湘教版八年级数学上学期期末考试试卷
2024-2025学年湘教版数学八年级上册期末综合测试卷

2024-2025学年湘教版数学八年级上册 期末综合测试卷一、单选题1.面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根 2.分式13-x 可变形为( ) A .13x + B .-13x + C .13x - D .1-3x - 3.如图,墙上钉着三根木条,,a b c ,量得170=︒∠,2100∠=︒,那么木条,a b 所在直线所夹的锐角是( )A .5︒B .10︒C .30︒D .70︒4.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b < 5.把不等式组25322x x -≤⎧⎪⎨+<⎪⎩的解集在数轴上表示出来,正确的是( ) A .B .C .D .6.如图,在△ABC 中,AB=AC ,∠A=30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若∠1=145°,则∠2的度数是()A .30°B .35°C .40°D .45°7.下列运算正确的是( )A =B =C 2=-D =8.已知a =2b ,则a 与b 的关系是( ) A .a b = B .a b =- C .1a b = D .1ab =-9.如图,在ABC V 中,ACB ∠为钝角.用直尺和圆规在边AB 上确定一点 D .使AD C 2B ∠=∠,则符合要求的作图痕迹是( )A .B .C .D .10.有关部门规定,民用住宅居室的窗户面积必须小于该室内地面面积.采光标准是:窗户面积和地面面积的比不小于10%.显然,这个比值越大,住宅的采光条件越好.如果同时增加相等的窗户面积和地面面积,那么采光条件的变化情况是( )A .变好了B .变差了C .没变化D .不能判断11.已知AE AB ⊥且AE AB BC CD =⊥,且BC CD =,点E ,B ,D 到直线l 的距离分别为6,3,4,则图中凹多边形ABCDE 的面积是( )A .50B .62C .65D .6812.关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组2(1)323x x k x x --≤⎧⎪+⎨≥⎪⎩有解,则符合条件的整数k 的值之和为( )A .5B .4C .3D .2二、填空题130-=.14.如果三角形三边长分别为12,k ,72,则化简25-k 得15.如图,ABC V 中,AD 是BC 边上的高,AE ,BF 分别是BAC ∠,ABC ∠的平分线,50BAC ∠=︒,60ABC ∠=︒,则EAD ACD ∠+∠=.16.如图,ABC V 中,AB AC =,AD BC ⊥于D 点,DE AB ⊥于点E ,BF AC ⊥于点F ,3cm DE =,则BF =cm .17.若关于x 的不等式mx -n >0的解集是x <13,则关于x 的不等式(m +n )x >n -m 的解集是 18.为了美化校园环境,某中学今年春季购买了A ,B 两种树苗在校园四周栽种,已知A 种树苗的单价比B 种树苗的单价多10元,用600元购买A 种树苗的棵数恰好与用450元购买B 种树苗的棵数相同.若设A 种树苗的单价为x 元,则可列出关于x 的方程为.三、解答题19.(1)计算:20(2)|3|(6)----;(2)解分式方程:22511x x =--. 20.阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:立方和公式:()()3322x y x y x xy y +=+-+ ;立方差公式:()3322()x y x y x xy y -=-++ ; 根据材料和已学知识,先化简,再求值:22332428x x x x x x ++---,其中3x =. 21.如图,AB CD ∥,以点A 为圆心,小于AC 长为半径作弧,分别交AB AC ,于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作弧,两弧相交于点P ,作射线AP ,交CD 于点M .(1)若124ACD ∠=︒,求MAB ∠的度数;(2)若CN AM ⊥,垂足为N ,延长CN 交AB 于点O ,连接OM ,求证:OA OM =.22. 一个三角形三边的长分别为a ,b ,c ,设p=12(a+b+c ),根据海伦公式S=a=4,b=5,c=6,求:(1)三角形的面积S ;(2)长为c 的边上的高h .23.对于不等式:a x >a y (a >0且a≠1),当a >1时,x >y ;当0<a <1时,x <y ,请根据以上信息,解答以下问题:(1)解关于x 的不等式:25x ﹣1>23x+1;(2)若关于x 的不等式:a x ﹣k <a 5x ﹣2(a >0且a≠1),在﹣2≤x≤﹣1上存在x 的值使其成立,求k 的取值范围24.对于一个关于x 的代数式A ,若存在一个系数为正数关于x 的单项式F ,使⋅A F 2x的结果是所有系数均为整数的整式,则称单项式F 为代数式A 的“整系单项式” ,例如:当==321A ,F 2x x 时,由于⋅=3212x x 12x,故32x 是21x 的整系单项式; 当==521A ,F 6x x 时,由于⋅=52216x x 3x 2x ,故56x 是21x 的整系单项式; 当=-=234A 3,F x 2x 3 时,由于⎛⎫- ⎪⎝⎭=-243x 332x 2x 12x,故243x 是-332x 的整系单项式; 当=-=43A 3,F 8x 2x 时,由于⎛⎫- ⎪⎝⎭=-43238x 32x 12x 6x 2x,故48x 是-332x 的整系单项式; 显然,当代数式A 存在整系单项式F 时,F 有无数个,现把次数最低,系数最小的整系单项式F 记为()F A ,例如:⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭322134F 2x ,F 3x 2x 3x . 阅读以上材料并解决下列问题:⑴.判断:当=1A x 时,=3F 2x A 的整系单项式(填“是”或“不是”); ⑵.当=-2A 2x时,()F A = ; ⑶.解方程:()+-=-⎛⎫-- ⎪⎝⎭F x 14112x 2F 12x . 25.某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A ,B 两种客车可供租用,A 型客车每辆载客量45人,B 型客车每辆载客量30人.若租用4辆A 型客车和3辆B 型客车共需费用10700元;若租用3辆A 型客车和4辆B 型客车共需费用10300元.(1)求租用A ,B 两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?26.如图,在 ABC V 中, 2AB AC ==,40B ∠=︒,点 D 在线段 BC 上运动(D 不与 B ,C 重合),连接AD ,作 40ADE ∠=︒,DE 与AC 交于点E .(1)当 115ADB ∠=︒时, BAD ∠=;当点 D 从 B 向 C 运动时,BAD ∠逐渐变(填大或小).(2)当2==时,ABDDC AB△与DCE△是否全等?请说明理由.(3)在点D的运动过程中,ADEV的形状可以是等腰三角形吗?若可以,请直接写出∠的度数;若不可以,请说明理由.BDA。
湘教版八年级数学上册期末试卷及答案

湘教版八年级数学上册期末试卷一、选择题(每题3分,共24分)1.点A 的位置如图所示,则点A 所表示的数可能是( ) A .-2.6 B .- 2 C .-23D .1.4 2.若x <y 成立,则下列不等式成立的是( )A .x -2<y -2B .4x >4yC .-x +2<-y +2D .-3x <-3y3.下列计算正确的是( )A .(a 2)3=a 5B .a 2·a =a 3C .a 9÷a 3=a 3D .a 0=14.若一个三角形的两边长分别是3和6,则第三边长不可能是( )A .6B .7C .8D .95.使式子3-x x有意义的实数x 的取值范围是( ) A .x ≤3 B .x ≤3且x ≠0 C .x <3 D .x <3且x ≠06.下列尺规作图,能判断AD 是△ABC 边上的高的是( )7.下列说法:①“两直线平行,同位角相等”与“同位角相等,两直线平行”互为逆命题;②命题“如果两个角相等,那么它们都是直角”的逆命题为假命题;③命题“如果-a =5,那么a =-5”的逆命题为“如果-a ≠5,那么a ≠-5”,其中正确的有( )A .0个B .1个C .2个D .3个8.将一副三角板按如图所示的方式放置,则∠CAF 等于( )A .50°B .60°C .75°D .85°二、填空题(每题4分,共32分)9.实数-3,-1,0,3中,最小的数是________.10.若分式x x 2+2的值为正数,则实数x 的取值范围是________. 11.化简x 1-x +1x -1的值为________. 12.不等式3(x -1)≤x +2的正整数解是________.13.已知0<a <2,化简:a +a 2-4a +4=________.14.已知射线OM .以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB =________度. 15.已知关于x 的不等式3x +mx >-5的解集如图所示,则m 的值为________.16.如图,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,∠DAC =20°,∠C =38°,则∠BAD =________.三、解答题(17题8分,18题9分,19题5分,20题6分, 21,22题每题8分,23,24题每题10分,共64分)17.计算:(1)16+⎝ ⎛⎭⎪⎫-12-1×(π-1)0-|7-3|+3-27;(2)(-2)2-9+(2-1)0+⎝ ⎛⎭⎪⎫13-1;(3)(3+1)(3-1)+12;(4)⎝ ⎛⎭⎪⎫2a 2-b 2-1a 2-ab ÷a a +b.18.解不等式(组)或分式方程:(1)3x +24≥2x -13-1;(2)⎩⎪⎨⎪⎧4-2x <7(2-x ),12x -2(x -2)≤4+3x ;(3)3x -1-2x +1=6x 2-1.19.先化简,再求值:⎝ ⎛⎭⎪⎫1-4x +3÷,其中x =2+1.20.如图,已知点A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF=CE .求证:△ABE ≌△CDF .21.某商店用1 000元购进一种水果来销售,过了一段时间,又用2 800元购进这种水果,所购进的数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克;(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的50千克按照标价的半价出售,出售完全部水果后,利润不低于3 100元,则最初每千克水果的标价至少是多少元?22.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE分别交边AB,AC于点E,D,连接BD.(1)求∠DBC的度数;(2)若BC=4,求AD的长.23.在△ABC中,点Q是BC边上的中点,过点A作与线段BC相交的直线l,过点B作BN⊥l于N,过点C作CM⊥l于M.(1)如图①,若直线l经过点Q,求证:QM=QN.(2)如图②,若直线l不经过点Q,连接QM,QN,那么(1)中的结论是否成立?若成立,给出证明过程;若不成立,请说明理由.(提示:直角三角形斜边上的中线等于斜边的一半.)24.已知等边三角形ABC和等边三角形BDE,点D始终在射线AC上运动.(1)如图①,当点D在AC边上时,连接CE,求证:AD=CE.(2)如图②,当点D不在AC边上而在AC边的延长线上时,连接CE,(1)中的结论是否成立?并给予证明.(3)如图③,当点D不在AC边上而在AC边的延长线上时,条件中“等边三角形BDE”改为“以BD为斜边作Rt△BDE,且∠BDE=30°”,其余条件不变,连接CE并延长,与AB的延长线交于点F,求证:AD=BF.答案一、1.B 2.A 3.B 4.D 5.B 6.D 7.B 8.C二、9.-3 10.x >0 11.-112.1,2 点拨:去括号,得3x -3≤x +2,移项、合并同类项,得2x ≤5,系数化为1,得x ≤2.5,则不等式的正整数解为1,2.13.2 点拨:∵0<a <2,∴a -2<0,∴a +a 2-4a +4=a +|a -2|=a +(2-a )=2.14.6015.-12 点拨:合并同类项,得(3+m )x >-5,结合题图把系数化为1,得x >-53+m ,则有-53+m=-2,解得m =-12. 16.58° 点拨:设∠ABD =α,∠BAD =β,∵AD ⊥BD ,∴α+β=90°.① ∵BD 是∠ABC 的平分线,∴∠ABC =2∠ABD =2α.∵∠ABC +∠BAC +∠C =180°,∴2α+β+20°+38°=180°.②联立①②可得⎩⎨⎧α+β=90°,2α+β=122°,解得⎩⎨⎧α=32°,β=58°,∴∠BAD =58°. 三、17.解:(1)原式=4-2-3+7-3=7-4.(2)原式=4-3+1+3=5.(3)原式=3-1+2 3=2+2 3.(4)原式=⎣⎢⎡⎦⎥⎤2(a +b )(a -b )-1a (a -b )·a +b a =⎣⎢⎡⎦⎥⎤2a a (a +b )(a -b )-a +b a (a -b )(a +b )·a +b a=a -b a (a +b )(a -b )·a +b a =1a 2.18.解:(1)3x +24≥2x -13-1,去分母,得3(3x +2)≥4(2x -1)-12,去括号,得9x +6≥8x -4-12,移项,得9x -8x ≥-4-12-6,合并同类项,得x ≥-22.(2)⎩⎪⎨⎪⎧4-2x <7(2-x ),①12x -2(x -2)≤4+3x ,② 解①,得x <2,解②,得x ≥0.故不等式组的解集为0≤x <2.(3)3x -1-2x +1=6x 2-1, 去分母、去括号,得3x +3-2x +2=6,解得x =1,经检验x =1是增根,分式方程无解.19.解:⎝ ⎛⎭⎪⎫1-4x +3÷x 2-2x +12x +6=x +3-4x +3·2(x +3)(x -1)2 =2x -1,当x =2+1时,原式=22+1-1= 2. 20.证明:∵AB ∥CD ,∴∠BAC =∠DCA .∵AF =CE ,∴AF +EF =EF +CE ,即AE =CF .在△ABE 和△CDF 中,⎩⎨⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF (AAS).21.解:(1)设该商店第一次购进水果x 千克,则第二次购进这种水果2x 千克.由题意得1 000x +2=2 8002x ,解得x =200.经检验,x =200是所列分式方程的解.答:该商店第一次购进水果200千克.(2)设最初每千克水果的标价是 y 元,则(200+200×2-50)·y +50×12y -1 000-2800≥3 100,解得y ≥12.答:最初每千克水果的标价至少是12元.22.解:(1)∵AB =AC ,∠A =36°,∴∠ABC =∠C =12×(180°-36°)=72°.∵DE 垂直平分AB ,∴AD =BD ,∴∠DBA =∠A =36°,∴∠DBC =∠ABC -∠ABD =36°.(2)由(1)得∠DBC =36°,∠C =72°,∴∠BDC =180°-∠C -∠DBC =72°,∴∠C =∠BDC ,∴BC =BD .∵AD =BD ,∴AD =BC =4.23.(1)证明:∵点Q 是BC 边上的中点,∴BQ =CQ .∵BN ⊥l ,CM ⊥l ,∴∠BNQ =∠CM Q =90°.又∵∠BQN =∠CQM ,∴△BQN ≌△CQM (AAS).∴QM =QN .(2)解:仍然成立.证明:延长NQ 交CM 于E ,∵点Q 是BC 边上的中点,∴BQ =CQ ,∵BN ⊥l ,CM ⊥l ,∴BN ∥CM ,∴∠NBQ =∠ECQ ,又∵∠BQN =∠CQE ,∴△BQN ≌△CQE (ASA).∴QN =QE .∵CM ⊥l ,∴∠NME =90°,∴QM =QN .24.(1)证明:∵△ABC ,△BDE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE .在△ABD 和△CBE 中,⎩⎨⎧AB =CB ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(2)解:成立.证明:∵△ABC ,△BDE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABC +∠CBD =∠DBE +∠CBD ,即∠ABD =∠CBE .在△ABD 和△CBE 中,⎩⎨⎧AB =CB ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(3)证明:如图,延长BE 至H 使EH =BE ,连接CH ,DH .∵BE =EH ,DE ⊥BH ,∴DB =DH ,∠BDE =∠HDE =30°,∴∠BDH =60°,∴△DBH 是等边三角形,∴BD =BH ,∠DBH =60°.∵△ABC 是等边三角形,∴∠ABC =60°,AB =CB .∴∠ABC +∠CBD =∠DBH +∠CBD ,即∠ABD =∠CBH .在△ABD 和△CBH 中,⎩⎨⎧AB =CB ,∠ABD =∠CBH ,BD =BH ,∴△ABD ≌△CBH (SAS),∴AD =CH ,∠A =∠HCB =∠ABC =60°,∴BF ∥CH ,∴∠F =∠ECH ,在△EBF 和△EHC 中,⎩⎨⎧∠BEF =∠HEC ,∠F =∠ECH ,BE =HE ,∴△EBF ≌△EHC (AAS),∴BF =CH ,∴AD =BF .湘教版八年级数学上册期末试卷2一、选择题(每题3分,共30分)1.若分式x 2-9x -3的值为0,则x 的值是( ) A .3 B .-3 C .±3 D .92.下列长度的三条线段能围成三角形的是( )A .1,2,3.5B .4,5,9C .20,15,8D .5,15,83.要使式子1+2x x -2有意义,则x 的取值范围是( ) A .x ≥12 B .x ≥-12 C .x ≥12且x ≠2 D .x ≥-12且x ≠24.化简a +1a 2-a ÷a 2-1a 2-2a +1的结果是( ) A.1a B .a C.a +1a -1 D.a -1a +15.如图,已知∠1=∠2,AC =AD ,添加下列条件:①AB =AE ;②BC =DE ;③∠C =∠D ;④∠B =∠E .其中能使△ABC ≌△AED 的条件有( )A .4个B .3个C .2个D .1个6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A.600x +50=450xB.600x -50=450xC.600x =450x +50D.600x =450x -507.不等式x -72+1<3x -22的负整数解有( ) A .1个 B .2个 C .3个 D .4个8.已知m =⎝ ⎛⎭⎪⎫-33×(-221),则有( ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-59.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 延长线上一点,当AP =CQ 时,PQ 交AC 于点D ,则DE 的长为( ) A.13 B.12 C.23 D .不能确定10.如图,E ,D 分别是△ABC 的边AC ,BC 上的点,若AB =AC ,AD =AE ,则( )A .当∠B 为定值时,∠CDE 为定值B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值二、填空题(每题3分,共24分)11.计算:45-25×50=________. 12.⎝ ⎛⎭⎪⎫-120=________,⎝ ⎛⎭⎪⎫13-1=________,用科学记数法表示-0.000 005 03为__________.13.关于x 的不等式组⎩⎨⎧x >m -1,x >m +2的解集是x >-1,则m =________. 14.若317-a 与33a -1互为相反数,则3a 的值为________.15.若关于x 的分式方程3-2kx x -3=23-x-2有增根,则k =________. 16.等腰三角形的顶角大于90°,如果过它顶角的顶点作一直线能将它分成两个等腰三角形,则顶角的度数一定是________.17.如图,在△ABC 中,AB =AC ,DE 垂直平分AB 交AC 于点E ,垂足为点D .若△ABC 的周长为28,BC =8,则△BCE 的周长为________.18.如图,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,∠DAC =20°,∠C =38°,则∠BAD =________.三、解答题(20,21题每题6分,24,25题每题12分,其余每题10分,共66分)19.(1)计算:212+3113-513-2348;(2)已知x =2+3,y =2-3,求代数式⎝ ⎛⎭⎪⎫x +y x -y -x -y x +y ·⎝ ⎛⎭⎪⎫1x 2-1y 2的值.20.解分式方程:(1)2-x 3+x =12+1x +3; (2)2x +9x +3-1x -3=5-3x -2x .21.已知x =1是不等式组⎩⎪⎨⎪⎧3x -52≤x -2a ,3(x -a )<4(x +2)-5的解,求a 的取值范围.22.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一直线上,连接BD交AC于点F.(1)求证:△BAD≌△CAE;(2)猜想BD,CE有何特殊位置关系,并说明理由.23.如图,AD是△ABC的角平分线.(1)若AB=AC+CD,求证:∠ACB=2∠B;(2)当∠ACB=2∠B时,AC+CD与AB的数量关系如何?说说你的理由.24.某服装店用4 500元购进一批衬衫,很快售完.服装店老板又用2 100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1 950元,则第二批衬衫每件至少要售多少元?25.已知△ABC和△DEF均为等边三角形,点D在△ABC的边AB上,点F在直线AC上;(1)若点C和点F重合(如图①),求证:AE∥BC;(2)若点F在AC的延长线上(如图②),(1)中的结论还能成立吗?给出你的结论并证明.答案一、1.B2.C3.D点拨:根据二次根式和分式有意义的条件,即被开方数大于或等于0,分母不等于0,可以得到⎩⎨⎧1+2x ≥0,x -2≠0,解得x ≥-12且x ≠2.故选D. 4.A 点拨:原式=a +1a (a -1)·(a -1)2(a +1)(a -1)=1a . 5.B 6.A 7.A8.A 点拨:⎝ ⎛⎭⎪⎫-33×(-221)=233×21=27=28,因为25<28<36,所以5<28<6,故选A.9.B 点拨:过P 作PF ∥BC 交AC 于点F .由△ABC 为等边三角形,易得△APF也是等边三角形,∴AP =PF .∵AP =CQ ,∴PF =CQ .又∵PF ∥CQ ,∴易得△PFD ≌△QCD .∴DF =DC .∵PE ⊥AF ,且PF =P A ,∴AE =EF .∴DE =DF +EF =12CF +12AF =12AC =12×1=12.10.B 点拨:∵AB =AC ,∴∠B =∠C .∵AD =AE ,∴∠ADE =∠AED =∠γ=∠CDE +∠C .由∠ADC =∠ADE +∠CDE = ∠CDE +∠C +∠CDE =2∠CDE +∠C =∠B +∠BAD ,可得2∠CDE = ∠BAD =∠α,∴∠CDE =12∠α.故当∠α为定值时,∠CDE 也为定值.二、11. 512.1;3;-5.03×10-613.-3 点拨:因为m +2>m -1,所以m +2=-1,所以m =-3.14.-2 点拨:由题知317-a =-33a -1,可得17-a =-(3a -1),∴2a =-16,∴a =-8.∴3a =-2.15.56 点拨:因为原分式方程有增根,所以增根为x =3.原分式方程化为整式方程为3-2kx =-2-2(x -3),把x =3代入,解得k =56.16.108° 点拨:在△ABC 中,设∠B =∠C =α.如图①,若AC =CD ,DA =DB ,则∠DAB =α.∴∠CDA =2α=∠CAD ,∴∠BAC =3α.由α+α+3α=180°,得α=36°,∴∠BAC =3α=108°.如图②,若AD =CD ,AD =BD ,则∠BAD =∠CAD =α,∴4α=180°,∴α=45°,∴∠BAC =2α=90°,不合题意.17.18 点拨:因为△ABC 的周长为AB +AC +BC =AB +AC +8=28,AB =AC ,所以AB =AC =10.又因为DE 垂直平分AB ,所以AE =BE .所以△BCE 的周长为BE +EC +BC =AE +EC +BC =AC +BC =10+8=18. 18.58° 点拨:设∠ABD =α,∠BAD =β,∵AD ⊥BD ,∴α+β=90°.①∵BD 是∠ABC 的平分线,∴∠ABC =2∠ABD =2α.∵∠ABC +∠BAC +∠C =180°,∴2α+β+20°+38°=180°.②联立①②可得⎩⎨⎧α+β=90°,2α+β=122°, 解得⎩⎨⎧α=32°,β=58°,∴∠BAD =58°. 三、19.解:(1)原式=43+3×233-433-23×43=43+23-43=2 3.(2)原式=(x +y )2-(x -y )2(x +y )(x -y )·y 2-x 2x 2y 2=4xy -(x +y )(y -x )·(y +x )(y -x )x 2y 2=-4xy . 当x =2+3,y =2-3时,原式=-44-3=-4. 20.解:(1)方程两边同乘2(x +3),得2(2-x )=x +3+2.整理,得-3x =1,所以x =-13.经检验,x =-13是原分式方程的解.(2)方程两边同乘x (x +3)(x -3),得(2x +9)(x -3)x -x (x +3)=5x (x +3)(x -3)-(3x -2)(x +3)(x -3).整理,得-12x =-18,所以x =32.经检验,x =32是原分式方程的解.21.解:∵x =1是原不等式组的解,∴⎩⎪⎨⎪⎧3-52≤1-2a ,①3(1-a )<4×(1+2)-5,② 解不等式①,得a≤1,解不等式②,得a >-43.故a 的取值范围为-43<a ≤1.22.(1)证明:∵∠BAC =∠DAE =90°,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△BAD 和△CAE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△BAD ≌△CAE.(2)解:BD ⊥CE .理由如下:由(1)可知△BAD ≌△CAE ,∴∠ABD =∠ACE .∵∠BAC =90°,∴∠ABD +∠AFB =90°.又∵∠AFB =∠DFC ,∴∠ACE +∠DFC =90°,∴∠BDC =90°,即BD ⊥CE .23.(1)证明:延长A C 至E ,使CE =CD ,连接DE .∵AB =AC +CD ,∴AB =AE .∵AD 平分∠BAC ,∴∠BAD =∠EAD .在△BAD 与△EAD 中,⎩⎨⎧AB =AE ,∠BAD =∠EAD ,AD =AD ,∴△BAD ≌△EAD .∴∠B =∠E.∵CD =CE ,∴∠CDE =∠E .∵∠ACB =∠CDE +∠E ,∴∠ACB =2∠E =2∠B .(2)解:AB =AC +CD .理由:在AC 的延长线上取点F ,使CF =CD ,连接DF . ∴∠CDF =∠F ,又∵∠ACB =∠CDF +∠F ,∴∠ACB =2∠F .∵∠ACB =2∠B ,∴∠B =∠F .在△BAD 与△F AD 中,⎩⎨⎧∠B =∠F ,∠BAD =∠F AD (角平分线的定义),AD =AD ,∴△BAD ≌△F AD .∴AB =AF =AC +CF =AC +CD .24.解:(1)设第一批这种衬衫购进了x 件,则第二批购进了12x 件.根据题意,可得4 500x -10=2 10012x,解得x =30,经检验,x =30是原方程的根,且符合题意.∴12x =12×30=15(件).答:两次分别购进这种衬衫30件,15件.(2)设第二批衬衫每件的售价为m 元.第一批衬衫每件的进价为4 500÷30=150(元),第二批衬衫每件的进价为150-10=140(元),∴(200-150)×30+15(m -140)≥1 950,解得m ≥170.答:第二批衬衫每件至少要售170元.25.(1)证明:∵△ABC 与△CDE 均为等边三角形,∴BC =AC ,DC =EC ,∠B =∠BCA =∠DCE =60°,∴∠BCD =∠ACE .易得△BCD ≌△ACE ,∴∠B =∠EAC .又∵∠B =∠ACB ,∴∠EAC =∠ACB .∴AE ∥BC .(2)解:若点F 在AC 的延长线上,(1)中的结论仍然成立,即AE ∥BC . 证明:过点F 作FM ∥BC 交AB 的延长线于点M .∵△ABC 为等边三角形,∴△AFM 也是等边三角形.∴∠M =∠AFM =60°.同(1)可证△FDM ≌△FEA ,∴∠EAF=∠M=60°. ∴∠AFM=∠EAF.∴AE∥FM.又∵FM∥BC,∴AE∥BC.。
湘教版八年级数学上册期末考试卷【加答案】

湘教版八年级数学上册期末考试卷【加答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1的算术平方根为( )A. BC .2±D .22.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 512a =-,则a 的取值范围是( )A .12a <B .12a ≤C .12a >D .12a ≥ 6.下列二次根式中能与)ABCD7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.808.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.210.如图,已知BD是ABC的角平分线,ED是BC的垂直平分线,90BAC∠=︒,3AD=,则CE的长为()A.6 B.5 C.4 D.33二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是.2x1-有意义,则x的取值范围是▲.3.分解因式6xy2-9x2y-y3 = _____________.4.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.5.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是__________.6.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是________.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.已知a23+,求229443a a aa--+-4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.(1)求点B 的坐标;(2)若△ABC 的面积为4,求2l 的解析式.5.如图,直线l 1:y 1=﹣x+2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x+b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.6.某经销商从市场得知如下信息:他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A 品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、B5、B6、B7、D8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、x1≥.3、-y(3x-y)24、40°5、(-2,0)6、12三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、20xy-32,-40.3、7.4、(1)(0,3);(2)112y x=-.5、(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t<9或9<t<11,③存在,当t的值为3或或9﹣或6时,△APQ为等腰三角形.6、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.。
湘教版数学八年级上册期末测试卷及答案(共4套)

湘教版数学八年级上册期末测试卷(一)(时间:120分分值:150分)一、选择题:(每小题4分,共40分)1.(4分)若,则2a+b﹣c等于()A.0 B.1 C.2 D.32.(4分)已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙 B.丙<甲<乙C.甲<丙<乙D.丙<乙<甲3.(4分)解不等式中,出现错误的一步是()A.6x﹣3<4x﹣4 B.6x﹣4x<﹣4+3 C.2x<﹣1 D.4.(4分)不等式的正整数解有()A.2个B.3个C.4个D.5个5.(4分)如果有意义,那么x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<16.(4分)的相反数是()A.﹣B.C.﹣D.7.(4分)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和58.(4分)已知a<b,则化简二次根式的正确结果是()A.B.C.D.9.(4分)已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A.c B.2b+c C.2a﹣c D.﹣2b+c10.(4分)如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.二、填空题:(每小题4分,共32分)11.(4分)用不等式表示“6与x的3倍的和大于15”.12.(4分)不等式的最大正整数解是,最小正整数解是.13.已知:2a﹣4、3a﹣1是同一个正数的平方根,则这个正数是.14.一个负数a的倒数等于它本身,则=;若一个数a的相反数等于它本身,则﹣5+2=.15.(4分)比较大小:﹣3﹣2.16.(4分)如果最简二次根式与是同类二次根式,那么a=.17.(4分)与的关系是.18.(4分)观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:.三、解答题:(共6小题,共78分)19.(32分)计算:(1);(2);(3);(4).20.(8分)x取什么值时,代数式5(x﹣1)﹣2(x﹣2)的值大于x+2的相反数.21.(10分)先化简,再求值:(﹣)÷,其中x=2.22.(10分)解方程组,并求的值.23.(10分)已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c的算术平方根.24.(8分)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.参考答案:一、选择题。
2024年湘教版初二上学期期末数学试题与参考答案

2024年湘教版数学初二上学期期末模拟试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8cm,宽是5cm,那么它的面积是()平方厘米。
A、40B、32C、30D、252、下列数中,哪个数是负数?()A、-3B、0C、3D、-53、下列四个命题中,正确的个数是:A、2B、3C、4D、53.三角形的三条中线相交于一点。
(正确)4.在同一平面内,垂直于同一条直线的两条直线互相平行。
(正确)5.三角形的一个外角等于不相邻的两个内角之和。
(正确)4、一个等腰三角形的两边长分别为4和8,那么这个等腰三角形的周长为:A、12B、20C、16D、12或205、小明一家去公园游玩,他们乘坐公交车去,票价是每人3元,回家时改乘出租车,出租车起步价是7元,之后每行驶1公里收费1.5元。
若他们往返共行驶了5公里,则他们回家的打车费用是:A. 12元B. 15元C. 17.5元D. 20元6、一个二次函数的图象开口向上,顶点坐标为(-2,1),且过点(1,4)和(4,0)。
则该二次函数的解析式是:A. y = -(x+2)² + 1B. y = (x+2)² + 1C. y = (x-2)² - 1D. y = -(x-2)² + 17、已知函数(y=2x2−4x+3)的图像的顶点坐标是:A. (1, 1)B. (2, 1)C. (1, -1)D. (2, -1)8、在等腰三角形(ABC)中,底边(BC)的长度为 6,腰(AB=AC=8)。
则该三角形的面积(S)为:A. 18B. 24C. 30D. 369、计算:(√16−√9)。
A、1B、2C、3D、4 10、下列哪个图形不是中心对称图形?A、正方形B、圆C、等边三角形D、菱形二、填空题(本大题有5小题,每小题3分,共15分)1、小明用直尺和量角器画了一个直角三角形,测得其两个锐角的度数分别为45°和x°。
湘教版八年级上册数学期末考试试卷附答案

湘教版八年级上册数学期末考试试题一、选择题。
(每小题只有一个答案正确)1.已知a b <,下列式子成立的是( )A .22a b +>+B .44a b <C .33a b -<-D .如果0c <,那么a b c c< 2.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( ) A .B .C .D . 3.下列计算24(2)a -的结果中,正确的是( )A .616aB .68aC .816aD .88a4.三角形的两边长分别为5cm 和7cm ,则第三边长可能为( )A .1cmB .2cmC .5cmD .12cm5.若关于x 的分式方程3x x -=2﹣3-m x 有增根,则m 的值为( ) A .﹣3B .2C .3D .不存在 6.分式方程23121x x x --=+的解为( ) A .16x =- B .16x = C .13x = D .12x = 7.不等式组2351x x ⎧-≥⎪⎨⎪+<-⎩的解集为( )A .6x ≥-B .6x >-C .6x ≤-D .6x <-8.如图,在锐角△ABC 中,8AB =,16ABC S ∆=,BAC ∠的平分线交BC 于点D ,且AD BC ⊥,点,M N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .4B .5C .6D .8二、填空题9.已知:△ABC ≌△A′B′C′,∠A=∠A′=80°,∠B=∠B′=60°,则∠C ′=_______度.10.如图,在△ABC 中,∠C =90°,点D 在AC 上,DE ∥AB ,若∠CDE =165°,则∠B 的度数为_______.11.化简2242()44224x x x x x x -+÷++++的结果是_______. 12.如图,△ABC 是等边三角形,延长BC 到点D ,使CD =AC ,连接AD .则CAD ∠=_______.13.已知:11x x -=,则221x x+=_______. 14.某市为绿化环境计划植树3000棵,实际劳动中每天植树的数量比原计划多30%,结果提前5天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为_______. 15.如图,在Rt ABC 中,90C ∠=︒,22B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边AC ,AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=_______°.16.已知方程232a a a -+=,且关于x 的不等式组x a x b ≥⎧⎨≤⎩只有3个整数解,那么b 的取值范围是_______.三、解答题17.解方程4233x x x x -=--.1823(2)3-+-+.19.解不等式组2121533324()2x x x x --⎧+≥⎪⎪⎨⎪-≤-⎪⎩.20.先化简,再求值:2231693x x x x x x x x -++÷+-+-,其中x =21.如图,已知:AB =AC ,BD =CD ,点P 是AD 延长线上的一点.求证:PB =PC .22.如图,C 为线段AB 上一点,AD ∥EB ,AC =BE ,AD =BC .CF 平分∠DCE .(1)求证:△ACD ≌△BEC ;(2)问:CF 与DE 的位置关系?23.某商店准备购进A ,B 两种商品, A 种商品每件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A ,B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?24.在△ABC 中,AB =AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段BC 上,如果∠BAC =90°,则∠BCE 为多少?说明理由; (2)设∠BAC =α,∠BCE =β.①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论,不需证明.参考答案1.B【分析】根据不等式的基本性质,注意判断选项,即可得到答案.【详解】∵a b <,∴22a b +<+,故A 不成立,∵a b <,∴44a b <,故B 成立,∵a b <,∴33a b ->-,故C 不成立,∵a b <,0c <, ∴a b c c>,故D 不成立. 故选B .【点睛】本题主要考查不等式的基本性质,熟练掌握不等式的基本性质,是解题的关键. 2.A【分析】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A 是作BC 边上的高,C 是作AB 边上的高,D 是作AC 边上的高. 故选A.考点:三角形高线的作法3.C【分析】根据积的乘方法则,即可得到答案.【详解】24(2)a -=(-2)4∙(a 2)4=816a ,故选C .【点睛】本题主要考查积的乘方法则,熟练掌握“积的乘方,等于各个因式的乘方的积”是解题的关键.4.C【分析】根据三角形的三边长关系,求出第三边长范围,进而即可得到答案.【详解】∵三角形的两边长分别为5cm 和7cm ,∴7-5<第三边<5+7,即:2<第三边<12,故选C .【点睛】本题主要考查三角形的三边长关系,熟练掌握三角形的任意两边之差小于第三边,任意两边之差大于第三边,是解题的关键.5.C【详解】解:方程两边都乘x -3,得x -2(x -3)=m∵原方程有增根,∴最简公分母x -3=0,解得x =3,当x =3时,m =3故m 的值是3故选C .6.B【分析】通过去分母,去括号,移项合并同类项,未知数系数化为1,即可求解.【详解】23121x x x--=+, 去分母得: (23)12(1)x x x x x --+=+,化简得:-6x=-1,解得:x=16, 经检验:x=16是方程的解, ∴分式方程的解为:x=16. 故选B .【点睛】本题主要考查解分式方程,熟练掌握解分式方程的步骤,是解题的关键,注意分式方程的解要检验.7.D【分析】分别求出每个不等式的解,再取公共部分,即可求解.【详解】2351x x ⎧-≥⎪⎨⎪+<-⎩①②, 由①得:x≤-6,由②得:x <-6,∴不等式组的解为:6x <-.故选D .【点睛】本题主要考查解一元一次不等式组,熟练掌握“大大取大,小小取小,大小小大中间找”,是解题的关键.8.A【分析】作BH ⊥AC ,垂足为H ,交AD 于M′点,过M′点作M′N′⊥AB ,垂足为N′,根据AD 是∠BAC 的平分线可知M′H =M′N′,则BM′+M′N′为所求的最小值,最小值为BH 的长,进而即可求解.【详解】解:如图,作BH ⊥AC ,垂足为H ,交AD 于M′点,过M′点作M′N′⊥AB ,垂足为N′, ∵AD 是∠BAC 的平分线,∴M′H =M′N′,则BM′+M′N′= BM′+ M′H=BH ,∴BH 是点B 到直线AC 上各个点的最短距离,∴BM MN +的最小值= BH ,∵BAC ∠的平分线交BC 于点D ,且AD BC ⊥,∴∠BAD=∠CAD ,∠ADC=∠ADB=90°,AD=AD ,∴∆BAD ≅∆CAD ,∴AC=AB=8, ∴12AC∙BH=16ABC S ∆=, ∴BH=4,即BM MN +的最小值是4.【点睛】本题考查的是最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,化两条线段的和的最小值为一条垂线段的长.9.40°【分析】根据全等三角形的性质以及三角形内角和定理,即可求解.【详解】∵△ABC≌△A′B′C′,∠A=∠A′=80°,∠B=∠B′=60°,∴∠C′=∠C=180°-80°-60°=40°,故答案是:40°.【点睛】本题主要考查全等三角形的性质以及三角形内角和定理,熟练掌握上述性质和定理是解题的关键.10.75°【分析】利用平角的定义可得∠ADE=15°,再根据平行线的性质知∠A=∠ADE=15°,再由内角和定理可得答案.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°−∠C−∠A=180°−90°−15°=75°.故答案是:75°.本题考查的是平行线的性质以及三角形内角和定理的运用,解题时注意:两直线平行,内错角相等.11.2【分析】先约分,再算加法,然后把除法化为乘法,进而即可求解.【详解】原式=2(2)(2)2(2)224x x x x x x ⎡⎤+-+÷⎢⎥+++⎣⎦ =()222222x x x x x -⎡⎤+÷⎢⎥+++⎣⎦ =()222222x x x x x +-⎡⎤+⋅⎢⎥++⎣⎦ =()222x x x x+⋅+ =2,故答案是:2.【点睛】本题主要考查分式的化简,掌握分式的四则混合运算法则,是解题的关键.12.30°【分析】AB =AC =BC =CD ,即可求出∠CAD =∠D ,,进而即可求解.【详解】解:∵△ABC 是等边三角形,∴∠B =∠BAC =∠ACB =60°,∵CD =AC ,∴∠CAD =∠D ,∵∠ACB =∠CAD +∠D =60°,∴∠CAD =∠D =30°,故答案是:30°.【点睛】本题考查了等边三角形的性质,等腰三角形的性质,熟练掌握等腰三角形和等边三角形的性质,是解题的关键.13.3【分析】根据完全平方公式的变形公式,即可求解.【详解】 ∵11x x-=, ∴221x x +=2212123x x ⎛⎫-+=+= ⎪⎝⎭, 故答案是:3.【点睛】本题主要考查完全平方公式的变形公式,熟练掌握222()2a b a b ab +=-+,是解题的关键. 14.3000300051.2x x-= 【分析】设原计划每天植树x 棵,则实际每天植树(1+20%)x =1.2x ,根据“原计划所用时间−实际所用时间=5”列方程即可.【详解】解:设原计划每天植树x 棵,则实际每天植树(1+20%)x =1.2x , 根据题意可得:3000300051.2x x -=, 故答案为:3000300051.2x x -=. 【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴含的相等关系. 15.56°【分析】根据直角三角形两锐角互余得∠BAC =68°,由角平分线的定义得∠BAM =34°,由线段垂直平分线可得△AQM 是直角三角形,故可得∠AMQ +∠BAM =90°,即可求出α.【详解】解:∵△ABC 是直角三角形,∠C =90°,∴∠B +∠BAC =90°,∵∠B=22°,∴∠BAC=90°−∠B=90°−22°=68°,由作图知:AM是∠BAC的平分线,∴∠BAM=12∠BAC=34°,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠BAM=90°,∴∠AMQ=90°−∠BAM=90°−34°=56°,∴α=∠AMQ=56°.故答案为:56°.【点睛】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的定义,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.16.3≤b<4【分析】首先解分式方程求得a的值,然后根据不等式组的解集确定x的范围,再根据只有3个整数解,确定b的范围.【详解】解:解方程232aa a-+=,两边同时乘以a得:2-a+2a=3,解得:a=1,∴关于x的不等式组x ax b≥⎧⎨≤⎩,则解集是1≤x≤b ,∵不等式组只有3个整数解,则整数解是1,2,3,∴3≤b <4.故答案是:3≤b <4.【点睛】此题考查的是一元一次不等式组的解法和解分式方程,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.2x =-【分析】通过去分母,去括号、移项、合并同类项,即可求解.【详解】解:方程两边同乘()3x -,得()423x x x --=-,去括号、移项、合并同类项,得36x =-,解得2x =-.检验:2x =-时,30x -≠,∴2x =-是原分式方程的解.【点睛】本题主要考查解分式方程,熟练掌握去分母,去括号、移项、合并同类项,未知数系数化为1是解题的关键.18.1【分析】先算立方根,乘方以及绝对值,再算加减法,即可求解.【详解】原式=243-+-=1【点睛】本题主要考查实数的混合运算,熟练掌握立方根,乘方以及绝对值,是解题的关键. 19.28117x -≤≤ 【分析】分别求出各个不等式的解,再取各个解的公共部分,即可得到答案.【详解】 解:2121533324()2x x x x --⎧+≥⎪⎪⎨⎪-≤-⎪⎩①②, 由①得:3(2x-1)+15≥5(2-x),即:11x≥-2,解得:211x ≥-, 由②得:3x-2≤6-4x ,即:7x≤8,解得:87x ≤, ∴不等式组的解为:28117x -≤≤. 【点睛】 本题主要考查解一元一次不等式组,熟练掌握“大大取大,小小取小,大小小大中间找”是解题的关键.20.11x -,【分析】通过约分和通分对分式进行化简,再代入求值,即可求解.【详解】原式=()23(1)133x xx x x x x -++÷+-- =()2331(1)3x x x x x x x ---⋅++- =11(1)x x x x -++ =21(1)(1)x x x x x -++ =(1)(1)(1)x x x x +-+ =1x x- =11x-,当x=1. 【点睛】 本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.21.见详解【分析】先证明△ABD ≌△ACD ,得∠BAP =∠CAP ,再证明△ABP ≌△ACP ,即可得到结论.【详解】证明:在△ABD 和△ACD 中,AB AC AD AD BD CD ⎧⎪⎨⎪⎩===,∴△ABD ≌△ACD ,∴∠BAP =∠CAP ,在△ABP 和△ACP 中,AB AC BAP CAP AP AP ⎧⎪∠∠⎨⎪=⎩==,∴△ABP ≌△ACP ,∴PB =PC .【点睛】本题考查全等三角形的判定和性质,,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)证明见解析;(2)CF ⊥DE .【分析】(1)根据平行线性质求出∠A =∠B ,根据SAS 推出即可;(2)根据全等三角形的性质推出CD =CE ,根据等腰三角形性质可得CF ⊥DE.【详解】证明:(1)∵AD ∥BE ,∴∠A =∠B ,在△ACD 和△BEC 中,AD BC A B AC BE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BEC (SAS );(2)∵△ACD ≌△BEC ,∴CD =CE ,又∵CF 平分∠DCE ,∴CF ⊥DE .【点睛】本题考查了平行线性质,全等三角形的性质和判定,等腰三角形性质的应用,注意:全等三角形的判定定理有SAS 、ASA 、AAS 、SSS ,全等三角形的对应边相等,对应角相等. 23.(1)A 种商品每件的进价为50元,B 种商品每件的进价是30元;(2)该商店有5种进货方案.【分析】(1)设A 种商品每件的进价为x 元,则B 种商品每件的进价是(x−20)元,由题意得关于x 的分式方程,求解并检验,然后作答即可;(2)设购进A 种商品a 件,则购进B 种商品(40−a )件,由题意得关于a 的不等式组,解得a 的取值范围,再取整数解,则方案数可得.【详解】解:(1)设A 种商品每件的进价为x 元,则B 种商品每件的进价是(x−20)元, 由题意得:3000180020x x =-, 解得:x =50,经检验,x =50是原方程的解且符合实际意义.50−20=30(元),答:A 种商品每件的进价为50元,B 种商品每件的进价是30元;(2)设购进A 种商品a 件,则购进B 种商品(40−a )件,由题意得:()5030401560402a a a a ⎧+-≤⎪⎨-≥⎪⎩, 解得:403≤a≤18, ∵a 取整数,∴a 可为14,15,16,17,18,答:该商店有5种进货方案.【点睛】本题考查了分式方程和一元一次不等式组在实际问题中的应用,理清题中的数量关系是解题的关键.24.(1)90°;(2)①α+β=180°,理由见详解;②点D 在直线BC 上移动,α+β=180°或α=β.【分析】(1)由等腰直角三角形的性质可得∠ABC =∠ACB =45°,由“SAS”可证△BAD ≌△CAE ,可得∠ABC =∠ACE =45°,可求∠BCE 的度数;(2)①由“SAS”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论;②分两种情况画出图形,由“SAS”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论.【详解】解:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△BAD ≌△CAE (SAS )∴∠ABC =∠ACE =45°,∴∠BCE =∠ACB +∠ACE =90°;(2)①α+β=180°,理由:∵∠BAC =∠DAE ,∴∠BAC−∠DAC =∠DAE−∠DAC .即∠BAD =∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .∵∠ACE +∠ACB =β,∴∠B +∠ACB =β,∵α+∠B +∠ACB =180°,∴α+β=180°;②如图1:当点D 在射线BC 上时,α+β=180°,连接CE ,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,在△ABC 中,∠BAC +∠B +∠ACB =180°,∴∠BAC +∠ACE +∠ACB =∠BAC +∠BCE =180°,即:∠BCE +∠BAC =180°,∴α+β=180°,如图2:当点D 在射线BC 的反向延长线上时,α=β.连接BE ,∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠ABD=∠ACE=∠ACB+∠BCE,∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,∵∠BAC=180°−∠ABC−∠ACB,∴∠BAC=∠BCE.∴α=β;综上所述:点D在直线BC上移动,α+β=180°或α=β.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,三角形的内角和定理,证明△ABD≌△ACE是解本题的关键.。
湘教版八年级上册数学期末考试试卷附答案

八年级上册数学期末考试试题一、选择题(每小题3分,共12小题,满分36分.请把表示正确答案的字母填入下表中对应的题号下.)1.(3分)下列分式中,是最简分式的是()A.B.C.D.2.(3分)当分式的值为0时,字母x的取值应为()A.﹣1 B.1 C.﹣2 D.23.(3分)下列计算正确的是()A.2﹣3=﹣8 B.20=1 C.a2•a3=a6D.a2+a3=a54.(3分)(﹣8)2的立方根是()A.4 B.﹣4 C.8 D.﹣85.(3分)若代数式有意义,则x必须满足条件()A.x≠﹣B.x>C.x>﹣D.x≥﹣6.(3分)已知一个等腰三角形的一个内角是50°,则这个等腰三角形的另外两个内角度数分别是()A.50°,80°B.65°,65°C.50°,80°或65°,65°D.无法确定7.(3分)下列命题是假命题的是()A.实数与数轴上的点一一对应B.如果两个数的绝对值相等,那么这两个数必定也相等C.对顶角相等D.三角形的重心是三角形三条中线的交点8.(3分)下列长度的三根线段,能构成三角形的是()A.3cm,10cm,5cm B.4cm,8cm,4cmC.5cm,13cm,12cm D.2cm,7cm,4cm9.(3分)不等式组的解集为()A.x>﹣1 B.x≤3 C.1<x≤3 D.﹣1<x≤310.(3分)计算÷×的结果估计在()A.5至6之间B.6至7之间C.7至8之间D.8至9之间11.(3分)已知关于x的方程﹣=0的增根是1,则字母a 的取值为()A.2 B.﹣2 C.1 D.﹣112.(3分)用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中()A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°二、填空题(每小题3分,共6小题,满分18分)13.(3分)最小刻度为0.2nm(1nm=10﹣9m)的钻石标尺,可以测量的距离小到不足头发丝直径的十万分之一,这也是目前世界上刻度最小的标尺,用科学记数法表示这一最小刻度为m.14.(3分)分式方程=﹣4的解是x= .15.(3分)计算:•= .16.(3分)如图,将三角尺的直角顶点放在直尺的一边上,使∠1=60°,∠2=100°,则∠3= °.17.(3分)如图,已知∠BAC=∠DAC,则再添加一个条件,可使△ABC≌△ADC.18.(3分)如图,已知在△ABC中,AB=7,BC=6,AC的垂直平分线DE交AC于点E,交AB于点D,连接CD,则△BCD的周长为.三、解答题:(19题每小题8分,20题6分,满分14分)19.(8分)(1)计算:﹣(2)计算:(2﹣5)﹣(﹣)20.(6分)解下列不等式≤﹣1,并将解集在数轴上表示出来.四、分析与说理:(每小题8分,共2小题,满分16分)21.(8分)已知:如图所示,AB=AC,CE与BF相交于点D,且BD=CD.求证:DE=DF.22.(8分)已知:如图所示,在边长为4的等边△ABC中,AD为BC 边上的中线,且AD=2,以AD为一边向左作等边△ADE.(1)求:△ABC的面积;(2)判断AB与DE的位置关系是什么?请予以证明.五、实践与应用(每小题8分,共2小题,满分16分)23.(8分)已知北海到南宁的铁路长210千米.动车投入使用后,其平均速度达到了普通火车的平均速度的3倍,这样由北海到南宁的行驶时间缩短了1.75小时.求普通火车的平均速度是多少?(列方程解答)24.(8分)张华老师揣着200元现金到星光文具店购买学生期末考试的奖品.他看好了一种笔记本和一种钢笔,笔记本的单价为每本5元,钢笔的单价为每支2元.张老师计划购买两种奖品共50份,求他最多能买笔记本多少本?(列不等式解答)六、阅读与探究(每小题10分,共2小题,满分20分)25.(10分)先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:====|1+|=1+解决问题:①在括号内填上适当的数:====| |=②根据上述思路,试将予以化简.26.(10分)已知:在△ABC中,∠BAC=90°,∠ABC=45°,点D为线段BC上一动点(点D不与B、C重合),以AD为边向右作正方形ADEF,连接FC,探究:无论点D运动到何处,线段FC、DC、BC三者的长度之间都有怎样的数量关系?请予以证明.参考答案与试题解析一、选择题(每小题3分,共12小题,满分36分.请把表示正确答案的字母填入下表中对应的题号下.)1.(3分)(2016秋•娄星区期末)下列分式中,是最简分式的是()A.B.C.D.【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、,不是最简分式;C、,不是最简分式;D、,不是最简分式;故选A【点评】此题考查最简分式问题,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.2.(3分)(2016秋•娄星区期末)当分式的值为0时,字母x的取值应为()A.﹣1 B.1 C.﹣2 D.2【考点】分式的值为零的条件.【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得x+2=0且x﹣1≠0,解得x=﹣2,故选:C.【点评】此题考查分式的值为零的问题,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.(3分)(2016秋•娄星区期末)下列计算正确的是()A.2﹣3=﹣8 B.20=1 C.a2•a3=a6D.a2+a3=a5【考点】同底数幂的乘法;合并同类项;零指数幂;负整数指数幂.【分析】根据同底数幂的乘法,零次幂,负整数指数幂,可得答案.【解答】解:A、2﹣3==,故A错误;B、20=1,故B正确;C、a2•a3=a2+3=a5,故C错误;D、不是同底数幂的乘法指数不能相加,故D错误;故选:B.【点评】本题考察了同底数幂的乘法,熟记法则并根据法则计算是解题关键.4.(3分)(2016秋•娄星区期末)(﹣8)2的立方根是()A.4 B.﹣4 C.8 D.﹣8【考点】立方根.【分析】先求出(﹣8)2,再利用立方根定义即可求解.【解答】解:∵(﹣8)2=64,64的立方根是4,∴(﹣8)2的立方根是4.故选:A.【点评】本题主要考查了平方和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根,读作“三次根号a”.其中,a叫做被开方数,3叫做根指数.5.(3分)(2016秋•娄星区期末)若代数式有意义,则x必须满足条件()A.x≠﹣B.x>C.x>﹣D.x≥﹣【考点】二次根式有意义的条件.【分析】二次根式的被开方数是非负数.【解答】解:依题意得:2x+1≥0,解得x≥﹣.故选:D.【点评】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.6.(3分)(2016秋•娄星区期末)已知一个等腰三角形的一个内角是50°,则这个等腰三角形的另外两个内角度数分别是()A.50°,80°B.65°,65°C.50°,80°或65°,65°D.无法确定【考点】等腰三角形的性质.【分析】本题可根据三角形的内角和定理求解.由于50°角可能是顶角,也可能是底角,因此要分类讨论.【解答】解:当50°是底角时,顶角为180°﹣50°×2=80°,当50°是顶角时,底角为(180°﹣50°)÷2=65°.故这个等腰三角形的另外两个内角度数分别是50°,80°或65°,65°.故选:C.【点评】本题主要考查了等腰三角形的性质,及三角形内角和定理.注意分类思想的应用.7.(3分)(2016秋•娄星区期末)下列命题是假命题的是()A.实数与数轴上的点一一对应B.如果两个数的绝对值相等,那么这两个数必定也相等C.对顶角相等D.三角形的重心是三角形三条中线的交点【考点】命题与定理.【分析】根据实数与数轴的关系,绝对值的性质,对顶角相等以及三角形重心的定义对各选项分析判断即可得解.【解答】解:A、实数与数轴上的点一一对应,是真命题,故本选项错误;B、如果两个数的绝对值相等,那么这两个数必定也相等,是假命题,应为如果两个数的绝对值相等,那么这两个数必定也相等或互为相反数,故本选项正确;C、对顶角相等,是真命题,故本选项错误;D、三角形的重心是三角形三条中线的交点,是真命题,故本选项错误.故选B.【点评】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)(2016秋•娄星区期末)下列长度的三根线段,能构成三角形的是()A.3cm,10cm,5cm B.4cm,8cm,4cmC.5cm,13cm,12cm D.2cm,7cm,4cm【考点】三角形三边关系.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、5+3<10,不能组成三角形,不符合题意;B、4+4=8,不能够组成三角形,不符合题意;C、12+5>13,能够组成三角形,符合题意;D、2+4<8,不能够组成三角形,不符合题意.故选:C.【点评】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.9.(3分)(2016秋•娄星区期末)不等式组的解集为()A.x>﹣1 B.x≤3 C.1<x≤3 D.﹣1<x≤3【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:,∵解不等式①得:x>﹣1,解不等式②得:x≤3,∴不等式组的解集为﹣1<x≤3,故选D.【点评】本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.10.(3分)(2016秋•娄星区期末)计算÷×的结果估计在()A.5至6之间B.6至7之间C.7至8之间D.8至9之间【考点】估算无理数的大小.【分析】利用二次根式的乘除法得到原式=,然后根据算术平方根的定义得到<<.【解答】解:原式==,因为<<,所以6<<7.故选B.【点评】本题考查了估算无理数的大小:估算无理数大小要用逼近法.思维方法:用有理数逼近无理数,求无理数的近似值.11.(3分)(2016秋•娄星区期末)已知关于x的方程﹣=0的增根是1,则字母a的取值为()A.2 B.﹣2 C.1 D.﹣1【考点】分式方程的增根.【分析】去分母得出整式方程,把x=1代入整式方程,即可求出答案.【解答】解:﹣=0,去分母得:3x﹣(x+a)=0①,∵关于x的方程﹣=0的增根是1,∴把x=1代入①得:3﹣(1+a)=0,解得:a=2,故选A.【点评】本题考查了分式方程的增根,能理解增根的意义是解此题的关键.12.(3分)(2016秋•娄星区期末)用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中()A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°【考点】反证法.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中每一个内角都小于60°,故选:D.【点评】本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.二、填空题(每小题3分,共6小题,满分18分)13.(3分)(2016秋•娄星区期末)最小刻度为0.2nm(1nm=10﹣9m)的钻石标尺,可以测量的距离小到不足头发丝直径的十万分之一,这也是目前世界上刻度最小的标尺,用科学记数法表示这一最小刻度为2×10﹣10m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示这一最小刻度为2×10﹣10m,故答案为:2×10﹣10.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(3分)(2016秋•娄星区期末)分式方程=﹣4的解是x= ﹣1 .【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=﹣4x﹣8,解得:x=﹣1,经检验x=﹣1是分式方程的解,故答案为:﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.(3分)(2016秋•娄星区期末)计算:•= .【考点】分式的乘除法.【专题】计算题;分式.【分析】原式变形后,约分即可得到结果.【解答】解:原式=•=,故答案为:【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.16.(3分)(2016秋•娄星区期末)如图,将三角尺的直角顶点放在直尺的一边上,使∠1=60°,∠2=100°,则∠3= 40 °.【考点】平行线的性质.【分析】根据两直线平行,同位角相等求出∠2的同位角,再根据三角形的外角性质求解即可.【解答】解:如图,∵∠2=100°,并且是直尺,∴∠4=∠2=100°(两直线平行,同位角相等),∵∠1=60°,∴∠3=∠4﹣∠1=100°﹣60°=40°.故答案为:40.【点评】本题主要考查了两直线平行,同位角相等的性质以及三角形的外角性质,熟练掌握性质定理是解题的关键.17.(3分)(2016秋•娄星区期末)如图,已知∠BAC=∠DAC,则再添加一个条件AB=AD(答案不唯一),可使△ABC≌△ADC.【考点】全等三角形的判定.【分析】根据SAS推出两三角形全等即可.【解答】解:添加AB=AD;理由如下:在△ABC和△ADC中,,∴△ABC≌△ADC;故答案为:AB=AD(答案不唯一).【点评】本题考查了全等三角形的判定的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.18.(3分)(2016秋•娄星区期末)如图,已知在△ABC中,AB=7,BC=6,AC的垂直平分线DE交AC于点E,交AB于点D,连接CD,则△BCD的周长为13 .【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线得出AD=CD,推出CD+BD=AB,即可求出答案.【解答】解:∵DE是AC的垂直平分线,∴AD=DC,∵AB=7,∴AD+BD=7,∴CD+BD=7,∵BC=6,∴△BCD的周长是CD+BD+BC=7+6=13,故答案为:13【点评】本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.三、解答题:(19题每小题8分,20题6分,满分14分)19.(8分)(2016秋•娄星区期末)(1)计算:﹣(2)计算:(2﹣5)﹣(﹣)【考点】二次根式的加减法;分式的加减法.【分析】(1)利用分式的通分、约分法则化简;(2)根据二次根式的性质吧原式化简,合并同类二次根式即可.【解答】解:(1)﹣=﹣=;(2)计算:(2﹣5)﹣(﹣)=4﹣10﹣3+3=﹣7.【点评】本题考查的是二次根式的加减法、分式的加减法,掌握分式的通分、约分法则、二次根式的性质是解题的关键.20.(6分)(2016秋•娄星区期末)解下列不等式≤﹣1,并将解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:去分母,得:4(2x﹣1)≤3(3x+2)﹣12,去括号,得:8x﹣4≤9x+6﹣12,移项,得:8x﹣9x≤6﹣12+4,合并同类项,得:﹣x≤﹣2,系数化为1,得:x≥2,解集在数轴上表示为:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.四、分析与说理:(每小题8分,共2小题,满分16分)21.(8分)(2016秋•娄星区期末)已知:如图所示,AB=AC,CE与BF相交于点D,且BD=CD.求证:DE=DF.【考点】全等三角形的判定与性质【分析】欲证明DE=DF,只要证明△ABD≌△ACD(SSS),推出∠B=∠C再证明△BDE≌△CDF即可.【解答】证明:连接AD.在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠B=∠C,在BDE和△CDF中,,∴△BDE≌△CDF(ASA),∴DE=DF.【点评】本题考查全等三角形的判定和性质,解题的关键是学会利用两次全等三角形解决问题,属于中考常考题型.22.(8分)(2016秋•娄星区期末)已知:如图所示,在边长为4的等边△ABC中,AD为BC边上的中线,且AD=2,以AD为一边向左作等边△ADE.(1)求:△ABC的面积;(2)判断AB与DE的位置关系是什么?请予以证明.【考点】全等三角形的判定与性质;等边三角形的性质【分析】(1)根据等边三角形的性质,可知∠DAC=30°,在RtADC中求出DC,再根据BC=2DC,由此即可解决问题.(2)通过计算只要证明∠AFD=90°即可.【解答】(1)解:∵△ABC是等边三角形,且AD为BC边上的中线∴AD⊥BC(三线合一),∠BAD=∠DAC=30°,在Rt△ADC中,∵AD=2,∴CD=BD=2,∴BC=4,∴△ABC的面积=×4×2=4(2)解:AB与DE的位置关系是AB⊥DE,理由如下:∵△ADE是等边三角形∴∠ADF=60°∵△ABC是等边三角形,AD为BC边上的中线∴AD为∠BAC的平分线(三线合一)∴∠FAD=∠BAC=×60°=30°∴∠AFD=180°﹣60°﹣30°=90°∴AB⊥DE(说明:或证∠BFD=90°或证∠AFE=90°也可以)【点评】本题考查等边三角形的性质,解题的关键是灵活应用等腰三角形的三线合一,属于基础题,中考常考题型.五、实践与应用(每小题8分,共2小题,满分16分)23.(8分)(2016秋•娄星区期末)已知北海到南宁的铁路长210千米.动车投入使用后,其平均速度达到了普通火车的平均速度的3倍,这样由北海到南宁的行驶时间缩短了1.75小时.求普通火车的平均速度是多少?(列方程解答)【考点】分式方程的应用【分析】设普通火车的平均速度为x千米/时,则动车的平均速度为3x千米/时,根据题意可得:由北海到南宁的行驶时间缩短了 1.75小时,列方程即可.【解答】解:设普通火车的平均速度为x千米/时,则动车的平均速度为3x千米/时,列方程得=+1.75,解得x=80,经检验,x=80是原分式方程的解,答:普通火车的平均速度是80千米/时.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.24.(8分)(2016秋•娄星区期末)张华老师揣着200元现金到星光文具店购买学生期末考试的奖品.他看好了一种笔记本和一种钢笔,笔记本的单价为每本5元,钢笔的单价为每支2元.张老师计划购买两种奖品共50份,求他最多能买笔记本多少本?(列不等式解答)【考点】一元一次不等式的应用【分析】根据题意可以得到相应的不等式,从而可以求出他最多能买笔记本多少本.【解答】解:设他买笔记本x本,5x+2(50﹣x)≤200,解得,x≤,即他最多能买笔记本33本.【点评】本题考查解一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.六、阅读与探究(每小题10分,共2小题,满分20分)25.(10分)(2016秋•娄星区期末)先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:====|1+|=1+解决问题:①在括号内填上适当的数:====|3+|= 3+②根据上述思路,试将予以化简.【考点】二次根式的性质与化简【专题】阅读型.【分析】①根据题目中的例子可以解答本题;②根据题目中的例子可以解答本题.【解答】解:①====|3+|=3+,故答案为:3+,3+;②===|5﹣|=5﹣.【点评】本题考查二次根式的性质与化简,解题的关键是明确题意,找出所求问题需要的条件.26.(10分)(2016秋•娄星区期末)已知:在△ABC中,∠BAC=90°,∠ABC=45°,点D为线段BC上一动点(点D不与B、C重合),以AD 为边向右作正方形ADEF,连接FC,探究:无论点D运动到何处,线段FC、DC、BC三者的长度之间都有怎样的数量关系?请予以证明.【考点】正方形的性质【分析】根据正方形的性质、全等三角形的判定定理证明△BAD≌△FAC,根据全等三角形的性质证明即可.【解答】解:无论点D运动到何处,都有BC=FC+DC,理由如下:在△ABC中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD+∠DAC=∠FAC+∠DAC=90°,∴∠BAD=∠FAC,∴△BAD≌△FAC(SAS)∴BD=FC,又∵BC=BD+DC,∴BC=FC+DC.【点评】本题考查的是正方形的性质,掌握全等三角形的判定定理和性质定理、正方形的性质定理是解题的关键.高效教学的诀窍高效教学,具体应该怎么说呢?我们很难精确地给它下一个定义,但大家都能清晰地感受到它。
湘教版八年级数学上册期末试卷(完整)

湘教版八年级数学上册期末试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .32.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,23 6.已知1112a b -=,则ab a b-的值是( ) A .12 B .-12 C .2 D .-27.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠DD .BF =EC8.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B.C. D.9.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.13010.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD 的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④二、填空题(本大题共6小题,每小题3分,共18分)11x-x的取值范围是_______.2.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.3.若分式1xx-的值为0,则x的值为________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是________.6.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于12AB长为半径作弧,两弧交于点P.若点C的坐标为(,23a a-),则a的值为________.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x yx y+=⎧⎨-=⎩(2)143()2()4xyx y x y⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中21x=.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x (0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、D5、B6、D7、C8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1x≥23、1.4、a+c5、156、3三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2.3、(1)12b-≤≤;(2)24、(1)略;(25、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘教版八年级数学上学期期末考试试卷
时间:120分钟 总分:120 分
一.选择题: (每小题4分,满分40分,请将正确答案的序号填写在选择题的答题栏内)
1.在下列各数中,无理数是 A .0 B .
2
1
C .2
D .7 2.若x >y ,则下列不等式成立的是
A .3−x < 3−y
B .5+x > 5+y
C .3x < 3
y
D .x 2−> y 2−
3.若等腰三角形的一个底角的度数为72°,则顶角的度数为 A .108° B .72° C .54°
D . 36° 4.当2015=x 时,分式
2
11x
x
−−的值是 A .20151 B .20151− C .20161 D . 2016
1−
5.已知△ABC 中,2(∠B +∠C )=3∠A ,则∠A 的度数是 A .54° B .72° C .108° D .144° 6.一个不等式组的解集在数轴上表示如图,则这个不等式组可能是
A .41x x >⎧⎨−⎩
,≤
B .41x x <⎧⎨−⎩
,
≥ C .41x x >⎧⎨>−⎩,
D .41x x ⎧⎨>−⎩
≤,
7.不等式组431
28164x x x +⎧⎨−≤−⎩
> 的最小整数解是
A .0
B .-1
C .1
D . 2
8.如图,AB ∥EF ∥DC ,∠ABC =90°,AB =DC ,那么,图中的全等三角形共有
A .1 对
B .2对
C .3对
D .4对 9.若关于x 的方程
3
2
2=−x a ax 的解为1=x ,则a 等于 A .21 B .2 C .2− D .2
1−
10.若21,21−=+=b a ,则代数式ab b a 322−+的值为 A .3 B .± 3 C .5 D .9
一.选择题答题栏: 题次 1
2
3
4
5
6
7
8
9
10
答案
二.填空题答题栏: 11. 12. 13. 14. 15. 16.
17.
18.
A
F
B
C
E
D
4
-1
二.填空题: (每小题3分,满分24分,请将答案填写在填空题的答题栏内) 11.
=−x
x 1
2_____. 12.计算5
155⨯
÷ 的结果为_____.
13.金园小区有一块长为m 18 ,宽为m 8的长方形草坪,计划在草坪面积不变的情况下,把它改造成正方形,则这个正方形的边长是_____m .
14.已知不等式+x 2★>2的解集是x >4−,则“★” 表示的数是_____. 15.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是_____.
16.如图,在△ABC 中,∠A =30°,∠B =50°,延长BC 到D ,则∠ACD =_____.
17.如图,在△ADC 中,AD =BD =BC,∠C =30°,则∠ADB =_____.
18.A 、B 两地相距km 60,甲骑自行车从A 地到B 地,出发h 1后,乙骑摩托车从A 地到B 地,且乙比甲早到h 3,已知甲、乙的速度之比为1:3,则甲的速度是 _____.
三.解答题: (请写出主要的推导过程) 19.(本题满分7分)
解不等式组 2328x x x ≤+⎧⎨⎩
<并将其解集在数轴上表示出来.
C
D A
B
C
D
A
B
第16题图
第17题图
20.(本题满分7分)已知12+=x ,12−=y ,试求x
y
y x −的值.
21.(本题满分7分)已知:72++y x 的立方根是3,16的算术平方根是y x −2,求:(1)x 、y 的值; (2)22y x +的平方根.
22.(本题满分8分)若不等式组3224
x a x b −⎧⎨−⎩<>的解集为23x −<<,求b a +的值.
23.(本题满分8分).如图,在△ABC 中,AD 是BC 上的高,AE 平分∠BAC, ∠B =75°, ∠C =45°.求∠DAE 与∠AEC 的度数.
C
B
D
A
E
24.(本题满分9分).金瑞公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.
(1)求金瑞公司至少购进甲型显示器多少台?
(2)若甲型显示器的台数不超过乙型显示器的台数,则有哪些购买方案?
25.(本题满分10分)
如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BE=CF,AD+EC=AB.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数;
(3)△DEF可能是等腰直角三角形吗?为什么?
A
F
B C
E
D
2015年下学期期末考试 八年级数学参考答案
一.选择题: (每小题4分,满分40分)
1.C 2.B 3.D 4.C 5.B 6.B 7.A 8.C 9.D 10.A 二.填空题: (每小题3分,满分24分) 11.
x
1
12. 1 13. 12 14.10 15.80 16.80° 17.60° 18.h km /10 三.解答题:
19.(7分)解:不等式组 ⎩⎨⎧+≤8
23
2 x x x 的解集为x ≤−3<4.
20.( 7分)
解: 241
2
22)
)((22=⨯−+=−=−xy y x y x xy y x x y y x 21.( 7分)解:(1)依题意⎩⎨⎧=−=++422772y x y x 解得:⎩⎨⎧==8
6
y x
(2)22y x +的平方根是10±
22.( 8分)
解:由⎩⎨⎧−−4223 b x a x 得⎪⎪⎩⎪⎪⎨⎧++243
2b x a x ∴⎪⎪⎩⎪⎪⎨⎧−=+=+2
2
4332b a 解得⎩⎨⎧−==87b a
∴1−=+b a 23.( 8分).
解:∵∠B =75°,∠C =45°, ∴∠BAC =60°. 又AE 平分∠BAC. ∴∠BAE =∠EAC =30°.
⊙
又AD⊥BC ∴∠DAE=∠BAD=15°,
∠AEC=180°-∠EAC-∠C=180°-30°-45°=105°
24.(9分)解:(1)设金瑞公司购进甲型显示器x台,则购进乙型显示器)
−
(x
50台.依题意得)
x−
+≤77000
1000x
2000
(
50
解得x≥23即金瑞公司至少购进甲型显示器23台;
(2)依题意可得不等式x≤−
50x,解是x≤25,
∴23≤x≤25.
∵x为整数,∴x可取23、24、25.
①购进甲型显示器23台,乙型显示器27台;
②购进甲型显示器24台,乙型显示器26台;
③购进甲型显示器25台,乙型显示器25台.
25.(10分)
(1)∵AD+EC=AB=AD+DB,∴EC=DB.又AB=AC∴∠B=∠C 又BE=CF∴△BED≌△ECF∴DE=EF∴△DEF是等腰三角(2)∵∠A=40°∴∠B=∠C=70°由(1)知∠BDE=∠FE C
∴∠DEF=∠B=70°
(3)若△DEF是等腰直角三角形,则∠DEF=90°∴∠DEB+∠BDE=90°,
∴∠B=90°因而∠C=90°∴△DEF不可能是等腰直角三角形.。