的面积,而整个图形面积为一个半圆面积与一个圆心角为60°的扇形面积之和.因此阴影面积等于圆心角为60°的扇形面积,即21π3 4.716⨯⨯=.例题5.答案:8平方厘米详解:如图,阴影部分总面积等于虚边正方形面积,该正方形的对角线长为圆直径的两倍,等于4厘米,所以面积为平方厘米.例题6.答案:4.56详解:如图,把两个阴影部分的小弓形补到空白部分之后,可以看出阴影部分的面积之和等于大扇形的面积减去圆中正方形的面积.21π4442 4.564⨯⨯-⨯÷=.4428⨯÷= 444练习1. 答案:62.8简答:()1234 3.14262.8+++⨯⨯=.练习2. 答案:6.28简答:大圆的面积是12.56,可求出大圆的半径是2,那么小圆的半径是1,面积是3.14.阴影部分的面积是12.56 3.14 3.14 6.28--=.练习3. 答案:10.28简答:图中的阴影部分恰好可以拼成一个边长为2的正方形和两个半径为1的圆,22 3.1411210.28⨯+⨯⨯⨯=.练习4. 答案:9.42简答:类似例题4的分析,可知阴影部分的面积与30°的扇形面积是相同的,都是21π69.4212⨯⨯=.作业1.答案:31.4 简答:278.5 3.1425r =÷=,5r =.2 3.14531.4C =⨯⨯=厘米. 作业2. 答案:80简答:扇形所在大圆的面积是23.14328.26⨯=,圆心角是6.283608028.26⨯=度. 作业3. 答案:1.05简答:阴影部分是两个60°的扇形,面积是213.1412 1.056⨯⨯⨯≈. 作业4. 答案:0.6075简答:连接BD ,将最左边的弓形补过来.阴影部分的面积就是平行四边形BDEC 的面积减去扇形的面积.24511 3.141=0.6075360S =⨯-⨯⨯n 影. 作业5. 答案:12平方厘米 简答:阴影部分可以合成三个斜边是4的等腰直角三角形,面积是344412⨯⨯÷=平方厘米;。

高斯小学奥数五年级下册含答案第07讲_位值原理

高斯小学奥数五年级下册含答案第07讲_位值原理

第七讲位值原理在十进制中,每个数都是由0~9这十个数字中的若干个组成的,而每个数字在数中都占一个数位,数的大小是由数字和数字所处的数位两方面共同决定的.比如一个数由1、2、3三个数字组成,我们并不能确定这个数是多少,因为1、2、3能组成很多数,例如213、321、123、…….但如果说1在百位,2在十位,3在个位这样去组成一个数,就能很清楚地知道这个数应该是123.从这个例子可以看出,一个数的大小由数位和数位上的数字共同决定,一个数字在不同的数位上表示不同的大小:个位上的数字代表几个1;十位上的数字代表几个10;百位上的数字代表几个100;……那么可以利用这种办法将一个多位数拆开,例如123110021031=⨯+⨯+⨯,这个结论被称为位值原理.有的时候,为了分析问题方便,我们并不将多位数逐位展开,而是采用整体展开的办法,如2345623100045106=⨯+⨯+,我们将在后面的例题中看到这些方法的具体应用.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.一个两位数等于它的数字和的6倍,求这个两位数.练习1.一个两位数等于它的数字和的7倍,这个两位数可能是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -通常我们在利用位置原理的过程中,要利用字母来表示数,所以同学们一定要熟练和掌握这种表示方法,并能利用位值原理将字母表示的数展开.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1231个100 2个10 3个1例题2.在一个两位数的两个数字中间加一个0,所得的三位数比原数大8倍,求这个两位数.a b.接下来分析:我们可以将两位数设为ab,如果a、b中间加一个0,这个数就变成了0我们就可以将新三位数和原两位数用位值原理展开,然后解方程求出两位数.练习2在一个两位数的两个数字之间加一个0,所得的三位数是原数的6倍,求这个两位数.例题3.一个三位数,把它的个位和百位调换位置之后,得到一个新的三位数,这个新三位数和原三位数的差的个位数字是7.试求两个数的差.分析:设原来的三位数是abc,个位百位调换位置后,得到的新的三位数就是cba.这两个数的差有什么样的性质?练习3.把一个三位数颠倒顺序后得到一个新数,这个数比原来数大792,那么原来的三位数最大可以是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在一些位数较多的位值原理问题中,如果将每一个数位都拆开,再进行分析,往往会出现太多的字母,让人觉得无从下手.这个时候我们就要将多位数中的一部分作为一个整体来考虑,这样就能避免不必要的计算,从而更轻松地解决问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题4.若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式学习好勤动脑勤动脑学习好⨯=⨯58中,“学习好勤动脑”所表示的六位数最小是多少?分析:如果本题我们逐位展开,那么题目会变得十分复杂.但注意到题目中的两个六位数都是由“学习好”和“勤动脑”两部分构成,我们可以将这两部分作为展开的最小单位,那这两个六位数该展开成怎样的算式呢?练习4.若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式用微信交作业交作业用微信⨯=⨯25中,“用微信交作业”所表示的六位数最小是多少?例题5.在等式“=⨯÷祝福母亲节母亲节祝福五月”中,相同的汉字代表相同的数字,不同汉字表示不同数字,其中“五”代表“5”,“月”代表“8”,那么“祝福母亲节”所代表的五位数是多少?分析:在本题中,我们应该把什么作为展开的最小单位呢?例题6.在一个三位数的百位和十位之间加入一个数字后,得到的四位数恰好是原三位数的9倍,那么这样的三位数最小是多少?最大是多少?分析:假设原来的三位数是abc,在百位和十位之间加入一个数字d,得到的四位数就是adbc.那我们该如何进行展开才能简化计算呢?神奇的杠杆上图是一杆秤,平时如果陪家长买过菜的同学应该见到过,秤杆的一边是一个秤砣,另一边是要称重的物体,仅仅凭借移动秤砣在撑杆上的位置,就可以与很多重量不同的物品保持平衡,从而根据秤杆上的刻度来确定物品的重量.这也与位值原理有类似的地方,秤砣放在不同的位置,可以与不同的重量保持平衡.而欲使杠杆保持平衡,只要满足一个简单的比例式就可以了: 支点与秤砣距离物品重量支点与物品距离秤砣重量. 所以,阿基米德曾经说过:“给我一个支点,我可以撬起地球!”这句话不仅是激励我们奋进的格言,更是有科学根据的.作业1. (1)851___100___10___1=⨯+⨯+⨯;(2)55984___1000___10___1=⨯+⨯+⨯;(3)___100___10___1nba =⨯+⨯+⨯;(4)352___10000___100___1=⨯+⨯+⨯下除. 作业2. 在一个两位数的两个数字中间加一个0,所得到的三位数是原数的7倍,这个两位数是多少?作业3. 将一个两位数的个位数字和十位数字交换位置,得到一个新的两位数.它比原来的两位数小54,那么原来的两位数最小是多少?作业4. 将一个两位数的个位数字和十位数字交换位置,得到一个新的两位数.它与原来的两位数的和是187,那么原来的两位数是多少?作业5. 在等式“6⨯=雪含思青山映青山映雪含思”中,相同汉字代表相同数字,不同汉字代表不同数字.那么,“青山映雪含思”这个六位数等于多少?第七讲 位值原理例题1. 答案:54 简答:设这个两位数为ab ,根据题意得()106a b a b +=+,化简得45a b =,由于a 、b 都是0~9之间的数字且a 不能为0,所以只有a =5、b =4.例题2. 答案:45 简答:由题意,09a b ab =⨯,即:()100109a b a b +=+⨯,化简得:45b a =.由于a 是1至9中的某个数字,b 是0至9中的某个数字,那么只能是4a =,5b =.因此原来的两位数就是45.例题3. 答案:297 简答:()()100101001099abc cba a b c c b a a c -=++-++=-,所以差为99的倍数,并且差的个位是7,所以两数差为:297.例题4. 答案:410256简答:整体考虑,设学习好为x ,勤动脑为y .则有()()1000510008x y y x +⨯=+⨯,4992x =7995y .约39得128x =205y ,因为6个数字不能重复,经检验只有410256和615384两个符合要求.而问题求的是最少,不要被阴到哦!例题5. 答案:24390简答:设祝福为a ,.母亲节.为b ,则有:85ab ba ⨯=⨯,即:800085005a b b a +=+,化简得:654a b =,并且a ,b 中没有重复数字,尝试得知:五位数是24390.例题6. 答案:125,675简答:根据分析,设bc 为x ,由位值原理得:()10001009100a d x a x ++=⨯+,化简得:()252a d x ⨯+=.其中x 有25、50、75三种情况.当25x =时,2a d +=,那么当1a =时,三位数最小,为125;当2a =时,三位数最大,为225. 当50x =时,4a d +=,那么当1a =时,三位数最小,为150;当4a =时,三位数最大,为450. 当75x =时,6a d +=,那么当1a =时,三位数最小,为175;当6a =时,三位数最大,为675. 综上所述,可知所有这样的三位数中,最小的是125,最大的是675.练习1. 答案:21,42,63,84 简答:设这个两位数为ab ,根据题意得()107a b a b +=+,化简得2a b =,由于a 、b 都是0~9之间的数字且a 不能为0,所以这个两位数可能是21、42、63或84.练习2. 答案:18 简答:由题意,06a b ab =⨯,即:()100106a b a b +=+⨯,化简得:8b a =.由于a 是1至9中的某个数字,b 是0至9中的某个数字,那么只能是1a =,8b =.因此原来的两位数就是18.练习3. 答案:199简答:设原来的三位数为abc ,根据题意有792cba abc -=,化简后得到()99792c a -=,8c a -=.那么a 和c 只能分别是1和9,b 的取值是任意的.那么原来的三位数最大就是199.练习4. 答案:476190简答:设“用微信”为x ,“交作业”为y ,根据题意有2000250005x y y x +=+,化简后得95238x y =.考虑到x 和y 都是三位数,且没有重复数字,可求出x 最小是476,y 最小是190.作业1. 答案:(1)8、5、1;(2)55、98、4;(3)n 、b 、a ;(4)3、下5、除2简答:略.作业2. 答案:15 简答:70ab a b ⨯=,利用位值原理展开解方程即可.作业3. 答案:71 简答:54ab ba -=,化简后有6a b -=,最小是71.作业4.答案:89或98.简答:187ab ba +=,化简后有17a b +=,只能是89. 作业5. 答案:857142 简答:600061000⨯+⨯=⨯+雪含思青山映青山映雪含思,化简后有857142⨯=⨯雪含思青山映,那么有142=雪含思,=857青山映.。

新人教版五年级小学数学全册奥数(含答案)

新人教版五年级小学数学全册奥数(含答案)
第2讲 平均数(二)
精讲精练
【例题1】小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分。问这是他第几次测验?
练习1:
1.老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。如果师生合起来算,正好平均每人做了7朵。求有多少个同学在做花?
2.一位同学在期中测验中,除了数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?
练习5:
1.下面三个正方形的面积相等,剪去阴影部分的面积也相等,求原来正方形的周长发生了什么变化?(单位:厘米)
2.下面是一个零件的平面图,图中每条短线段都是5厘米,零件长35厘米,高30厘米。这个零件的周长是多少厘米?
三、课后作业
1.有6块边长是1厘米的正方形,如例题中所说的这样重叠着,求重叠后图形的周长。
【例题5】有一个周长是72厘米的长方形,它是由三个大小相等的正方形拼成的。一
1.五个同样大小的正方形拼成一个长方形,这个长方形的周长是36厘米,求每个正方形的面积是多少平方厘米?
2.有一张长方形纸,长12厘米,宽10厘米。从这张纸上剪下一个最大的正方形后,剩下部分的周长是多少厘米?
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?
下面的数量关系必须牢记:
平均数=总数量÷总份数 总数量=平均数×总份数 总份数=总数量÷平均数
二、精讲精练
【例题1】有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。一箱苹果多少个?
练习1:
1.一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。问:甲、丁各得多少分?

人教版【精选】小学五年级下册数学奥数题带答案图文百度文库

人教版【精选】小学五年级下册数学奥数题带答案图文百度文库

人教版【精选】小学五年级下册数学奥数题带答案图文百度文库一、拓展提优试题1.如图,7×7的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是.12533421542.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.3.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.4.幼儿园给小朋友派礼物,如果有2人各派4个,其余各派3个,则还剩余11个,如果4人各派3个,其余各派6个,则剩余10个,问一共有多少件礼物?5.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.6.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出元.7.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.8.某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心块.9.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.10.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.11.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.12.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a﹣b×c的值是.13.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分(甲和乙)的面积差是5.04,则S=.△ABC14.(7分)如图,按此规律,图4中的小方块应为个.15.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.【参考答案】一、拓展提优试题1.解:首先理解题目,找出唯一填法的空格,例如第一行第一个1,与其唯一相邻的空白空格必须为1,以此类推,第二行第一个5也具有唯一相邻空格.逆推得出唯一图形.相加求和为150.故答案为150.2.解:如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知S ABCM=S CDEN=S EF AK=六边形面积,根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,△AKP,△CMQ,△ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ,=,则=,=,由鸟头定理可知道3×KP×AP=RP×PQ,综上可得:PR=2KP=RE,那么由三角形AEK是六边形面积的,且S△APK ,=S△AKES△APK=S ABCDEF=47,所以阴影面积为47×3=141故答案为141.3.解:一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,(1)当N=x8,则九个约数分别是:1,x,x2,x3,x4,x5,x6,x7,x8,其中有3个约数A、B、C且满足A×A=B×C,不可能.(2)当N=x2y2,则九个约数分别是:1,x,y,x2,xy,y2,x2y,xy2,x2y2,其中有3个约数A、B、C且满足A×A=B×C,①A=x,B=1,C=x2,则x+1+x2=79,无解.②A=xy,B=1,C=x2y2,则xy+1+x2y2=79,无解.③A=xy,B=x,C=xy2,则xy+x+xy2=79,无解.④A=xy,B=x2,C=y2,则xy+x2+y2=79,解得:,则N=32×72=441.⑤A=x2y,B=x2y2,C=x2,则x2y+x2y2+x2=79,无解.故答案为441.4.【分析】假设第一次每人都派3个,则还剩余2×(4﹣3)+11=13个,第二次如每人都派6个,同时少了4×(6﹣3)﹣10=2个,就是每人多派6﹣3=3个,则需要13+2=15个礼物,据此可求出人数,进而可求出礼物数.解:[2×(4﹣3)+11+4×(6﹣3)﹣10]÷(6﹣3)=[2×1+11+4×3﹣10]÷3=[2+11+12﹣10]÷3=15÷3=5(人)2×4+(5﹣2)×3+11=8+3×3+11=8+9+11=28(件)答:一共有28件礼物.5.解:列举如下:1=1;2=2;3=1+2;4=2+2;5=5;6=1+5;7=2+5;8=8;9=9;10=10;11=1+10;12=2+10;13=5+8;14=7+7;15=5+10;16=8+8;17=8+9;18=8+10;19=9+10;通过观察,可看出从1、2、3、…、9、10中选出若干个数分别为{1,2,5,8,9,10};就能使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.故至少需要选出6个数.故答案为6.6.解:根据分析,从甲开始,乙欠甲1元,故甲应得1元,甲欠丁4元,故甲应还4元;清算时,甲还应拿出4﹣1=3元,此时甲的账就结清了;再看看丁的账,丁得到甲的4元后,还给丙3元,即可结清;再看看丙的账,丙得到丁的3元后,还给乙2元,丙的账也清了;再看看乙的账,乙得到丙的2元后,还给甲1元,乙的账也结清;综上,甲只须先拿出4元还给丁,后得到乙的1元,故而甲总共只须拿出3元.故答案是:3.7.解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.8.设大合x盒,小盒y盒,依题意有方程:85.6x+46.8(9﹣x)=654解方程得x=6,9﹣6=3.所以大合6盒,小盒3盒,共有32×6+15×3=237块.答:可得点心237块.9.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.10.解:依题意可知:要满足是六合数.分为是3的倍数和不是3的倍数.如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240.如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可.大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;2010是(1,2,3,5,6倍数)不符合题意;2016是(1,2,3,4,6,7,8,9倍数)满足题意.2016<2240;故答案为:201611.解:根据分析:这个数除以2,3,4,5均余1,那么这个数减去1后就能同时被2,3,4,5整除;2,3,4,5的最小公倍数是60,则这个数为60的倍数加1.又因为这个数大于1,所以这个数最小是61.故答案为:61.12.解:依题意可知:3a+2与17是对立面,3a+2=17,所以a=5;7b﹣4与10是对立面,7b﹣4=10,所以b=2;a+3b﹣2c与11的对立面,5+3×2﹣2c=11,所以c=0;所以a﹣b×c=5故答案为:513.解:根据分析,S△BDC=S△EBC⇒S△DOB=S△EOC,∴S甲﹣S乙=(S甲+S△DOB)﹣(S乙+S△EOC)=5.04,又∵S△BDC :S△DEC=BC:DE=2:1即:S△BDC=2S△DEC∴S四边形DECB =3S△DEC;S△ADE=S△DEC∴S△ABC =S四边形DECB+S△ADE=4S△DEC,设S△DEC =X,则S△BDC=2X,故有2X﹣X=5.04,∴X=5.04,S△ABC =4S△DEC=4X=4×5.04=20.16故答案是:20.1614.解:因为图1中小方块的个数为1+2×3=7个,图2中小方块的个数为1+(1+2)+3×4=16个,图3中小方块的个数为1+(1+2)+(1+2+3)+4×5=30个,所以图4中小方块的个数为1+(1+2)+(1+2+3)+(1+2+3+4)+5×6=50个,故答案为:50.15.解:由定义可知:x@1.3=11.05,(x+5)1.3=11.05,x+5=8.5,x=8.5﹣5=3.5故答案为:3.5。

高斯小学奥数五年级下册含答案第05讲_计数综合

高斯小学奥数五年级下册含答案第05讲_计数综合

第五讲计数综合从三年级开始到现在,我们已经学了很多有关计数的讲次,其中包括枚举法、加乘原理、排列组合、容斥原理等.我们先来做一个简单的小结和复习.枚举法是万能的方法,只要有足够多的时间和精力.并且往往在一些复杂棘手的题目中,别的方法都不能适用,此时就能体会到枚举法的“威力”.使用枚举法时一定要注意有序思考..... 加法原理强调的是分类,计数时我们只需选择其中的某一类即可以满足要求,类与类之间可以相互替代.乘法原理强调的是分步,每一步只是整个事情的一部分,必须全部完成才能满足结论,缺一不可.在乘法原理中,步骤顺序的安排往往非常重要.排列与组合:排列的计算公式由乘法原理推导而来,组合的计算公式由排列公式推导而来.从n 个不同的元素中取出m 个(m n ≤),并按照一定的顺序排成一列,其方法数叫做从n 个不同元素中取出m 个的排列数,记作mn A .()()()()!121!mn n A n n n n m n m ==⨯-⨯-⨯⨯-+-从n 个不同元素中取出m 个(m n ≤)作为一组(不计顺序),可选择的方法数叫做从n 个不同元素中取出m 个的组合数,记作mn C .()()()()()121!121mmnnn n n n m A C m m m m ⨯-⨯-⨯⨯-+==⨯-⨯-⨯⨯在运用排列组合时,有特殊要求的我们往往优先考虑,有时还会用到“捆绑法”和“插空法”.我们今天主要来学习计数中的分类思想,以及正面分类和反面排除的合理选择. 分类讨论是一种重要的数学思想方法,当问题所给对象不能进行统一研究时,就需要对研究的对象进行分类,将整体问题划分为局部问题,把复杂问题转化为单一问题,然后分而治之、各个击破,最后综合各类的结果得到整个问题的解答.例题1.五张卡片上分别写有0、1、2、3、5,每张卡片各用一次可以组成一些五位数.其中5的倍数有多少个?4的倍数有多少个?分析:一个数是5的倍数,它要满足什么条件?4的倍数呢?练习1.五张卡片上分别写有0、1、2、3、5,每张卡片只能用一次可以组成多少个三位偶数?例题2.(1)用2个1、2个2和1个3可以组成多少个不同的五位数?(2)用1个0、2个1和2个2可以组成多少个不同的五位数?(3)用1个0、2个1和2个2可以组成多少个不同的四位数?分析:先选好1的位置,再选好2的位置,最后选好3的位置,就可以组成五位数.那么有多少种不同的选法?练习2.(1)用1个1、1个2、2个3可以组成多少个不同的四位数?(2)用1个0、1个2、2个3可以组成多少个不同的四位数?(3)用1个0、1个2、2个3可以组成多少个不同的三位数?例题3.数1447、1225、1031有某些相同的特点,每一个数都是以1为首的四位数,且每个数恰好只有两个数字相同(1112,1222,1122这样的数不算),这样的数共有多少个?分析:根据题意可知这样的四位数由三种数字组成,其中有一种数字出现了2次.那么可以根据这个数字所在的数位来分类.练习3.用1、2、3、4这4个数字组成四位数,至多允许有1个数字重复一次.例如1234、1233和2434是满足条件的,而1212、3331和4444就是不满足条件的.那么,所有这样的四位数共有多少个?例题4和2468相加至少会发生一次进位的四位数有多少个?分析:和2486相加发生进位有好多种情况,比如发生一次进位、发生两次进位、发生三次进位等等,不同的类型太多了.这时不妨考虑下反面.练习4.和250相加至少会发生一次进位的三位数有多少个?例题5.有10名外语翻译,其中5名是英语翻译,4名日语翻译,另外1名英语和日语都很精通,从中找出7人,使他们可以组成两个翻译小组,其中4人翻译英语,另3人翻译日语,这两个小组能同时工作,则不同的分配方案共有多少种?分析:这个英语和日语都很精通的人很麻烦,应该优先考虑他.例题6.将右图中的“○”分别用四种颜色染色,只要求有实线段连接的两个相邻的“○”都涂成不同的颜色,共有多少种涂法?如果还要求虚线段连接的两个“○”也涂成不同的颜色,共有多少种涂法?分析:染色时顺序很重要,要遵循“前不影响后”的原则.四色定理四色定理指出每个可以画出来的无飞地地图(飞地是指与本土不相连的土地)都可以至多用4种颜色来上色,而且没有两个相邻的区域会是相同的颜色.被称为相邻的两个区域是指它们共有一段边界,而不是一个点.这一定理最初是由Francis Guthrie在1853年提出的猜想.很明显,3种颜色不会满足条件,而且也不难证明5种颜色满足条件且绰绰有余.但是,直到1977年四色猜想才最终由Kenneth Appel 和Wolfgang Haken证明.他们得到了J. Koch在算法工作上的支持.证明方法将地图上的无限种可能情况减少为1,936种状态(稍后减少为1,476种),这些状态由计算机一个挨一个的进行检查.这一工作由不同的程序和计算机独立的进行了复检.在1996年,Neil Robertson、Daniel Sanders、Paul Seymour和Robin Thomas使用了一种类似的证明方法,检查了633种特殊的情况.这一新证明也使用了计算机,如果由人工来检查的话是不切实际的.四色定理是第一个主要由计算机证明的理论,这一证明并不被所有的数学家接受,因为它不能由人工直接验证.最终,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任.参见实验数学.缺乏数学应有的规范成为了另一个方面;以至于有人这样评论“一个好的数学证明应当像一首诗——而这纯粹是一本电话簿!”虽然四色定理证明了任何地图可以只用四种颜色着色,但是这个结论对于现实中的应用却相当有限.现实中的地图常会出现飞地,即两个不相连的土地属于同一个国家的情况(例如美国的阿拉斯加州),而制作地图时我们仍会要求这两个区域被涂上同样的颜色,在这种情况下,四个颜色将会是不够用的.作业1. 计算:(1) 38C =_________; (2) 48A =_________; (3) 810C =_________; (4) 012345555555C C C C C C +++++=_________. 作业2. 王老师家装修新房,需要2个木匠和2个电工.现有木匠3人、电工4人,另有1人既能做木匠也能做电工.要从这8人中挑选出4人完成这项工作,共有多少种不同的选法?作业3. 用2个3、3个1和1个0可以组成多少个不同的六位数? 作业4. 用2个5、1个2和1个0可以组成多少个不同的三位数? 作业5. 与1357相加会发生进位的四位数有多少个?第五讲计数综合例题1.答案:42,18详解:5的倍数分为两类,末位是5的有332118⨯⨯⨯=个,末位是0的有432124⨯⨯⨯=个,共42个.4的倍数:末两位是20的有6个,末两位是12的有4个,末两位是32的有4个,末两位是52的有4个,共有18个.例题2.答案:(1)30;(2)24;(3)24详解:(1)先给1选位置,再给2选位置,再给3选位置,共可组成22153130C C C⨯⨯=个不同的五位数.(2)先给0选位置,再给1选位置,再给2选位置,共可组成12244224C C C⨯⨯=个不同的五位数.(3)注意这个地方是要组成四位数,所以有一个数字不会用到.如果有1个1没用,可以组成1213319C C C⨯⨯=个不同的四位数;如果有1个2没用,可以组成1213319C C C⨯⨯=个不同的四位数;如果0没有用,可以组成6个不同的四位数.一共可以组成24个不同的四位数.例题3.答案:432详解:按重复的数字是不是1可以分成两类,若重复的数字是1,则有1239216C A⨯=个,若重复的数字不是1,则有121938216C C C⨯⨯=个,一共是432个.例题4.答案:8661详解:一共有9000个四位数.考虑与2468相加不会进位的四位数,个位可以是0~1,有2种可能;十位可以是0~3,有4种可能;百位可以是0~5,有6种可能;千位可以是1.~7,有7种可能.那么这样的四位数有2467336⨯⨯⨯=个.那么至少会发生一次进位的四位数有90003368664-=个.例题5.答案:90详解:按“自由人”的归属来分类:不选这个“自由人”,有435420C C⨯=种;让“自由人”翻译英语,有335440C C⨯=种;让“自由人”翻译日语,有425430C C⨯=种;一共是90种.例题6.答案:432,336详解:如果不考虑虚线,有432332432⨯⨯⨯⨯⨯=种涂法.如果考虑虚线,先染四边形顶点上的四个“○”,有84种染法,然后再染剩下的2个“○”,有8422336⨯⨯=种染法.练习1.答案:21简答:末尾数字可以是0或2.末尾数字是0的三位偶数有43112⨯⨯=个,末尾数字是2的三位偶数有3319⨯⨯=个,一共有21个.练习2.答案:(1)12;(2)9;(3)9简答:(1)11243212C C C⨯⨯=;(2)1123329C C C⨯⨯=;(3)4个数字中有一个没有被选.如果没有选0,有12323C C⨯=个.如果没有选2,有12222C C⨯=个.如果没有选的是3,有1112214C C C⨯⨯=个.一共有9个.练习3.答案:168简答:根据相同数字所在的位置来分类即可.练习4.答案:550简答:所有的三位数有900个,其中与250相加不会发生进位的有7510350⨯⨯=个,那么会发生进位的有900350550-=个. 作业1.答案:(1)56;(2)1680;(3)45;(4)32简答:略. 作业2.答案:48简答:根据既能做木匠又能做电工那个人的挑选情况分类讨论,可以分三类:没有选,做电工和做木匠. 作业3.答案:50简答:123553C C C 50⨯⨯=. 作业4.答案:9简答:如果三位数中不含有0,有23C 3=个;如果含有0,剩下的两个数字可能是2个5,也有可能是1个5和1个2,共有246+=个.一共可以组成9个不同的三位数. 作业5.答案:8160简答:利用反面排除的方法,900087538160-⨯⨯⨯=.。

苏教版小学五年级下册数学奥数题带答案图文百度文库

苏教版小学五年级下册数学奥数题带答案图文百度文库

苏教版小学五年级下册数学奥数题带答案图文百度文库一、拓展提优试题1.如图所示,P为平行四边形ABDC外一点。

已知PCD∆的面积等于5平方厘米,PAB∆的面积等于11平方厘米。

则平行四边形ABCD的面积是CADBP2.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.3.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.4.如图,正方形的边长是6厘米,AE=8厘米,求OB=厘米.5.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.6.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.7.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).8.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.9.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?10.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?11.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.12.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.13.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了千克面粉.14.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分=.(甲和乙)的面积差是5.04,则S△ABC15.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是 .【参考答案】一、拓展提优试题1.12[解答]作PF AB ⊥,由于//AB DC ,所以PF CD ⊥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.一只猴子每天都要吃桃子,如果它每天吃桃子的数量 Math-y
互不 2
IMO
相同,那么 100 个桃子最多够这只猴子吃多少天? 11.某同学把他最喜爱的书顺序编号为 1, 2,3,…,所有编号之和是 100 的倍数且小
于 1000,则他编号的最大数是多少?(2002 年小学数学奥林匹克预赛题) 12. 有若干人的年龄的和是 4476 岁, 其中年龄最大的不超过 79 岁, 最小的不低于
解法一:用大长方形的面积,减去阴影周围空白部分的面积。长方形的面积是 6×5= 30,左上角三角形的面积是 2×2÷2=2,左下角三角形的面积是 3×1÷2=1.5,右下角左 边三角形的面积是 2×1÷2=1,右边梯形的面积是(1+4)×3÷2=7.5,右上角左边三角形
Math-y
3
IMO
的面积是 2×1÷2=1,右边梯形的面积是(1+2)×3÷2=4.5,所以阴影部分的面积是 30-(2
1.计算:23.91+37.78+51.65+65.52+79.39+93.26+107.13=? 2.计算 1+2+3+2+4+6+3+6+9+…+100+200+300。 3.计算:1+3+4+6+7+9+10+12+13+…+66+67+69+70。 4.计算 100×95-95×90+90×85-85×80+80×75-75×70+…+20×15-15×10 +10×5。(吉林省第九届小学数学邀请赛试题) 5.计算(1994+1992+1990+…+4+2)-(1+3+5+…+1991+1993)。 6.计算 (2004-1)+(2003-2)+(2002-3)+…+(1003-1002)。(吉林省第 九届小学数学邀请赛试题) 7.如图,照这样摆下去,若摆到 80 层,一共需要□多少个?■多少个?
8.一个等边三角形边长 1m,每隔 2cm 在边上取一点,再从这些点出发,分别作与其 他两边平行的直线,并且与其他两边相交:
(1)求边长为 2cm 的三角形的个数; (2)求所作平行线的总长度。
9. 一些边长为 1 cm 的正方体, 像下图那样层层重叠放置, 那么, 当重叠到 5 层时, 这 个立体图形的表面积是________ cm2。(1994 年全国小学数学奥林匹克决赛题)
IMO
五年级下册基础奥数教程含答案.
第一讲 等差数列 例 1 下面各数的和是多少?
0 1 2 3 4 5 … 48 49 1 2 3 4 5 6 … 49 50 2 3 4 5 6 7 … 50 51 …………………… 48 49 50 51 52 53 … 96 97 49 50 51 52 53 54 … 97 98 解:先逐行求和,再化简。 (0+49)×50÷2+(1+50)×50÷2+…+(49+98)×50÷2 =25×(49+51+…+147) =25×(49+147)×50÷2 =25×25×196 =625×200-625×4 =125000-2500 =122500 例 2 一本图书除了封面和封底以外,每张纸的两面都标有页码,如果中央一张纸两面 的页码之积是 2450,则这本书的所有页码之和是多少? 解:根据题意,2450 应该是两个相邻自然数的积。试算发现 2450=49×50,所以中央 这张纸两面的页码分别是 49 和 50,由此可以想到这一张是全书的第 25 张,全书共有 24+1 +24=49(张),合计共 2×49=98(页)。这样就可以用等差数列的求和公式,计算出所有页 码之和是: 1+2+3+…+98=(1+98)×98÷2=4851。 答:这本书的所有页码之和是 4851。 例 3 盒子里放有编号为 1 到 10 的十个球,小明先后三次从盒中共取出 9 个球。如果 从第二次开始,每次取出的球的编号之和都是前一次的 2 倍,那么未取出的球的编号是多 少? 解:这了便于思考,设第一次取出的球的编号是 a,第二次取出的球的编号之和就是 2a,第三次取出的球的编号之和就是 4a,三次共取出的 9 个球的编号之和就是 a+2a+4a= 7a,即三次共取出的 9 个球的编号之和是 7 的倍数。10 个球的编号之和是 1+2+3+4+5 +6+7+8+9+10=55, 55 除以 7 余 6,余数是 6,说明未取出的球的编号是 6。
30 岁, 而年龄相同的人不超过 3 人, 则这些人中至少有多少位老年人(年龄不低于 60 岁 的为老年人)? (2001 年小学数学奥林匹克预赛题)
第二讲 例 1 图中有多少三角形?
图形问题
解:顶点向上的小三角形有 1+2+3+4+5+6+7+8=36(个); 顶点向上的由 4 个小三角形组成的三角形有 1+2+…+7=28(个); 顶点向上的由 9 个小三角形组成的三角形有 1+2+…+6=21(个); 顶点向上的由 16 个小三角形组成的三角形有 1+2+…+5=15(个); 顶点向上的由 25 个小三角形组成的三角形有 1+2+3+4=10(个); 顶点向上的由 36 个小三角形组成的三角形有 1+2+3=6(个); 顶点向上的由 49 个小三角形组成的三角形有 1+2=3(个); 顶点向上的由 64 个小三角形组成的三角形有 1 个; 顶点向下的小三角形有 1+2+3+4+5+6+7=28(个); 顶点向下的由 4 个小三角形组成的三角形有 1+2+…+5=15(个); 顶点向下的由 9 个小三角形组成的三角形有 1+2+3=6(个); 顶点向下的由 16 个小三角形组成的三角形有 1 个; 总共有 36+28+21+15+10+6+3+1+28+15+6+1=170(个)。 例 2 图中每个小正方形的边长都是 1,图中阴影部分的面积是多少?
Math-y
Hale Waihona Puke 1IMO答:未取出的球的编号是 6。 例 4 有 10 张长 3cm、宽 2cm 的纸片,将它们按照下图的样子摆在桌面上,这 10 张 纸片所盖住的桌面面积是多少平方厘米?
解:观察发现:纸片盖住的桌面面积成等差数列(单位:cm2)。 6,8,10,12,……
公差是 2。所以,这 10 张纸片所盖住的桌面面积是 6+2×9=24(cm2)。 练习一
相关文档
最新文档