探究弹力与弹簧伸长的关系
实验专题:探究弹簧弹力和弹簧伸长量的关系答案解析

实验专题:探究弹簧弹力和弹簧伸长量的关系答案解析答案解析1.【答案】(1)C(2)等于【解析】(1)因为弹簧是被放在水平桌面上测得的原长,然后把弹簧竖直悬挂起来后,由于重力的作用,弹簧的长度会增大,所以图线应出现x轴上有截距,C正确,A、B、D错误.(2)如果将指针固定在A点的下方P处,在正确测出弹簧原长的情况下,再作出x随F变化的图象,则在图象上x的变化量不变,得出弹簧的劲度系数与实际值相等.2.【解析】(1)F-L图线如图所示:(2)弹簧的原长L0即弹力为零时弹簧的长度,由图象可知,L0=5×10-2m=5 cm.劲度系数为图象直线部分的斜率,k=20 N/m.(3)记录数据的表格如下表(4)优点:可以避免弹簧自身重力对实验的影响.缺点:弹簧与桌面及绳子与滑轮间存在的摩擦会造成实验误差.3.【解析】(1)在做实验的时候一般步骤为先组装器材,然后进行实验,最后数据处理,故顺序为CBDAEF.(2)①根据描点法,图象如图所示②、③根据图象,该直线为过原点的一条直线,即弹力与伸长量成正比,即F=kx=0.43x.式中的常数表示弹簧的劲度系数,即表示使弹簧伸长或者压缩1 cm所需的外力大小为0.43 N.4.【答案】(1)如图所示30F弹=30Δx(2)B(3)A【解析】(1)如图所示,直线的斜率的倒数表示弹簧的劲度系数,即k=,代入数据得kA =N/m≈30 N/m,所以弹簧的弹力大小F弹跟弹簧伸长量Δx的函数关系是F弹=30Δx.5.【解析】(1)描点作图,如图所示:(2)图象的斜率表示劲度系数,故有:k==N/m=50 N/m(3)图线与L轴的交点坐标表示弹簧不挂钩码时的长度,其数值大于弹簧原长,因为弹簧自身重力的影响.6.【答案】(1)6.93(2)A(3)弹簧受到的拉力超过了其弹性限度【解析】(1)弹簧伸长后的总长度为14.66 cm,则伸长量Δl=14.66 cm-7.73 cm=6.93 cm.(2)逐一增挂钩码,便于有规律地描点作图,也可避免因随意增加钩码过多超过弹簧的弹性限度而损坏弹簧.(3)AB段明显偏离直线OA,伸长量Δl不再与弹力F成正比,是超出弹簧的弹性限度造成的.7.【解析】(1)根据题意知,刻度尺的最小刻度为1毫米.读数时,应估读到毫米的十分位,故l5、l6记录有误.(2)按(1)中的读数规则,得l3=6.85 cm,l7=14.05 cm.(3)根据题中求差方法,可知d4=l7-l3=7.20 cm(4)根据l4-l0=4Δl=d1,l5-l1=4Δl=d2,l6-l2=4Δl=d3,l7-l3=4Δl=d4,有Δl==1.75 cm.(5)根据胡克定律F=kx得mg=kΔl,k==N/m=28 N/m8.【答案】(1)450(2)10【解析】(1)当F=0时,弹簧的长度即为原长,由胡克定律可知图象的斜率表示劲度系数大小.(2)弹簧秤的示数为3 N,则伸长量为3/50=0.06 m,则长度为10 cm.9.【解析】(1)描点作出图象,如下图所示.(2)图象跟坐标轴交点的物理意义表示弹簧原长.由图象可知,弹簧的劲度系数应等于直线的斜率,即k==200 N/m.10.【答案】(1)竖直(2)稳定L3 1 mm(3)Lx(4)4.910【解析】(1)为保证弹簧的形变只由砝码和砝码盘的重力产生,所以弹簧轴线和刻度尺均应在竖直方向.(2)弹簧静止稳定时,记录原长L0;表中的数据L3与其他数据有效位数不同,所以数据L3不规范,标准数据应读至cm位的后两位,最后一位应为估读值,精确至0.1 mm,所以刻度尺的最小分度为1 mm.(3)由题图知所挂砝码质量为0时,x为0,所以x=L-Lx(L为弹簧长度).(4)由胡克定律F=kΔx知,mg=k(L-Lx),即mg=kx,所以图线斜率即为弹簧的劲度系数k==N/m=4.9 N/m同理,砝码盘质量m==kg=0.01 kg=10 g11.【解析】(1)根据表格中的各组数据在坐标纸上标出相应的点,然后用平滑曲线连接这些点,作出的图象如图所示.(2)根据作出的图线可知,钩码质量在0~500 g范围内图线是直线,表明弹力大小与弹簧伸长量关系满足胡克定律.在这个范围内的曲线上找到相距较远的两点,利用这两点的坐标值计算弹簧的劲度系数k==N/m=25.00 N/m.12.【解析】(1)本题考查探究弹簧弹力与形变关系的实验,意在考查考生对实验步骤的识记、实验数据的处理方法、分析归纳能力.根据实验先后顺序可知,实验步骤排列为CBDAEF.(2)②由图象可得k==0.43 N/cm,所以F=0.43x(N).13.【答案】(1)10(2)200(3)b【解析】(1)当F=0时,弹簧长度为原长,由题图得,原长为10 cm.(2)由公式F=kx得k===N/m=200 N/m(3)当弹簧长度小于原长时,处于压缩状态,故是图线b14.【答案】(1)弹簧测力计刻度尺(2)kFL(3)控制变量法(4)12.5【解析】(1)用弹簧测力计测量力的大小,用刻度尺测量长度.(2)由题目所给数据分析可知:当力一定时,伸长量和长度成正比;当长度一定时,伸长量和力成正比,故有x=kFL(取一组数据验证,式中的k不为零).(3)研究伸长量与拉力、长度的关系时,可以先控制其中一个量不变,如长度不变,再研究伸长量和拉力的关系,这种方法称为控制变量法.这是物理实验中的一个重要研究方法.(4)代入表中数据把式中的k求出,得k=0.000 8 N-1,再代入已知数据,L=20 cm,x=0.2 cm,可求得最大拉力F=12.5 N.15.【答案】CBDAEFG【解析】根据实验的实验操作过程应先安装仪器,再挂钩码然后记录数据,分析数据,最后整理即可,排列先后顺序为CBDAEFG.。
高中物理 第三章 相互作用 实验 探究弹力和弹簧伸长的关系(含解析)

实验:探究弹力和弹簧伸长的一、实验目的1.探究弹力与弹簧伸长的关系。
2.学会利用列表法、图像法、函数法处理实验数据。
3.验证胡克定律。
二、实验原理1.如图所示,在弹簧下端悬挂钩码时弹簧会伸长,平衡时弹簧产生的弹力与所挂钩码的重力大小相等。
2.弹簧的长度可用刻度尺直接测出,伸长量可以由拉长后的长度减去弹簧原来的长度进行计算。
这样就可以研究弹簧的弹力和弹簧伸长量之间的定量关系了。
3.求弹簧的劲度系数弹簧的弹力F 与其伸长量x 成正比,比例系数k =F x,即为弹簧的劲度系数;另外,在F x 图像中,直线的斜率也等于弹簧的劲度系数。
三、实验器材铁架台、弹簧、毫米刻度尺、钩码若干、坐标纸。
四、实验步骤1.按下图安装实验装置,记下弹簧下端不挂钩码时所对应的刻度l 0。
2.在弹簧下端悬挂一个钩码,平衡时记下弹簧的总长度并记下钩码的重力。
3.增加钩码的个数,重复上述实验过程,将数据填入表格,以F 表示弹力,l 表示弹簧的总长度,x =l -l 0表示弹簧的伸长量。
五、数据处理1.以弹力F (大小等于所挂钩码的重力)为纵坐标,以弹簧的伸长量x 为横坐标,用描点法作图。
连接各点,得出弹力F 随弹簧伸长量x 变化的图线,如图所示。
2.以弹簧伸长量为自变量,写出弹力和弹簧伸长量之间的函数关系,函数表达式中常数即为弹簧的劲度系数,这个常数也可据F x 图线的斜率求解,k =ΔFΔx。
六、误差分析由于弹簧原长及伸长量的测量都不便于操作,存在较大的测量误差,另外由于弹簧自身的重力的影响,即当未放重物时,弹簧在自身重力的作用下,已经有一个伸长量,这样所作图线往往不过原点。
七、注意事项1.所挂钩码不要过重,以免弹簧被过分拉伸,超出它的弹性限度。
2.每次所挂钩码的质量差尽量大一些,从而使坐标上描的点尽可能稀一些,这样作出的图线精确。
3.测弹簧长度时,一定要在弹簧竖直悬挂且处于平衡状态时测量,刻度尺要保持竖直并靠近弹簧,以免增大误差。
实验二:探究弹力和弹簧伸长的关系实验报告

实验二探究弹力和弹簧伸长的关系【实验原理】弹簧受到拉力会伸长,平衡时弹簧产生的弹力和外力大小相等,弹簧的伸长越大;弹力也就越大。
【实验目的】1、探索弹力与弹簧伸长的定量关系2、学习通过对实验数据的数学分析(列表法和图像法),把握弹簧产生的弹力与弹簧伸长之间的变化规律【实验器材】:弹簧一根,相同质量的砝码若干,铁架台一个(用来悬挂弹簧)。
实验中除了上述器材外,需要的器材还有:。
【实验步骤】(1)将铁架台放在实验桌上,将弹簧悬挂在铁架台上。
弹簧竖直静止时,测出弹簧的原长l0,并填入实验记录中。
(2)依次在弹簧下挂上一个砝码、两个砝码、三个砝码……。
每次,在砝码处于静止状态时,测出弹簧的总长或伸长,并填入实验记录中。
(3)根据测得的数据,以力为纵坐标,以弹簧的伸长量为横坐标,根据表中所测数据在坐标纸上描点。
(4)作弹簧的F-Δl图像。
按照坐标图中各点的分布与走向,尝试作出一条平滑的曲线(包括直线)。
所画的点不一定正好在这条曲线上,但要注意使曲线两侧的点数大致相同。
(5)以弹簧的伸长为自变量,写出曲线所代表的函数,首先尝试一次函数,如果不行则考虑二次函数……(6)解释函数表达式中常数的物理意义。
【实验纪录】弹簧原长l0=弹簧F -Δl 实验图像【实验结论】弹簧弹力大小跟弹簧伸长长度的函数表达式【问题与讨论】1、上述函数表达式中常数的物理意义2、如果以弹簧的总长为自变量,所写出的函数式应为3、某同学在做实验时得到下列一组数据,他由数据计算出弹簧的劲度系数为m N l F k /781020.35.22=⨯=∆=-试分析他对数据处理的方法是否正确?为什么?。
高中物理实验02 探究弹簧弹力和弹簧伸长的关系(解析版)

实验二探究弹簧弹力和弹簧伸长的关系1.实验原理(1)如图所示,弹簧在下端悬挂钩码时会伸长,平衡时弹簧产生的弹力与所挂钩码的重力大小相等。
(2)用刻度尺测出弹簧在不同钩码拉力下的伸长量x,建立直角坐标系,以纵坐标表示弹力大小F,以横坐标表示弹簧的伸长量x,在坐标系中描出实验所测得的各组(x、F)对应的点,用平滑的曲线连接起来,根据实验所得的图线,就可探知弹力大小与伸长量间的关系。
2.实验器材铁架台、弹簧、毫米刻度尺、钩码若干、三角板、坐标纸、重垂线。
3.实验步骤(1)将弹簧的一端挂在铁架台上,让其自然下垂,用刻度尺测出弹簧在自然伸长状态时的长度l0,即原长。
(2)如图所示,在弹簧下端挂质量为m1的钩码,测出此时弹簧的长度l1,记录m1和l1,填入自己设计的表格中。
(3)改变所挂钩码的质量,测出对应的弹簧长度,记录m2、m3、m4、m5和相应的弹簧长度l2、l3、l4、l5,并得出每次弹簧的伸长量x1、x2、x3、x4、x5。
4.数据分析(1)列表法将得到的F、x填入设计好的表格中,可以发现弹力F与弹簧伸长量x的比值在误差允许的范围内是相等的。
(2)图象法以弹簧伸长量x为横坐标,弹力F为纵坐标,在坐标轴上描出F、x各组数据相应的点,作出的拟合曲线是一条过坐标原点的直线。
(3)函数法弹力F与弹簧伸长量x满足F=kx的关系。
5.注意事项(1)不要超过弹簧的弹性限度:实验中弹簧下端挂的钩码不要太多,以免弹簧被过分拉伸,超过弹簧的弹性限度。
(2)尽量多测几组数据:要使用轻质弹簧,且要尽量多测几组数据。
(3)观察所描点的走向:本实验是探究性实验,实验前并不知道其规律,所以描点以后所作的曲线是试探性的,只是在分析了点的分布和走向以后才决定用直线来连接这些点。
(4)统一单位:记录数据时要注意弹力及弹簧伸长量的对应关系及单位。
【典例1】如图甲所示,用铁架台、弹簧和多个已知质量且质量相等的钩码探究在弹性限度内弹簧弹力与弹簧伸长量的关系。
2024高考物理一轮复习--力学实验专题(二)--探究弹力和弹簧伸长的关系

探究弹力和弹簧伸长的关系一、实验数据的处理:几种常见情形下的数据处理方法常见情形 处理方法根据)(l x F -图像的斜率求出弹簧的劲度系数k 值;若图像不过原点,根据l F -图像的横截距求出弹簧的原长.根据表中的数据,在x F -(或l F -)坐标系中描点连线,结合图像的斜率求出弹簧的劲度系数k 值;在l F -坐标系中,由图像的横截距求出弹簣的原长题中直接给出弹簧弹力F ,以及对应的弹簧伸长量x ∆或题中直接给出所吊钩码质量m ,以及对应的弹簧伸长量x ∆ 利用x k F ∆=或x k mg ∆=求解二、原理迁移的处理方法1.利用等效法来处理数据原始变量等效变量弹簧弹力变化量 弹簧圈数弹簧弹力变化量 质量变化量或钩码个数变化量弹簧伸长量 弹簧长度图像表达式 kx F =)(0l l k F -=(0l 为弹簧原长)相同点 弹簧的劲度系数就是图像的斜率不同点图像过原点,横坐标表示形变量,纵坐标表示弹力,图像与横轴所围面积表示该状态下弹簧的弹性势能横坐标表示弹簧长度,纵坐标表示弹力,图像不过原点,且横截距表示弹簧原长2.弹簧串、并联时劲度系数的处理方法实验装置 实验参量实验结论两个弹簧的劲度系数分别为1k 、2k ,两个弹簧的伸长量分别为1x 、2x ,总伸长量为x ,重物的重力为mg对于1k ,有mg x k =11,得到11k mgx =。
对于2k ,有mg x k =22,得到22k mgx =。
对于整体,mg kx =,21x x x +=,得2121k k k k k +=两个弹簧的劲度系数均为1k 两个弹簧的伸长量均为x重物的重力为mg对于一根弹簧,有mg x k 211=,得到12k mg x =。
对于整体,有mg kx =,可得12k k =三、针对练习1、小张同学做“探究弹簧弹力与形变量的关系”的实验。
他先把弹簧放在水平桌面上,量出弹簧原长为0 4.20m L =,再将弹簧按图甲的装置将弹簧竖直悬挂。
实验探究弹力和弹簧伸长量的关系

(4)若有一根合金丝的长度为20 cm,截面直径为
0.200 mm,使用中要求其伸长量不能超过原长的百分
之一,那么这根合金丝能承受的最大拉力为______N.
精品课件!
精品课件!
解析 (2)由题目所给的数据分析可知:当力、直径
一定时,伸长量与长度成正比,当力、长度一定时,伸
长量与直径成反比,当长度、直径一定时,伸长量与力
3.得出弹力和弹簧伸长之间的定量关系,解释函数表 达式中常数的物理意义.
【误差分析】
1.弹簧拉力大小的不稳定会造成误差.因此,使弹簧 的悬挂端固定,另一端通过悬挂钩码来充当对弹簧 的拉力,待稳定后再读数可以提高实验的准确度.
2.尽量精确地测量弹簧的长度,也是减小实验误差 的基本方法.
3.描点、作图不准确.
砝码质量
0
m/×102 g
标尺刻度 15.00 x/×10-2 m
1.00 18.94
2.00 22.82
3.00 26.78
4.00 5.00 6.00 7.00 30.66 34.60 42.00 54.50
(1)根据所测数据,在图4坐标纸上作出弹簧指针所指 的标尺刻度x与砝码质量m的关系曲线.
图6
解析 根据胡克定律F=k(h+L-L0)=kL+k(h-L0),从图 中知道当L=0时,F=10 N;当L=10 cm时,F=20 N;
将其代入方程联立得k=100 N/m,L0=15.0 cm.
答案 100
15.0
5.用纳米技术处理过的材料叫纳米材料,其性质与处 理前相比会发生很多变化.如机械性能会成倍地增 加,对光的反射能力会变得很低,熔点会大大地降 低,甚至有特殊的磁性质.现有一纳米合金丝,欲测 出其伸长量x与所受到的拉力F、长度L、截面直径 D的关系. (1)测量上述物理量需要的主要器材是:_______、 ________、___________等. (2)若实验中测量的数据如下表,根据这些数据请写 出x与F、L、D间的关系式:x=_________.(若用到 比例系数,可用k表示)
实验二:探究弹力和弹簧伸长量的关系实验报告

实验二:探究弹力和弹簧伸长量的关系实验报告一、实验背景弹力,又称内弹力,是构成物体的物质间的内部相互作用。
当物体遭受外力的刺激时,在物体内部的分子及其成分之间会产生弹力,使物体返回到原来的形状,这样形成的弹力就是弹力。
弹力能够恢复物体原来的形状,是物体具有自保能力的根本原因[1]。
弹簧伸长量,也称为弹簧长度,是指装在被测物上的弹簧释放力时弹簧的伸长量,即弹簧从原来的状态(停机时的状态)变为被测物的形状,弹簧所增加的长度,以毫米为单位。
二、实验目的、实验材料、实验程序实验目的:探究普通小弹簧的弹力与伸长量的关系,为今后的科研提供参考依据。
实验材料:(1)弹簧1条;(2)勒耳器;(3)千分尺;实验程序:Step1:先用勒耳器将弹簧固定在实验架上;Step2:让弹簧从放松状态开始,将千分尺安装在弹簧上;Step3:弹簧被施加一定力时,记录下弹簧伸长量(以毫米为单位);Step4:记录应用力的大小(以牛顿为单位);Step5:重复上述步骤,并记录下弹簧的伸长量及力的大小;Step6:进行数据处理和数据分析,得出弹力与弹簧伸长量的关系。
三、实验数据及结果表1 力与弹簧伸长量的关系应用力/N 弹簧伸长量/mm0 01 0.54 2.05 2.56 3.07 3.59 4.5从上表可知,随着力的大小增加,弹簧伸长量也在增加,当力达到9牛时,弹簧伸长量达到了4.5mm。
从上图中可以看出,随着施加的力的增大,弹簧的伸长量呈正比增大,可以解释弹力大小与弹簧伸长量之间的正比例关系。
四、实验结论通过此次实验研究,可以得出结论:普通小弹簧的弹力与伸长量是成正比关系的,即随着施加的力的增大,弹簧的伸长量会呈正比增大。
让物体返回原来的形状,这样形成的弹力就是弹力,可以用正比例模型来描述它们之间的关系。
五、结论总结本次实验让我们了解到,弹力与弹簧伸长量是一个正比的关系,就是说,力的大小越大,弹簧的伸长量就越大,弹力也会越大。
本次实验为今后的科研提供了参考,也提升了我们实践能力。
探究弹簧弹力大小与伸长量的关系-完整版课件

• F单位:牛的长度
LO
x1
L x2
推论:
F kx
某同学在做“探究弹力和弹簧伸长量的关系”的实验中,所用实验装置如图甲所 示,所用的钩码每只质量都是30g。他先测出不挂钩码时弹簧的自然长度,再将5 个钩码逐个挂在弹簧的下端,每次都测出相应的弹簧总长度,并将数据填在下表 中。实验中弹簧始终未超过弹性限度,取。试根据这些实验数据在如图乙所示的 坐标系中作出弹簧所受弹力大小与弹簧总长度之间的函数关系的图线。则: (1)图线与横轴的交点的物理意义是 _____ 。 (2)该弹簧的劲度系数k=_____N/m。 (3)图线延长后与纵轴的交点的物理意义是 _____ 。
探究弹簧弹力大小与伸长 量的关系
四.胡克定律
L0 x
2x
3x
Fx
F=kx k是劲度系数
LO
x1
L x2
F=kx
胡克定律
胡克定律:
• 1、胡克定律内容:
• 在弹性限度内,弹簧发生弹性形变时,弹力的大 小跟弹簧伸长(或缩短)的长度x成正比。
• 2、公式:
•
F=kx
• 其中:k——弹簧的劲度系数(其大小跟弹簧的形状、 大小、长短、钢丝的线径、材料等因素有关),与F、 x无关。
弹簧被压缩1cm时 弹簧产生的弹力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究弹簧弹力与弹簧伸长量的关系
一、实验目的
1.探究弹力和弹簧伸长量的定量关系。
2.学会利用列表法、图象法研究物理量之间的关系。
二、实验原理
弹簧受到拉力会伸长,平衡时弹簧产生的弹力和外力大小相
等;弹簧的伸长量越长(弹性限度内),弹力也就越大。
三、实验器材
铁架台、弹簧、钩码、天平、刻度尺、坐标纸、铁夹等。
四、实验步骤
1.安装实验仪器。
将铁架台放在桌面上(固定好),将弹簧的一端固定于铁架台的横梁上,让其自然下垂,在靠近弹簧处将刻度尺(最小分度为1 mm)固定于铁架台上,并用重垂线检查刻度尺是否竖直。
2.用刻度尺测出弹簧自然伸长状态时的长度l
,即原长。
3.在弹簧下端挂质量为m
1的钩码,量出此时弹簧的长度l
1
,记录m
1
和l
1
,填入
自己设计的表格中。
4.改变所挂钩码的质量,量出对应的弹簧长度,记录m
2、m
3
、m
4
、m
5
和相应的
弹簧长度l
2、l
3
、l
4
、l
5
,并得出每次弹簧的伸长量x
1
、x
2
、x
3
、x
4
、x
5。
五、数据处理
1.列表法
将测得的F、x填入设计好的表格中,可以发现弹力F与弹簧伸长量x的比值在误差允许范围内是相等的。
2.图象法
以弹簧伸长量x为横坐标,弹力F为纵坐标,描出F、x各组数据相应的点,作出的拟合曲线,是一条过坐标原点的直线。
六、误差分析
(1)系统误差:钩码标值不准确,和弹簧自身重力的影响
(2)偶然误差:
①弹簧长度的测量造成偶然误差,为了减小这种误差,要尽量多测几组数据.
②作图时的不规范造成偶然误差,为了减小这种误差,画图时要用铅笔作图,所描各点尽量均匀分布在直线的两侧.
七、实验拓展与创新
创
新
角
度
实验装置图创新解读
实验方法创新1.弹簧水平放置,消除弹簧自身重力对实验的影响
2.改变弹簧的固定方式,研究弹簧弹力大小与压缩量之间的大小关系
实
验器材创新
1.用橡皮筋代替弹簧做实验
2.
拉力传感器显示的拉力F
与
橡皮筋的弹力并不相等,仅为橡
皮筋弹力在水平方向的分力
题型示例:
1、在“探究弹力和弹簧伸长的关系”实验中。
某同学做“探究弹力和弹簧伸长量的关系”的实验。
(1)图甲是不挂钩码时弹簧下端指针所指的标尺刻度,其示数为7.73 cm;
图乙是在弹簧下端悬挂钩码后指针所指的标尺刻度,此时弹簧的伸长量Δl为________cm。
(2)本实验通过在弹簧下端悬挂钩码的方法来改变弹簧的弹力,关于此操作,下列选项中规范的做法是__________。
(填选项前的字母)
A.逐一增挂钩码,记下每增加一只钩码后指针所指的标尺刻度和对应的钩码总重
B.随意增减钩码,记下增减钩码后指针所指的标尺刻度和对应的钩码总重(3)图丙是该同学描绘的弹簧的伸长量Δl与弹力F的关系图线,图线的AB段明显偏离直线OA,造成这种现象的主要原因是_______________________________。
(4)另一同学使用两条不同的轻质弹簧a和b,得到弹力与弹簧长度的图象如图所示。
下列表述正确的是( )
A.a的原长比b的长
B.a的劲度系数比b的大
C.a的劲度系数比b的小
D.测得的弹力与弹簧的长度成正比
(5) 弹簧竖直放置时,其自重对测得的劲度系数(选填“有”或“无”)影响,若悬挂的钩码的质量比所标数值偏小些,则实验测得的弹簧的劲度系数比实际劲度系数偏________。
2、在“探究弹力和弹簧伸长量的关系,并测量弹簧的劲度系数”的实验中,实验装置如图甲所示,所用的每个钩码的重力相当于对弹簧提供了向右恒定的拉力,实验时先测出不挂钩码时弹簧的自然长度,再将5个钩码逐个挂在绳子的下端,每次测量相应的弹簧的总长度.
(1)某同学通过以上实验测量后把6组实验数据描点在坐标系图乙中,请作出F-L图线。
=________cm,劲度系数k=________N/m.
(2)由此图线可得出弹簧的原长L
(4)该同学实验时,把弹簧水平放置与弹簧悬挂放置相比较
优点在于:
_____________________________________________________________________ ___;
缺点在于:
_____________________________________________________________________ ___.
3、某同学为研究橡皮筋伸长与所受拉力的关系,做了如下实验:
①如图(甲)所示,将白纸固定在制图板上,橡皮筋一端固定在O点,另一端A 系一小段轻绳(带绳结);将制图板竖直固定在铁架台上.
;
②将质量m=100 g的钩码挂在绳结上,静止时描下橡皮筋下端点的位置A
;逐步用水平力拉A点,使A点在新的位置静止,描下此时橡皮筋下端点的位置A
1
增大水平力,重复5次……
③取下制图板,量出A
1,A
2
,…各点到O的距离l
1
,l
2
,…量出各次橡皮筋与OA
之间的夹角α
1,α
2
,….
④在坐标纸上作出1
cos
-l的图象如图(乙).
完成下列填空:
(1)已知重力加速度为g,当橡皮筋与OA
间的夹角为α时,橡皮筋所受的拉
力大小为(用g,m,α表示).
(2)由图(乙)可得橡皮筋的劲度系数k= N/m,橡皮筋的原长l
= m.(g取10 m/s2,结果保留两位有效数字)。