V型滤池详解

合集下载

什么是V形滤池

什么是V形滤池

什么是V形滤池?V形滤池是一种高速新型均粒滤料滤池。

该型滤池已在法国、英国、意大利、委内瑞拉、摩洛哥、以色列等国家的一些水厂采用。

国内已有南京、西安、上海等城市采用。

它的特点是:采用单层加厚均粒石英砂滤料,深层截污,滤速可达7~20m/h,一般为12.5~15m/h;V形进水槽(兼作反冲洗时原水表面清扫布水槽)和排水槽分设两侧,池子可沿着长度的方向发展,布水均匀;底部采用带柄滤头底板的排水系统,不设砾石支承层;反冲洗采用压缩空气、滤后水和原水3种流体,成为一种独特的气、水反冲洗形式。

因此,可用最小的水头损失和电耗,而获得理想的冲洗效果,见图2-3-9V形滤池有单格及双格两种池型。

当过滤面积较小时,可由单格矩形池组成;当过滤面积较大时,则由双格组成。

单格V形滤池在长边的池壁一侧设V形进水槽(又作为扫洗水槽),槽下布开孔;而在另一侧设反冲洗排水槽,该槽在过滤时淹没在水下。

双格V形滤池,它在池内设有两个V形水槽和一个中间反冲洗排水槽。

在冲洗排水槽下面,设有大截面矩形暗渠。

在过滤时用以收集滤后水;在反冲洗时用以分布气冲空气和反冲洗水。

气流和水流通过均布于整个滤池长度方向上的方孔,而向滤板下方均匀分配。

滤池的进水管、反冲洗进气管和出水管,均与矩形暗渠连通,见图2-3-10。

在滤池冲洗排水槽的一端设有出水闸门。

各种管路上均设有四个主要阀门:出水阀、反冲洗进水阀、反冲洗进气阀和冲洗排水阀。

这些阀门均为防漏型蝶阀,通过气动活塞控制。

滤池在工作周期内随着滤料层截留水中杂质量的不断增加,滤层对水流的阻力增大,滤速减少,出水量下降,此时滤池就要进行反冲洗。

国内外滤池的反冲洗方法有两种,一种是国内通常采用的水反冲洗法,另一种是国外已较多采用的气水反冲洗。

气水反冲洗是用空气冲洗后再用水冲洗或空气和水同时冲洗。

当空气冲洗时对滤料产生很大的震动,使滤料间反复碰撞摩擦,由于滤料层的激烈搅拌,使滤料间的泥球结构受到破坏,便于冲洗,从而达到反冲洗的目的。

v型滤池工作原理

v型滤池工作原理

v型滤池工作原理V型滤池工作原理。

V型滤池是一种常用于水处理工程中的过滤设备,其工作原理主要包括过滤、反冲洗和排污三个阶段。

下面将详细介绍V型滤池的工作原理及其各个阶段的具体过程。

首先是过滤阶段。

在正常运行状态下,水通过V型滤池进入滤料层,其中的固体颗粒物被滤料截留,而水则通过滤料层进入滤池下部的收水管,从而实现了固体颗粒物的分离和去除。

V型滤池的滤料通常为石英砂、砾石等,其孔隙度和颗粒大小能够有效地过滤水中的杂质和悬浮物。

接下来是反冲洗阶段。

随着过滤时间的延长,滤料层中的固体颗粒物会逐渐积累,导致滤料层阻力增大,影响水的正常通过。

因此,需要进行反冲洗以清洗滤料。

反冲洗时,首先关闭进水阀,打开排水阀,使滤池内的水位下降到一定高度;然后打开反冲洗阀,通过反向冲洗水流,将滤料层中的积聚物冲洗出滤池,从而恢复滤料的过滤功能。

最后是排污阶段。

在反冲洗完成后,需要进行排污操作,将被冲洗出来的污水和杂质排出系统。

排污阀通常设置在滤池底部,通过打开排污阀,污水和杂质被排出系统,从而保持滤料层的清洁和过滤效果。

总的来说,V型滤池通过过滤、反冲洗和排污三个阶段的循环操作,实现了对水质的净化和过滤。

在工程实践中,V型滤池广泛应用于自来水厂、污水处理厂等领域,其工作原理简单而有效,能够满足不同水质的处理需求。

通过本文的介绍,相信大家对V型滤池的工作原理有了更深入的了解。

在实际应用中,合理运用V型滤池,不仅能够提高水处理效率,还能够保障水质安全,为人们的生活和生产提供可靠的保障。

V型滤池的工作原理简单而有效,是水处理工程中不可或缺的重要设备之一。

V型滤池基本构造及实际运用

V型滤池基本构造及实际运用

V型滤池基本构造及实际运用V型滤池是一种常用的污水处理设备,它通常被用于去除悬浮颗粒、浊度和生物质等污染物,从而将水质提升到一定的标准。

本文将对V型滤池的基本构造和实际运用进行详细介绍。

一、基本构造1. 滤池体滤池体是V型滤池的主体部分,通常采用钢质或混凝土结构。

滤池体内部呈V形,有一定的倾角,可以减少污水在滤层上的停留时间,从而加快水的流速,提高滤池的处理效率。

2. 滤层滤层是V型滤池的核心部分,通常由石英砂和活性炭等材料组成,用于过滤污水中的悬浮颗粒和有机物质。

这些材料密集地堆放在滤池体内,形成一个较为厚实的滤层,可以拦截污水中的污染物。

3. 出水管出水管通常位于滤池底部,用于将处理后的水从滤池体中排出,通常会设置一定的管道和阀门等设备,以便对滤池内的水流进行调节和控制。

4. 进水口进水口位于滤池顶部,用于向滤池内注入待处理的污水。

进水口通常会设置预处理设备,如格栅、沉淀池等,在处理前将污水中的较大颗粒和沉淀物拦截下来。

进水口下面通常会设置配重板和水平器,以保证进水口水平稳定,不会影响滤池的正常运行。

二、实际运用V型滤池可以广泛应用于生活污水、工业废水和农业排污等多个领域。

在实际运用中,通常需要遵循以下几项原则:1. 滤池的选择和设计应根据不同水质、水量和处理要求等因素进行合理搭配。

2. 滤层的厚度和材料的使用要根据具体情况进行调整,滤层太薄会导致过滤效率低下,太厚则会增加阻力并降低处理效果。

3. 进水口设置合理,预处理设备的选择也需要考虑污水的特征、水质要求和处理效率等因素。

4. 滤池的运行关键在于滤层的定期清洗和维护,通常需要定期清理滤层内的污染物和沉淀物,以保证滤层的过滤效果。

5. 滤池的排放水质应符合国家相关标准,否则应加强改进和调整,以满足环保要求。

V型滤池基本构造及实际运用

V型滤池基本构造及实际运用

V型滤池基本构造及实际运用V型滤池是一种常用于水处理中的设备,它通过一定的过滤媒介对水进行过滤,去除其中的杂质和悬浮物质,使水质得到改善。

本文将介绍V型滤池的基本构造及其实际运用。

一、V型滤池的基本构造V型滤池的主体结构由进水口、V型滤料层、排水口、出水口等部分组成。

1. 进水口:进水口是V型滤池的入口,水通过进水口进入V型滤料层,进行过滤处理。

2. V型滤料层:V型滤料层是V型滤池的核心部分,通常由石英砂、砾石等多层颗粒状的滤料组成。

这些滤料具有不同的孔径和密度,能够有效地过滤水中的杂质和悬浮物质。

3. 排水口:排水口是用于排放经过滤后的废水和滤料中的杂质的出口,通过排水口将废水排出,以保持V型滤料层的正常工作状态。

二、V型滤池的实际运用1. 自来水厂:V型滤池广泛应用于自来水厂的水处理系统中,通常作为初级过滤设备进行使用。

当自来水从水源进入水厂时,会携带着大量的杂质和悬浮物质,需要经过V型滤池进行过滤处理,除去这些杂质和悬浮物质,使水质得到改善,从而提高生活用水的质量。

2. 工业生产:在工业生产中,V型滤池也被广泛应用于工艺水处理系统中。

在造纸厂、化工厂等作用于生产过程中,都需要大量的水进行循环利用,在这个过程中,水质的净化就显得尤为重要。

V型滤池可以将水中的杂质和悬浮物质过滤出去,满足工业生产对水质的要求。

3. 生活用水:除了自来水厂之外,V型滤池也在很多居民小区、乡村等地方广泛使用。

在这些地方,V型滤池被用于净化生活用水,提高饮用水的质量,为居民提供干净、健康的饮用水。

4. 游泳池和水疗中心:游泳池和水疗中心是需要大量水的场所,在这些场所,V型滤池也被广泛应用。

V型滤池可以去除水中的杂质和悬浮物质,保持游泳池和水疗中心的水质清澈透明,为游客提供一个清洁、健康的环境。

V型滤池在水处理领域有着广泛的应用,它通过一定的过滤媒介对水进行过滤,去除其中的杂质和悬浮物质,使水质得到改善。

在自来水厂、工业生产、生活用水、游泳池和水疗中心等场所,V型滤池都起着重要的作用,帮助人们获得清洁、健康的水资源。

v型滤池的工作原理

v型滤池的工作原理

v型滤池的工作原理
V型滤池是一种常见的固液分离设备,其工作原理是通过过滤介质将悬浮在液体中的固体颗粒分离出来。

V型滤池由一个V型的容器和充满过滤介质的滤槽组成。

当待处理的液体从滤槽的上部注入时,固体颗粒会被过滤介质阻拦,而液体则通过过滤介质流入V型容器底部。

由于V型设计的作用,液体在流入底部时会发生一定的流动变化,使得固体颗粒更容易沉积在底部。

在滤槽中,过滤介质通常是一种具有较好过滤效果的材料,如石英砂、陶瓷颗粒等。

这些过滤介质可以通过其孔隙结构和分布来实现对固体颗粒的过滤和截留。

较小的固体颗粒无法通过过滤介质的孔隙,因此被阻拦在滤槽中,而较小的液体分子则可以通过孔隙顺利通过。

当滤槽中的固体颗粒逐渐增多,会导致滤阻的上升,影响滤池的正常工作。

此时,可以通过对滤池进行清洗和维护来恢复其过滤性能。

清洗通常采用倒吹、倒水、倒化学药剂等方式,将固体颗粒从滤槽中排出。

V型滤池广泛应用于化工、医药、食品、石油等行业,在固液分离过程中起到重要的作用。

它具有过滤效率高、结构简单、使用方便等特点,成为固液分离领域常用的设备之一。

V型滤池文档

V型滤池文档

V型滤池概述V型滤池是一种常用的水处理设备,广泛应用于工业、农业和生活污水处理中。

它通过利用多层V型滤料对水进行过滤,以去除其中的杂质和颗粒物,从而提高水质,并减少后续处理工艺的负荷。

本文将介绍V型滤池的工作原理、结构特点以及运行维护等内容。

工作原理V型滤池是基于重力过滤原理的水处理设备。

它由一系列均匀排列的V型滤料组成,这些滤料材质可以根据具体处理要求来选择。

当水通过V型滤料层时,较大的杂质和颗粒物会被滞留在滤料中,而水则会通过滤料层,从而实现水的过滤。

通过设定适当的负荷速率和反洗周期,可以保证V型滤池长期稳定运行。

结构特点V型滤池的主要结构包括两个部分:滤料层和水流分配系统。

滤料层滤料层是V型滤池的核心组成部分,它由多层V型滤料均匀排列组成。

这些V型滤料可以采用不同尺寸和材质,如石英砂、煤炭和磁性材料等。

滤料层的厚度和类型可以根据需要进行调整,以满足不同水质处理要求。

水流分配系统水流分配系统用于将待处理水均匀分配到滤料层。

它通常包括进水管道、分水器和分配管道等组成。

进水管道将原水引入V型滤池,分水器将水流分散到各个分配管道中,分布管道将水均匀分布到滤料层上。

通过合理设计水流分配系统,可以确保滤料层在整个过滤过程中保持均匀的水流分布。

运行维护为了确保V型滤池的正常运行,以下是一些运行维护的注意事项:1.定期测量和监测V型滤池的进水和出水水质,以便及时发现异常情况并采取相应的措施。

2.每隔一段时间需要对滤料层进行清洗,以防止滤料堵塞。

清洗可以通过反洗的方式进行,将逆流水引入滤料层,并将堵塞的杂质冲洗掉。

3.注意定期观察V型滤池的水流分配系统,确保分水器和分配管道畅通无阻。

4.定期检查V型滤池的排放系统,确保排放系统正常运行,避免滤料堵塞引起溢流等问题。

5.根据实际情况,及时更换损坏或老化的V型滤料,以保证水处理效果和设备寿命。

总结V型滤池作为一种常用的水处理设备,通过多层V型滤料对水进行过滤,提高水质,并减少后续处理工艺的负荷。

净水厂V型滤池的运行控制分析

净水厂V型滤池的运行控制分析

净水厂V型滤池的运行控制分析随着城市化进程的加速和人口规模的不断增加,城市的水资源供给和水质管理面临更大的挑战。

为了确保居民的生活用水安全和环境健康,提高城市供水系统的稳定性和可靠性,水厂的净化设备运行控制显得尤为重要。

V型滤池是净水厂常用的滤池之一,其运行控制分析对于净水工程有着重要的意义。

一、V型滤池的结构和原理V型滤池是一种常用的水处理设备,其结构如其名,呈V字形。

水流从上方进入滤池,在滤材的作用下,悬浮物、颗粒物和有机物等杂质被截留在滤料层内,从而实现了水的过滤和净化。

V型滤池通常采用石英砂等滤料,其结构紧凑、操作便捷、过滤效果好,因而被广泛应用于市政供水、工业用水和废水处理等领域。

二、V型滤池的运行控制1. 进出水质监测V型滤池在正常运行过程中,需要对进出水的水质进行监测,以确保出水水质符合卫生标准。

通过监测进出水的浑浊度、浊度、PH值、溶解氧、COD和氨氮等指标,及时发现和解决水质异常,保障净水厂的正常运行。

2. 滤料层清洗和维护V型滤池的滤料层在长时间的过滤使用后,会逐渐被悬浮物和杂质堵塞和污染,影响其滤水效果。

定期清洗和维护滤料层是保证V型滤池正常运行的重要措施。

清洗滤料层可以采用反冲洗或者化学清洗等方式,将堵塞和污染的滤料层进行再生,恢复其滤水性能。

3. 控制水力冲击在V型滤池的运行过程中,水力冲击是一个常见且严重的问题。

水力冲击会导致滤料层的破坏和泄漏,严重影响滤池的正常运行。

需要采取相应的措施进行控制,如增加缓冲设备、控制进出水流速等,保证V型滤池的安全运行。

4. 运行参数的调控V型滤池的运行参数包括进水流量、滤速、水头压力、清洗周期等,这些参数的调控对于滤池的稳定运行至关重要。

合理控制进水流量和滤速,保证水头压力在适宜范围内,调节清洗周期和时间,都能有效地提高V型滤池的运行效率和稳定性。

5. 故障报警和处理在V型滤池的运行过程中,可能会出现各种各样的故障,如管道堵塞、设备泄漏、电气故障等。

V型滤池说明

V型滤池说明

V型滤池概况1. 概述V型滤池是快滤池的一种形式,因为其进水槽形状呈V字形而得名,也叫均粒滤料滤池(其滤料采用均质滤料,即均粒径滤料)、六阀滤池(各种管路上有六个主要阀门)。

它是我国于20世纪80年代末从法国Degremont公司引进的技术。

2.特点:(1)恒水位等速过滤。

滤池出水阀随水位变化不断调节开启度,使池内水位在整个过滤周期内保持不变,滤层不出现负压。

当某单格滤池冲洗时,待滤水继续进入该格滤池作为表面扫洗水,使其他各格滤池的进水量和滤速基本不变。

(2)采用均粒石英砂滤料,滤层厚度比普通快滤池厚,截污量也比普通快滤池大,故滤速高,过滤周期长,出水效果好。

(3)V型进水槽(冲洗时兼作表面少洗布水槽)和排水槽沿池长方向布置,单池面积较大时,有利布水均匀,因此更适合用于大、中型水厂。

(4)承托层较薄。

(5)冲洗采用空气、水反冲和表面扫洗,提高了冲洗效果并节约冲洗用水。

(6)冲洗时,滤层保持微膨胀状态,避免出现跑砂现象。

3. 工作过程(1)过滤过程:待滤水由进水总渠经进水阀和方孔后,溢过堰口再经侧孔进入被待滤水淹沿的V型槽,分别经槽底均匀的配水孔和V型槽堰进入滤池。

被均质滤料滤层过滤的滤后水经长柄滤头流入底部空间,由方孔汇入气水分配管渠,在经管廊中的水封井、出水堰、清水渠流入清水池。

(2)反冲洗过程:关闭进水阀,但有一部分进水仍从两侧常开的方孔流入滤池,由V型槽一侧流向排水渠一侧,形成表面扫洗。

而后开启排水阀将池面水从排水槽中排出直至滤池水面与V型槽顶相平。

反冲洗过程常采用“气冲→气水同时反冲→水冲”三步。

气冲打开进气阀,开启供气设备,空气经气水分配渠的上部小孔均匀进入滤池底部,由长柄滤头喷出,将滤料表面杂质擦洗下来并悬浮于水中,被表面扫洗水冲入排水槽。

气水同时反冲洗在气冲的同时启动冲洗水泵,打开冲洗水阀,反冲洗水也进入气水分配渠,气、水分别经小孔和方孔流入滤池底部配水区,经长柄滤头均匀进入滤池,滤料得到进一步冲洗,表扫仍继续进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V型滤池的设计与施工摘要:结合小榄水厂设计规模为10×104m3/d的扩建工程,对V型滤池在施工中存在的问题进行了探讨,并提出了改进措施,使V型滤池的运行更加安全可靠。

?关键字:V型滤池反冲洗施工小榄水厂三期扩建工程(10×104 m3/d)的V型滤池施工中,由于对一些细节问题给予了充分重视,使得V型滤池顺利通过气密性试验,自投运以来运行良好,出水浊度<,达到了设计要求。

1 进、出水装置由于V型滤池一般为变水位匀速过滤,因此在进、出水处均应设置堰板,且最好采用可调式。

V型滤池的待滤水一般通过进水总渠经两个气动橡皮阀和中间一个用橡胶气囊控制的表面扫洗进水孔进入,再通过溢流堰由两个侧孔经V型槽流入滤池。

三期工程中把两边的气动橡皮阀取消,中间一个则改为多点定位气动提板阀,过滤时阀门全开,气洗反冲阶段关闭,气水反冲洗及水反冲洗阶段闸板开启到表面冲洗水量调节位(该位置可根据表面扫洗强度来调节,初设进水闸板开启高度为220 mm,经调试后基本固定)。

滤池的进、排水闸门一般采用气动或电动提板闸,对其密封要求为迎水面漏失<0.021L/(s·m2)。

由于提板闸的密封条与金属框架、池壁直接相连,密封条的厚度只有10 mm,因而容易产生误差,造成漏水或提板闸垂直度不够。

因此在施工时,于安装提板闸的部位设置了30 mm厚的找平带。

此外,还在进水渠处设置了溢流井,出水堰板后则留有足够的空间以满足堰后出水的消力,并确保排气管出口标高在溢流水位之上。

2 V型槽孔口标高的确定滤池气水冲洗设计规程(CECS50:1993)规定:表面扫洗水配水孔低于排水槽顶面的垂直距离,一般可为1 50 mm。

水厂原滤池就据此设计,扫洗时发现孔口淹没水深较大,造成扫洗力度不足而使冲洗过程产生的浑浊液及泡沫粘附在池壁上,外观很不整洁。

另一方面,V型槽扫洗孔中心仅比滤料面高0.25 m,而低于排水堰0.15 m,在反冲洗时尽管滤料只是微膨胀,但其膨胀高度仍达~0.125m(膨胀率按8%~10%计),使得V型槽扫洗孔中心仅高出滤料膨胀面约~0.125 m,而低于排水堰顶水面近0.2 m。

在这种情况下,扫洗孔的出水将冲向流动水层的中部,把小粒径滤料冲向排水堰,造成滤料面倾斜。

根据射流的性质,要使表面扫洗效果最佳则该射流最好为半淹没流,因此在三期工程设计中,将配水孔中心标高设为比反冲洗水位低~2.0 cm。

实际运行表明,反冲过程中产生的浑浊液和泡沫被扫洗干净,效果理想。

3 滤梁、滤板的安装为保证过滤效果,应确保滤板的水平误差不得超过±2 mm,否则空气就无法均匀地分配在滤层上。

滤板平整与否首先是滤梁是否平整,工程中滤梁采用10号工字钢为主筋,其宽为110 mm、高为800 mm,预埋的紧固螺栓按图纸规定的尺寸垂直放置,且有固定措施,并保证在浇捣过程中不发生歪斜和移位。

滤梁下边的过水孔(呈八字形)应均匀布置,滤梁上面则留有30 mm高的后浇找平层,并确保单根滤梁的平整度不超过±2 mm,整池滤梁的平整度不超过±3 mm。

安装滤梁用的预埋件要准确平整地预埋在池底上,并在预埋件上焊一根DN100钢短管,于滤梁下方的预埋件上焊一根DN80钢管,将DN80钢管插入DN100钢管中,用千斤顶托住滤梁,用水准仪和水平尺配合控制精度(单格滤池滤板的平整度为±5 mm,各滤池之间滤板的平整度为±10 mm,梁中线与锚固螺栓中线间距误差<2 mm),然后将管焊接成一个整体。

最后用DN200塑料管作模,将水泥砂浆灌入模中,在DN100、DN80管的外面形成一层保护膜,既可防止钢管生锈,又增加了钢管的支承强度。

滤板的安装应采用整体控制的方法,首先控制好支撑柱和梁的标高,然后控制好每块滤板的标高,进而控制整组滤池滤板的标高。

滤板用特制的定型模具在振动台上制作成型,确保精度不低于设计要求,并对其进行养护。

滤板定位后对每块滤板进行平整度测量并作好相应记录,当滤板平整度超过误差范围时通过加装垫片和塞片进行调整,垫片和塞片的材料可采用S304不锈钢、ABS、聚乙烯等。

滤板平整度调整完成后便可进行滤板的固定(采用压板和螺栓),当为中间固定时压板采用平面尺寸为100 mm×50 mm、厚为8 mm的S3 04不锈钢钢板;当为周边固定时压板采用同尺寸的S304不锈钢角钢。

对用于池壁侧滤板固定的角钢,其上应采用20mm腰子孔,不平时填塞片;螺栓采用6的S304不锈钢螺栓,在1 m长度方向上不少于两个。

每块滤板的四周均有15 mm×50 mm的燕尾形折槽,可填充胶泥,用于滤板之间及滤板与池壁之间的密封。

滤板的嵌缝密封处理采用无毒的905接缝专用密封胶合剂(按水泥∶砂∶905胶=1∶1∶的比例配制成905砂浆),用垫条垫入拼缝底部,用905胶泥嵌缝30~50mm,上部用水泥砂浆抹平,以保证不漏水、不漏气。

V型滤池长柄滤头的安装精度是保证气水冲洗是否均匀、彻底的关键,为此要确保滤头安装端正(无明显的高低歪斜现象)、进水端管口高程差<2mm;安装完毕后还应进行滤池的放水放气调试检验。

4 反冲洗系统在进行反冲洗泵房设计时,为节省投资把滤池的清水箱(容积大于单台水泵额定5 mm流量,并设通气管)作为吸水井,同时在清水箱出水处设置了出水堰,既可保证反冲洗有足够的水量,又可使清水箱水位保持恒定,避免反冲洗时的压力波动。

由于反冲洗泵的工作压力为88~108kPa,而止回阀的最小额定工作压力为,所以在设计时应特别注明,以避免因止回阀密封不严而引起水泵的倒转。

另由于反冲水来自清水箱,考虑到滤池大修时要停水,因此将水厂清水池作为备用水源。

详细内容:1.概述V型滤池是快滤池的一种形式,因为其进水槽形状呈V字形而得名,也叫均粒滤料滤池(其滤料采用均质滤料,即均粒径滤料)、六阀滤池(各种管路上有六个主要阀门)。

它是我国于20世纪80年代末从法国Degremont引进的技术。

2.工作过程(1)过滤过程:待滤水由进水总渠经进水阀和方孔后,溢过堰口再经侧孔进入被待滤水淹沿的V型槽,分别经槽底均匀的配水孔和V型槽堰进入滤池。

被均质滤料滤层过滤的滤后水经长柄滤头流入底部空间,由方孔汇入气水分配管渠,在经管廊中的水封井、出水堰、清水渠流入清水池。

(2)反冲洗过程:关闭进水阀,但有一部分进水仍从两侧常开的方孔流入滤池,由V型槽一侧流向排水渠一侧,形成表面扫洗。

而后开启排水阀将池面水从排水槽中排出直至滤池水面与V型槽顶相平。

反冲洗过程常采用“气冲→气水同时反冲→水冲”三步。

气冲打开进气阀,开启供气设备,空气经气水分配渠的上部小孔均匀进入滤池底部,由长柄滤头喷出,将滤料表面杂质擦洗下来并悬浮于水中,被表面扫洗水冲入排水槽。

气水同时反冲洗在气冲的同时启动冲洗水泵,打开冲洗水阀,反冲洗水也进入气水分配渠,气、水分别经小孔和方孔流入滤池底部配水区,经长柄滤头均匀进入滤池,滤料得到进一步冲洗,表扫仍继续进行。

停止气冲,单独水冲表扫仍继续,最后将水中杂质全部冲入排水槽。

V型滤池的特点及设计参数滤速8~10m/h,滤池采用均粒滤料恒水位等速过滤,滤池底部采用带长柄滤头底板的排水系统,不设砾石承托层,滤头材质为ABS工程塑料。

反冲洗采用气水联合反洗,整个滤料层在深度方向的粒径分布基本均匀,在反冲洗过程中滤料层不膨胀,不发生水力分级现象,保证深层截污,滤层含污能力高。

摘要:本文重点介绍了成都市自来水总公司水二厂V型滤池的设计要点、施工特点及运行情况。

关键词:V型滤池设计施工运行一、设计要点1主要工艺设计参数成都市水二厂V型滤池于1996年8月28日竣工投产,池型采用双排布置的V型滤池,总处理能力为5400m3/h,分成八格,单格面积为84m2。

具体工艺参数如表1。

2工艺自动控制工艺要求通过PLC系统对各格滤池的进水阀、出水调节阀、气冲阀、水冲阀、泄气阀及鼓风机、水泵、空压机和液位计进行监控,以控制滤池的正常过滤和反冲洗这两个阶段的运行。

并要求两台风机、两台水泵及两台空压机均能实现自动切换。

(1)正常过滤V型滤池是利用滤床上的水位和出水调节阀的开度控制出水的,这是获得出流缓慢变化的最好方法。

因此,在正常过滤阶段,主要是设法恒定滤床上的水位。

(2)反冲洗引进的V型滤池有两种反冲洗信号,即自动反冲洗信号和人工强制反冲洗信号。

自动反冲洗信号有三个指标,出水浊度上限值、滤层水头损失上限值及设定的过滤周期,只要有一个指标符合条件,就立即开始反冲洗。

人工强制反冲洗是根据生产运行中需要检修等原因而设置的。

从其它水厂V型滤池的实际运行情况来看,真正起作用的只有周期反冲洗和人工强制反冲洗。

因此,我厂采用周期和人工强制这两个指标作为反冲洗控制信号。

我厂共有8格滤池,过滤周期设定为24h,按照3h冲洗一格进行排队,若某几格滤池因人工强制干预而提前完成反冲洗,则要求自动重新排队,并要求显示出下一次开始冲洗的时间。

三、运行状况V型滤池自1996年8月投产运行以来,运行状况良好。

1冲洗效果我们分别于1996年9月28日及12月5日、1997年3月7日及8月10日,分别对V型滤池冲洗前后的含泥量进行了4次测定。

测定结果表明,运行24h后,冲洗前滤层的平均含泥量为0135%左右,冲洗后的平均含泥量为0109%左右。

2过滤效果V型滤池投产至今,正常运行时滤后水浊度均低于0125NTU。

1996年9月,我们组织有关人员进行了测定,进水开一台24sa218c水泵,滤池用4格,平均滤速为810m/h左右,运行时间定为36h,滤前水浊度为1146~4155NTU,滤后水浊度仅为0113~0133NTU,细菌总数为45个/mL。

1 997年3月,我们又组织有关人员进行了一次测定,进水开2台24sa218c水泵,滤池采用8格,运行时间定为48h,滤前水浊度为1180~4180NTU,滤后水浊度仅为0108~0135NTU,细菌总数为54个/mL。

两次测定的细菌总数均低于GB5749285规定的出厂水细菌总数指标。

3恒水位问题我们通过检测滤池内水位变化来适时控制出水调节阀的开度,取得了较好的效果。

目前各滤池水位均可控制在设计运行水位的±3cm范围内。

虽然离Degremont公司控制的±2cm精度有一定的距离,但从滤池运行的角度来讲,已满足要求。

4滤层内压力分布图1为测定的6号滤池滤层内压力分布状况,图中C1为水的静压曲线,C2为刚冲洗后清洁滤层内压力分布曲线,C3为运行12h时滤层内压力分布曲线,C4为运行2315h时滤层内压力分布曲线。

滤速为810m/h左右。

从图1可以看出,整个滤床均处于正压过滤状态。

相关文档
最新文档