一次函数及平行四边形复习题
中考数学常考考点专题之一次函数测试卷

中考数学常考考点专题之一次函数测试卷一.选择题(共15小题)1.如图1,在平面直角坐标系中,将平行四边形ABCD 放置在第一象限,且AB ∥x 轴.直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么平行四边形ABCD 的面积为( )A .4√5B .4C .8√5D .82.一次函数y =mx +m 2(m ≠0)的图象过点(0,4),且y 随x 的增大而增大,则m 的值为( )A .﹣2B .﹣2或2C .1D .23.如图,直线y 1=x +b 与y 2=kx ﹣1相交于点P ,若点P 的横坐标为﹣1,则关于x 的不等式x +b >kx ﹣1的解集是( )A .x ≥﹣1B .x >﹣1C .x ≤﹣1D .x <﹣14.如果直线y =3x +6与y =2x ﹣4交点坐标为(a ,b ),则解为{x =a y =b 的方程组是( )A .{y −3x =62y +x =−4B .{y −3x =62y −x =4C .{3x −y =63x −y =4D .{3x −y =−62x −y =45.在平面直角坐标系中,点A 1(﹣1,1)在直线y =x +b 上,过点A 1作A 1B 1⊥x 轴于点B 1,作等腰直角三角形A 1B 1B 2(B 2与原点O 重合),再以A 1B 2为腰作等腰直角三角形A 2A 1B 2;以A2B2为腰作等腰直角三角形A2B2B3;按照这样的规律进行下去,那么A2019的坐标为()A.(22018﹣1,22018)B.(22018﹣2,22018)C.(22019﹣1,22019)D.(22019﹣2,22019))6.已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 7.关于x的一次函数y=﹣4x+8的图象,下列说法不正确的是()A.直线不经过第三象限B.直线经过点(1,4)C.直线与x轴交于点(2,0)D.y随x的增大而增大8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=54或154.其中正确的结论有()A.1个B.2个C.3个D.4个9.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B的,8:20乙从B地出发骑自行车到A地,甲乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A.8:30B.8:35C.8:40D.8:410.“漏壶”是古代一种计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间.在漏壶漏完水之前,漏壶内水的深度与对应的漏水时间满足的函数关系式()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系11.将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣3 12.对于某个一次函数y=kx+b(k≠0),根据两位同学的对话得出的结论,错误的是()A.k>0B.kb<0C.k+b>0D.k=−1 2b13.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.14.若直线BC和直线y=x+3平行,其中点B的坐标为B(﹣2,3),将直线BC向右平移1个单位后为()A.y=﹣x+2B.y=﹣x+4C.y=x+6D.y=x+415.如图,甲从A村匀速骑自行车到B村,乙从B村匀速骑摩托车到A村,两人同时出发,到达目的地后,立即停止运动,甲、乙两人离A村的距离y(km)与他自骑车的时间x (h)之间的函数关系如图所示,则下列说法错误的是()A.A、B两村的距离为120km B.甲的速度为20kmhC.乙的速度为40km/h D.乙运动3.5h到达目的地二.填空题(共5小题)16.我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之.问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是.17.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第象限.18.学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,l1和l2分别表示两人到小亮家的距离s(km)和时间t(h)的关系,则出发h后两人相遇.19.若函数y=|2x﹣3|﹣2a始终大于y=|x+a|,则a的取值范围为.20.根据图象,可得关于x的不等式kx>﹣x+3的解集是.三.解答题(共5小题)21.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.22.在平面直角坐标系中,点B、E的坐标分别为B(﹣2,√3),E(4,0),过点E作直线l⊥x轴,设直线l上的动点A的坐标为(4,m),连接AB,将线段BA绕点B顺时针方向旋转30°得到线段BA′,在射线BA′上取点C,构造Rt△ABC,使得∠BAC=90°.(1)当m=−√3时,求直线AB的函数表达式.(2)当点C落在坐标轴上时,求△ABC的面积.(3)已知点B关于原点O的对称点是点D,在点A的运动过程中,是否存在某一位置,使以A,C,D为顶点的三角形与△ABC相似?若存在,求出点A的坐标;若不存在,请说明理由.23.在平面直角坐标系中,已知一次函数y1=3x﹣5与y2=2x﹣4.(1)求这两个函数图象的交点坐标;(2)求一次函数y2=2x﹣4的图象与坐标轴所围成三角形的面积.24.在平面直角坐标系xOy中,对于第一象限的P,Q两点,给出如下定义:若y轴正半轴上存在点P',x轴正半轴上存在点Q',使PP'∥QQ',且∠1=∠2=α(如图1),则称点P 与点Q为α﹣关联点.(1)在点Q1(3,1),Q2(5,2)中,与(1,3)为45°﹣关联点的是;(2)如图2,M(6,4),N(8,4),P(m,8)(m>1).若线段MN上存在点Q,使点P与点Q为45°﹣关联点,结合图象,求m的取值范围;(3)已知点A(1,8),B(n,6)(n>1).若线段AB上至少存在一对30°﹣关联点,直接写出n的取值范围.25.近年,净月潭公园将环潭公路改造为东北三省最长的人车分离彩色环保公路,平坦宽敞的路面分橙、黑两色,拓宽了原有的人行步道,成为市民健身的好去处.小明和爸爸参加了此公园举办的“亲子健身赛”,两人的行程y(千米)随时间x(时)变化的图象(全程)如图所示.(1)两人出发后小时相遇,此次“亲子健身赛”的全程是千米.(2)求出AB所在直线的函数关系式.(3)若小明想和爸爸一起到达终点,则需在两人出发 1.5小时后,将速度调整为千米/时.。
2023一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(原卷版)

专题12一次函数与几何图形综合题 (与三角形、与平行四边形、最值问题)类型一与三角形有关1.(2022·天津)如图,△OAB 的顶点O(0,0),顶点A ,B 分别在第一、四象限,且AB ⊥x 轴,若AB=6,OA=OB=5,则点A 的坐标是( )A .(5,4)B .(3,4)C .(5,3)D .(4,3)2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A 的坐标是_____.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.4.(2022·湖北黄冈)如图1,在△ABC 中,∠B =36°,动点P 从点A 出发,沿折线A →B →C 匀速运动至点C 停止.若点P 的运动速度为1cm/s ,设点P 的运动时间为t (s ),AP 的长度为y (cm ),y 与t 的函数图象如图2所示.当AP 恰好平分∠BAC 时,t 的值为________.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C ''',且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________; (2)请在图中画出A B C '''.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为3CODE 向右平移的距离为___________.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(73,0)-,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C . (1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D . ①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点是弧上一动点,线段点是线段的中点,过点作,交的延长线于点.当为等腰三角形时,求线段的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:根据点在弧上的不同位置,画出相应的图形,测量线段的长度,得到下表的几组对应值.操作中发现:①"当点为弧的中点时, ".则上中的值是 ②"线段的长度无需测量即可得到".请简要说明理由;D BC 8,BC cm =A BC C //CF BD DA F DCF ∆BD ()1D BC ,,BD CDFD D BC 5.0BD cm =a CF将线段的长度作为自变量和的长度都是的函数,分别记为和,并在平面直角坐标系中画出了函数的图象,如图所示.请在同一坐标系中画出函数的图象;继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当为等腰三角形时,线段长度的近似值.(结果保留一位小数).()2BD x CD ,FD x CD y FD y xOy FD y CD y ()3DCF ∆BD11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆的面积分成上下4:5两部分时,求MP 的长; (3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系中,等腰的底边在轴上,,顶点在的正半轴上,,一动点从出发,以每秒1个单位的速度沿向左运动,到达的中点停止.另一动点从点出发,以相同的速度沿向左运动,到达点停止.已知点、同时出发,以为边作正方形,使正方形和在的同侧.设运动的时间为秒().(1)当点落在边上时,求的值;(2)设正方形与重叠面积为,请问是存在值,使得?若存在,求出值;若不存在,请说明理由;(3)如图2,取的中点,连结,当点、开始运动时,点从点出发,以每秒运动,到达点停止运动.请问在点的整个运动过程中,点可能在正方形内(含边界)吗?如果可能,求出点在正方形内(含边界)的时长;若不可能,请说明理由.xOy ABC ∆BC x 8BC =A y 2OA =E (3,0)CB OB F C CB O E F EF EFGH EFGH ABC ∆BC t 0t ≥H AC t EFGH ABC ∆S t 9136S =t AC D OD E F M O 5OD DC CD DO ---O E M EFGH M EFGH13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点为坐标原点,直线与轴的正半轴交于点A ,与轴的负半轴交于点B , ,过点A 作轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为,过点C 作轴,垂足为.(1)如图1,求直线的解析式;(2)如图2,点N 在线段上,连接ON ,点P 在线段ON 上,过P 点作轴,垂足为D ,交OC 于点E ,若,求的值; (3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作轴的平行线交BQ 于点G ,连接PF 交轴于点H ,连接EH ,若,求点P 的坐标.类型二与平行四边形有关O AB x y OA OB =x 34y x =CM y ⊥,9M OM =AB MC PD x ⊥NC OM =PEODx x ,2DHE DPH GQ FG ∠=∠-=14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )A 3B .3C .33D .4316.(2020·黑龙江牡丹江?中考真题)如图,已知直线与x 轴交于点A ,与y 轴交于点B ,线段的长是方程的一个根,.请解答下列问题:(1)求点A ,B 的坐标;(2)直线交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线于点C .若C 是的中点,,反比例函数图象的一支经过点C ,求k 的值; (3)在(2)的条件下,过点C 作,垂足为D ,点M 在直线上,点N在直线AB OA 27180x x --=12OB OA=EF AB EF 6OE =ky x=CD OE ⊥AB CD上.坐标平面内是否存在点P,使以D,M,N,P为顶点的四边形是正方形?若存在,请写出点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q 是直线y=﹣12x+2上的一个动点,将Q 绕点P(1,0)顺时针旋转90°,得到点Q ',连接OQ ',则OQ '的最小值为( )A .55B 5C .523D .5518.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d 可用公式0021kx y bd k -+=+C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C上的动点,则PQ 的最小值是( )A 35B 351-C 651D .219.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)A B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x轴上平移,当AD BC +的值最小时,点C 的坐标为________.20.(2020•连云港)如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是⊙O 上一动点,点C 为弦AB 的中点,直线y =34x ﹣3与x 轴、y 轴分别交于点D 、E ,则△CDE 面积的最小值为 .21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】222.(2020·北京中考真题)在平面直角坐标系中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦(分别为点A ,B的对应xOy A B '',A B ''点),线段长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦和,则这两条弦的位置关系是 ;在点中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线AB 到⊙O 的“平移距离”为,求的最小值; (3)若点A 的坐标为,记线段AB 到⊙O 的“平移距离”为,直接写出的取值范围.AA '12PP 34P P 1234,,,P P P P 33y x =+1d 1d 32,2⎛⎫ ⎪⎝⎭2d 2d。
2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题

②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.
24.某初中在“读书共享月”活动中.学生都从家中带了图书到学校给大家共享阅读.经过抽样调查得知,初一人均带了2册;初二人均带了3.5册:初三人均带了2.5册.已知各年级学生人数的扇形统计图如图所示,其中初三共有210名学生.请根据以上信息解答下列问题:
(1)扇形统计图中,初三年级学生数所对应的圆心角为°;
28.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于 BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
(1)根据条件与作图信息知四边形ABEF是
A.非特殊的平行四边形
B.矩形
C.菱形
D.正方形
(2)设AE与BF相交于点O,四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.
22.随着”互联网+“时代的到来,利用网络呼叫专车的打车方式深受大众欢迎.据了解,在非高峰期时,某种专车所收取的费用y(元)与行驶里程x(km)的函数图象如图所示.请根据图象,回答下列问题:
(1)当x≥5时,求y与x之间的函数关系式;
(2)若王女士有一次在非高峰期乘坐这种专车外出,共付费47元,求王女士乘坐这种专车的行驶里程.
【详解】
∵EF∥BC,GH∥AB,
∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,
∴S△PEB=S△BGP,
八年级数学培优第十三讲平行四边形与一次函数

八年级数学培优第十三讲平行四边形与一次函数第十二讲平行四边形与一次函数考点•方法•破译⒈理解并掌握平行四边形的定义、性质、和判定方法,并运用它们进行计算与证明.⒉理解三角形中位线定理并会应用.⒊了解平行四边形是中心对称图形.经典•考题•赏析【例3】(南昌)如图:在平面直角坐标系中,有A(0,1),B(-1,0),C(1,0)三点.⑴若点D与A、B、C三点构成平行四边形,请写出所有符合条件的点D 的坐标;⑵选择⑴中符合条件的一点D,求直线BD的解析式.【解法指导】已知固定的三个点,作平行四边形应有三种可能性,如图所示,因而本题D点坐标应有三种可能性.【解】⑴D1(2,1)D2(-22,1)D3(0,-1)⑵若选择D3(0,-1),可求得解析式:y =-x-1【变式题组】已知固定的三个点,作平行四边形时应有三种可能性,如图所示,因而本题D点坐标应有三种可能性.【解】⑴D1(2,1)D2(-2,1)D3(0,-1)⑵若选择D3(0,-1),可求得解析式:y =-x-1【变式题组】3+3与y01.如图,直线l1:y =-x2轴交于点A,与直线l2交于x轴上同一点B,直线l2交y轴于点3C,且点C与点A关于x轴对称.⑴求直线l2的解析式;⑵设D(0,-1),平行于y轴的直线x=t分别交直线l1和l2于点E、F.是否存在t的值,使得以A、D、E、F为顶点的四边形是平行四边形,若存在,求出t的值;若不存在,请说明理由.02.如图,在直角坐标系中,A(1,0),B(3,1x上是否0),P是y轴上一动点,在直线y=2存在点Q,使A、B、P、Q为顶点的四边形为平行四边形?若存在,求出对应的Q点的坐标;若不存在,请说明理由.4503.(四川资阳)若一次函数y =2x -1和反比例函数y =x k 2的图象都经过点(1,1).⑴求反比例函数的解析式;⑵已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;⑶利用⑵的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.【例4】(齐齐哈尔)如图1.在四边形ABCD 中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明)(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)问题一:如图2,在四边形ADBC中,AB 与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于M、N,判断∆OMN的形状,请直接写出结论.67问题二:如图3,在∆ABC 中,AC >AB ,D 点在AC 上,AB =CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,若∠EFC =60°,连接GD ,判断∆AGD 的形状并证明.【解法指导】出现中点,联想到三角形中位线是常规思路,因为三角形中位线不仅能进行线段的替换,也可通过平行进行角的转移.【解】⑴△OMN 为等腰三角形.⑵△AGD 为含有30°的直角三角形.证明:连接BD ,取BD 的中点M ,连接FM 、EM .∵AF =FD ,BM =MD ∴MF //21AB 同理ME //21CD .∵AB =CD ∴MF =ME ,RP D CB A EF又∵∠2=∠1=60°,∴△MEF为等边三角形,∴∠4=∠3=60°,∠5=60°∴△AGF为等边三角形∴FG=FD∴∠ADG=30°∴△AGD为含有30°的直角三角形.【变式题组】01.(扬州)如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A、线段EF的长逐渐增大B、线段EF的长逐渐减小C、线段EF的长不变D、线段EF的长与点P的位置有关02.如图,在△ABC中,M是BC的中点,AD是∠A的平89分线, BD ⊥AD 于D ,AB =12,AC =22,则MD 的长为( ).A .3B .4C .5D .6【例5】(浙江竞赛)如图1,在△ABC 中,∠C =90°,点M 在BC 上,且BM =AC ,点N 在AC 上,且AN =MC ,AM 与BN 相交于点P ,求证:∠BPM =45°.【解法指导】题中相等线段关联性不强,能否把相等的线段(或角)通过改变位置,将分散的条件集中,从而构造全等三角形解决问题.【解】方法一、如图2,过M 作 ME AN ,连接BE ,EN ,则得 AMEN , ∴ME ⊥BC ,AM =EN在△AMC 和△BEM 中 ,AC =BN ,∠BNE=∠C=90°, ME=MC∴△AMC≌△BEM∴BE=AM=EN,∠3=∠4 ∵∠1=∠2,∠1+∠4=90°∴∠2+∠3=90°, ∴△BEN为等腰直角三角形,∠BNE=45°,∴∠BPM=45°方法2:如图3,过B作BF AN,连接AF,FM也可证得.【变式题组】01.如图,在等腰△ABC中,AB=AC,延长边AB到点D,延长CA到点E,连接DE,若AD=BC=CE=DE,求∠BAC的度数.10演练巩固反馈提高05.(浙江金华)某广场有一个形状是平行四边形的花坛(如图)分别种有红黄蓝绿橙紫6得颜色的花,如果有AB∥EF∥DC,BC∥GH ∥AD,那么下列说法错误的是A.红花,绿花种植面积一定相等B.紫花,橙花种植面积一定相等C.红花,蓝花种植面积一定相等D.蓝花,黄花种植面积一定相等06.(陕西)如图,l1∥l2BE∥CF, BA⊥l1DC⊥l2,下面四个结论中①AB=DC;②BE=CF③S△ADE=S△DCF④S□ABCD =S□BCFE,其中正确的有()A.4个B .3个C.2个D .1个07.(成都)已知四边形ABCD,有以下四个条件:①AB∥CD②AB=CD③BC∥AD④BC=AD从这四个条件中任选两个,能使四边形ABCD为平行四边形的选法种数有()A.6种B.5种C.4种D.3种08.(厦门)如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=180,则∠PFE的度数为________09..如图,平行四边形ABCD中,点E在边AD中,以BE为折痕,将△ABE向上翻折,点A恰好落在CD上的F点,若△FDE的周长为8,△FCB的周长为22,则FC的长为_________10.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,将△ABC沿直线BC向右平移2.5个单位得到△DEF,AC与DE相交于点G,连接AD,AE,则下列结论中成立的是____①四边形ABED是平行四边;②△AGD≌△CGE③△ADE为等腰三角形④AC平分∠EAD11.(长春)如图□ABCD中,E是BC边上一点,且AB=AE.求证:△ABC≌△EAD若AE平分∠DAB,∠EAC=25°,求∠AED的度数.12.(荆州)如图,□ABCD内一点E满足ED⊥AD于D,且∠EBC=∠EDC,∠ECB=45°,找出图中一条与EB相等的线段,并加以证明.13.已知,如图,△ABC是等边三角形,D是AB边上的点,将线段DB绕点D顺时针旋转60°得到线段DE,延长ED交AC于点F,连接DC,AE.⑴求证:△ADE≌△DFC⑵过点E作EH∥DC交DB于点G ,交BC于点H,连接AH,求∠AHE的度数.。
2020年中考数学《一次函数》专题复习(带答案)

2020年中考数学《一次函数》专题复习(名师精选全国真题,值得下载练习)一.选择题1.(2019•辽阳)若ab<0且a>b,则函数y=ax+b的图象可能是()A.B.C.D.2.(2019•大庆)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y =x+k的图象大致是()A.B.C.D.3.(2019•娄底)如图,直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),则解集为()A.x<﹣2 B.x>3 C.x<﹣2或x>3 D.﹣2<x<3 4.(2019•雅安)如图,在平面直角坐标系中,直线l1:y=x+1与直线l2:y=x 交于点A1,过A1作x轴的垂线,垂足为B1,过B1作l2的平行线交l1于A2,过A2作x轴的垂线,垂足为B2,过B2作l2的平行线交l1于A3,过A3作x轴的垂线,垂足为B3…按此规律,则点A n的纵坐标为()A.()n B.()n+1 C.()n﹣1+D.5.(2019•鄂尔多斯)在“加油向未来”电视节目中,王清和李北进行无人驾驶汽车运送货物表演,王清操控的快车和李北操控的慢车分别从A,B两地同时出发,相向而行.快车到达B地后,停留3秒卸货,然后原路返回A地,慢车到达A地即停运休息,如图表示的是两车之间的距离y(米)与行驶时间x(秒)的函数图象,根据图象信息,计算a、b的值分别为()A.39,26 B.39,26.4 C.38,26 D.38,26.4 6.(2019•遵义)如图所示,直线l1:y=x+6与直线l2:y=﹣x﹣2交于点P(﹣2,3),不等式x+6>﹣x﹣2的解集是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2 7.(2019•锦州)如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为()A.B.C.2 D.48.在平面直角坐标系中,函数y=kx+b的图象如图所示,则下列判断正确的是()A.k>0 B.b<0 C.k•b>0 D.k•b<09.(2019•鞍山)如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>B.x<C.x>3 D.x<3 10.(2019•辽阳)一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A 村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是()A.1个B.2个C.3个D.4个11.(2019•桂林)如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()A.y=x+B.y=x+C.y=x+1 D.y=x+ 12.(2019•包头)如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N在直线y=kx+b上,则b的最大值是()A.﹣B.﹣C.﹣1 D.0 13.(2019•广元)如图,过点A0(0,1)作y轴的垂线交直线l:y=x于点A1,过点A1作直线l的垂线,交y轴于点A2,过点A2作y轴的垂线交直线l于点A3,…,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A5A6,…,其面积分别记为S1,S2,S3,…,则S100为()A.()100B.(3)100C.3×4199D.3×2395 14.(2019•聊城)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15 B.9:20 C.9:25 D.9:30 15.(2019•鄂州)如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y=x上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A.22n B.22n﹣1C.22n﹣2D.22n﹣3二.填空题16.(2019•济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.17.如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为.18.(2019•阜新)甲、乙两人分别从A,B两地相向而行,匀速行进甲先出发且先到达B地,他们之间的距离s(km)与甲出发的时间t(h)的关系如图所示,则乙由B地到A地用了h.19.(2019•鄂尔多斯)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(4,4),A2(8,0)组成的折线依次平移8,16,24,…个单位得到的,直线y =kx+2与此折线有2n(n≥1且为整数)个交点,则k的值为.20.(2019•大连)甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B 两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离y(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b=.21.(2019•娄底)已知点P(x0,y0)到直线y=kx+b的距离可表示为d=,例如:点(0,1)到直线y=2x+6的距离d==.据此进一步可得两条平行线y=x和y=x﹣4之间的距离为.22.(2019•本溪)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为(结果用含正整数n的代数式表示)23.(2019•贵阳)在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组的解是.24.(2019•东营)如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过l1上的点A1(1,)作x轴的垂线交l2于点A2,过点A2作y 轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为.25.(2019•天门)如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是.26.(2019•徐州)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC为等腰三角形,则满足条件的点C共有个.三.解答题27.(2019•恩施州)某县有A、B两个大型蔬菜基地,共有蔬菜700吨.若将A基地的蔬菜全部运往甲市所需费用与B基地的蔬菜全部运往甲市所需费用相同.从A、B两基地运往甲、乙两市的运费单价如下表:甲市(元/吨)乙市(元/吨)A基地20 25B基地15 24(1)求A、B两个蔬菜基地各有蔬菜多少吨?(2)现甲市需要蔬菜260吨,乙市需要蔬菜440吨.设从A基地运送m吨蔬菜到甲市,请问怎样调运可使总运费最少?28.(2019•沈阳)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为,请直接写出点C的坐标.29.(2019•大连)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.30.(2019•徐州)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?31.(2019•宁夏)在综合与实践活动中,活动小组对学校400米的跑道进行规划设计,跑道由两段直道和两端是半圆弧的跑道组成.其中400米跑道最内圈为400米,两端半圆弧的半径为36米.(π取3.14).(1)求400米跑道中一段直道的长度;(2)在活动中发现跑道周长(单位:米)随跑道宽度(距最内圈的距离,单位:米)的变化而变化.请完成下表:跑道宽度/米0 1 2 3 4 5 …跑道周长/米400 …若设x表示跑道宽度(单位:米),y表示该跑道周长(单位:米),试写出y与x的函数关系式:(3)将446米的跑道周长作为400米跑道场地的最外沿,那么它与最内圈(跑道周长400米)形成的区域最多能铺设道宽为1.2米的跑道多少条?32.(2019•哈尔滨)如图,在平面直角坐标系中,点O为坐标原点,直线y=x+4与x 轴交于点A,与y轴交于点B,直线BC与x轴交于点C,且点C与点A关于y轴对称;(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC上一点,BQ=AP,连接PQ,设点P 的横坐标为t,△PBQ的面积为S(S≠0),求S与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点E在线段OA上,点R在线段BC的延长线上,且点R的纵坐标为﹣,连接PE、BE、AQ,AQ与BE交于点F,∠APE=∠CBE,连接PF,PF的延长线与y轴的负半轴交于点M,连接QM、MR,若tan∠QMR=,求直线PM的解析式.参考答案一.选择题1.解:∵ab<0,且a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限.故选:A.2.解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:A.3.解:∵直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),∴解集为﹣2<x<3,故选:D.4.解:联立直线l1与直线l2的表达式并解得:x=,y=,故A1(,);则点B1(,0),则直线B1A2的表达式为:y=x+b,将点B1坐标代入上式并解得:直线B1A2的表达式为:y3=x﹣,将表达式y3与直线l1的表达式联立并解得:x=,y=,即点A2的纵坐标为;同理可得A3的纵坐标为,…按此规律,则点A n的纵坐标为()n,故选:A.5.解:速度和为:24÷(30﹣18)=2米/秒,由题意得:,解得:b=26.4,因此慢车速度为:=0.8米/秒,快车速度为:2﹣0.8=1.2米/秒,快车返回追至两车距离为24米的时间:(26.4﹣24)÷(1.2﹣0.8)=6秒,因此a=33+6=39秒.故选:B.6.解:当x>﹣2时,x+6>﹣x﹣2,所以不等式x+6>﹣x﹣2的解集是x>﹣2.故选:A.7.解:一次函数y=2x+1中,当x=0时,y=1;当y=0时,x=﹣0.5;∴A(﹣0.5,0),B(0,1)∴OA=0.5,OB=1∴△AOB的面积=0.5×1÷2=故选:A.8.解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.∴kb<0,故选:D.9.解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=,∴点B(,0).观察函数图象,发现:当x<时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<.故选:B.10.解:由图象可知A村、B村相离10km,故①正确,当1.25h时,甲、乙相距为0km,故在此时相遇,故②正确,当0≤t≤1.25时,易得一次函数的解析式为s=﹣8t+10,故甲的速度比乙的速度快8km/h.故③正确当1.25≤t≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s=kt+b 代入得,解得∴s=8t+10当s=2时.得2=8t﹣10,解得t=1.5h由1.5﹣1.25=0.25h=15min同理当2≤t≤2.5时,设函数解析式为s=kt+b将点(2,6)(2.5,0)代入得,解得∴s=﹣12t+30当s=2时,得2=﹣12t+30,解得t=由﹣1.25=h=65min故相遇后,乙又骑行了15min或65min时两人相距2km,④正确.故选:D.11.解:由A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),∴AC=7,DO=3,∴四边形ABCD分成面积=AC×(|y B|+3)==14,可求CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,将点B代入解析式得y=kx+2k﹣1,∴直线CD与该直线的交点为(,),直线y=kx+2k﹣1与x轴的交点为(,0),∴7=×(3﹣)×(+1),∴k=或k=0,∴k=,∴直线解析式为y=x+;故选:D.12.解:连接AC,则四边形ABOC是矩形,∴∠A=∠ABO=90°,又∵MN⊥MC,∴∠CMN=90°,∴∠AMC=∠MNB,∴△AMC∽△NBM,∴,设BN=y,AM=x.则MB=3﹣x,ON=2﹣y,∴,即:y=x2+x∴当x=﹣=﹣时,y最大=×()2+=,∵直线y=kx+b与y轴交于N(0,b)当BN最大,此时ON最小,点N(0,b)越往上,b的值最大,∴ON=OB﹣BN=2﹣=,此时,N(0,)b的最大值为.故选:A.13.解:∵点A0的坐标是(0,1),∴OA0=1,∵点A1在直线y=x上,∴OA1=2,A0A1=,∴OA2=4,∴OA3=8,∴OA4=16,得出OA n=2n,∴A n A n+1=2n•,∴OA198=2198,A198A199=2198•,∵S1=(4﹣1)•=,∵A2A1∥A200A199,∴△A0A1A2∽△A198A199A200,∴=()2,∴S=2396•=3×2395故选:D.14.解:设甲仓库的快件数量y(件)与时间x(分)之间的函数关系式为:y1=k1x+40,根据题意得60k1+40=400,解得k1=6,∴y1=6x+40;设乙仓库的快件数量y(件)与时间x(分)之间的函数关系式为:y2=k2x+240,根据题意得60k2+240=0,解得k2=﹣4,∴y2=﹣4x+240,联立,解得,∴此刻的时间为9:20.故选:B.15.解:∵△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∴A1B1∥A2B2∥A3B3∥…∥A n B n,B1A2∥B2A3∥B3A4∥…∥B n A n+1,△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∵直线y=x与x轴的成角∠B1OA1=30°,∠OA1B1=120°,∴∠OB1A1=30°,∴OA1=A1B1,∵A1(1,0),∴A1B1=1,同理∠OB2A2=30°,…,∠OB n A n=30°,∴B2A2=OA2=2,B3A3=4,…,B n A n=2n﹣1,易得∠OB1A2=90°,…,∠OB n A n+1=90°,∴B1B2=,B2B3=2,…,B n B n+1=2n﹣1,∴S1=×1×=,S2=×2×2=2,…,S n=×2n﹣1×2n﹣1=;故选:D.二.填空题(共11小题)16.解:设当x>120时,l2对应的函数解析式为y=kx+b,,得,即当x>120时,l2对应的函数解析式为y=6x﹣240,当x=150时,y=6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m3),故小雨家去年用水量为150m3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多210元,故答案为:210.17.解:∵四边形ABCO是正方形,∴点A,C关于直线OB对称,连接CD交OB于P,连接P A,PD,则此时,PD+AP的值最小,∵OC=OA=AB=4,∴C(0,4),A(4,0),∵D为AB的中点,∴AD=AB=2,∴D(4,2),设直线CD的解析式为:y=kx+b,∴,∴,∴直线CD的解析式为:y=﹣x+4,∵直线OB的解析式为y=x,∴,解得:x=y=,∴P(,),设直线AP的解析式为:y=mx+n,∴,解得:,∴直线AP的解析式为y=﹣2x+8,故答案为:y=﹣2x+8.18.解:由图可得,甲的速度为:36÷6=6(km/h),则乙的速度为:=3.6(km/h),则乙由B地到A地用时:36÷3.6=10(h),故答案为:10.19.解:∵A1(0,0),A2(8,0),A3(16,0),A4(24,0),…,∴A n(8n﹣8,0).∵直线y=kx+2与此折线恰有2n(n≥1且为整数)个交点,∴点A n+1(8n,0)在直线y=kx+2上,∴0=8nk+2,解得:k=﹣.故答案为:﹣.20.解:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V乙)×=120,解得:乙的速度V乙=80,∵乙的速度快,从图2看出乙用了b分钟走完全程,甲用了a分钟走完全程,a﹣b==,故答案为.21.解:当x=0时,y=x=0,即点(0,0)在直线y=x上,因为点(0,0)到直线y=x﹣4的距离为:d===2,因为直线y=x和y=x﹣4平行,所以这两条平行线之间的距离为2.故答案为2.22.解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x轴,C3D3⊥x轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……∵点B1在直线l:y=x上,点B1的横坐标为2,∴点B1的纵坐标为1,即:OD=2,B1D=1,图中所有的直角三角形都相似,两条直角边的比都是1:2,∴点C1的横坐标为:2++()0,点C2的横坐标为:2++()0+()0×+()1=+()0×+()1点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×++()2点C4的横坐标为:=+()0×+()1×+()2×+()3……点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1=+[()0+()1×+()2+()3+()4……]+()n﹣1==故答案为:23.解:∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组的解是.故答案为.24.解:由题意可得,A1(1,),A2(1,﹣),A3(﹣3,﹣),A4(﹣3,3),A5(9,3),A6(9,﹣9),…,可得A2n+1的横坐标为(﹣3)n∵2019=2×1009+1,∴点A2019的横坐标为:(﹣3)1009=﹣31009,故答案为:﹣31009.25.解:∵OA1=1,∴OC1=1,∴∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,∴C1的纵坐标为:sin60°•OC1=,横坐标为cos60°•OC1=,∴C1(,),∵四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,∴A1C2=2,A2C3=4,A3C4=8,…,∴C2的纵坐标为:sin60°•A1C2=,代入y=x+求得横坐标为2,∴C2(2,),C3的纵坐标为:sin60°•A2C3=2,代入y=x+求得横坐标为5,∴C3(5,2),∴C4(11,4),C5(23,8),∴C6(47,16);故答案为(47,16).26.解以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为4;三.解答题(共6小题)27.解:(1)设A、B两基地的蔬菜总量分别为x吨、y吨.于是有:,解得:,答:A、B两基地的蔬菜总量分别为300吨和400吨;(2)由题可知:,∴0≤m<260,∵w=20m+25(300﹣m)+15(260﹣m)+24[400﹣(260﹣m)]=4m+14760,∵4>0,∴w随m的增大而增大,∴w最小=14760答:当A基地运300吨到乙市,B基地运260吨到甲市,B基地运140吨到乙市时,总运费最少为14760元.28.解:(1)将A(8,0)代入y=kx+4,得:0=8k+4,解得:k=﹣.故答案为:﹣.(2)①由(1)可知直线AB的解析式为y=﹣x+4.当x=0时,y=﹣x+4=4,∴点B的坐标为(0,4),∴OB=4.∵点E为OB的中点,∴BE=OE=OB=2.∵点A的坐标为(8,0),∴OA=8.∵四边形OCED是平行四边形,∴CE∥DA,∴==1,∴BC=AC,∴CE是△ABO的中位线,∴CE=OA=4.∵四边形OCED是平行四边形,∴OD=CE=4,OC=DE.在Rt△DOE中,∠DOE=90°,OD=4,OE=2,∴DE==2,∴C平行四边形OCED=2(OD+DE)=2(4+2)=8+4.②设点C的坐标为(x,﹣x+4),则CE=|x|,CD=|﹣x+4|,∴S△CDE=CD•CE=|﹣x2+2x|=,∴x2﹣8x+33=0或x2﹣8x﹣33=0.方程x2﹣8x+33=0无解;解方程x2﹣8x﹣33=0,得:x1=﹣3,x2=11,∴点C的坐标为(﹣3,)或(11,﹣).29.解:(1)当x=0时,y=3,当y=0时,x=4,∴直线y=﹣x+3与x轴点交A(4,0),与y轴交点B(0,3)∴OA=4,OB=3,∴AB=,因此:线段AB的长为5.(2)当CD∥OA时,如图,∵BD=OC,OC=m,∴BD=m,由△BCD∽△BOA得:,即:,解得:m=;①当<m≤3时,如图1所示:过点D作DF⊥OB,垂足为F,此时在x轴下方的三角形与△CDF全等,∵△BDF∽△BAO,∴,∴DF=,同理:BF=m,∴CF=2m﹣3,∴S△CDF==(2m﹣3)×=m2﹣2m,即:S=m2﹣2m,(<m≤3)②当0<m≤时,如图2所示:DE=m≤,此时点E在△AOB的内部,S=0 (0<m≤);③当﹣3<m≤0时,如图3所示:同理可得:点D(﹣m,m+3)设直线CD关系式为y=kx+b,把C(0,m)、D(﹣m,m+3)代入得:,解得:k=﹣,b=m,直线CD关系式为y=﹣x+m,当y=0时,0=﹣x+m,解得x=m2F(,0)∴S△COF=OC•OF=(﹣m)×=﹣m3,即:S=﹣m3,(﹣3<m≤0)④当m<﹣3时,如图4所示:同理可得:点D(﹣m,m+3)此时,DF=﹣m﹣3,OC=﹣m,OF=﹣,∴S梯形OCDF=(﹣m﹣3﹣m)×(﹣)=即:S=(m<﹣3)综上所述:S与m的函数关系式为:S=.30.解:(1)设甲、乙两人的速度分别为am/min,bm/min,则:y1=y2=bx由图②知:x=3.75或7.5时,y1=y2,∴,解得:∴y1=1200﹣240x,令y1=0,则x=5∴y1=y2=80x答:甲的速度为240m/min,乙的速度为80m/min.(2)设甲、乙之间距离为d,则d2=(1200﹣240x)2+(80x)2=64000(x﹣)2+144000,∴当x=时,d2的最小值为144000,即d的最小值为120;答:当x=时,甲、乙两人之间的距离最短.31.解:(1)400米跑道中一段直道的长度=(400﹣2×36×3.14)÷2=86.96 米,答:400米跑道中一段直道的长度约为86.96米.(2)当跑道宽度为1米时,此时弯道的半径为36+1=37米,周长为86.96×2+2×3.14×37=406.28米,当跑道宽度为2米时,此时弯道的半径为36+2=38米,周长为86.96×2+2×3.14×38=412.56米,当跑道宽度为3米时,此时弯道的半径为36+3=39米,周长为86.96×2+2×3.14×39=418.84米,当跑道宽度为4米时,此时弯道的半径为36+4=40米,周长为86.96×2+2×3.14×40=425.12米,当跑道宽度为5米时,此时弯道的半径为36+1=41米,周长为86.96×2+2×3.14×41=431.4米,表格填写如下:y与x的函数关系式为:y=2πx+400=6.28x+400;(3)当y=446时,即6.28x+400=446,解得:x≈7.32 m7.32÷1.2≈6 条∴最多能铺设道宽为1.2米的跑道6条.32.解:(1)∵y=x+4,∴A(﹣3,0)B(0,4),∵点C与点A关于y轴对称,∴C(3,0),设直线BC的解析式为y=kx+b,将B(0,4),C(3,0)代入,,解得k=﹣,b=4,∴直线BC的解析式y=﹣;(2)如图1,过点A作AD⊥BC于点点D,过点P作PN⊥BC于N,PG⊥OB于点G.∵OA=OC=3,OB=4,∴AC=6,AB=BC=5,∴sin∠ACD=,即,∴AD=,∵点P为直线y=x+4上,∴设P(t,t+4),∴PG=﹣t,cos∠BPG=cos∠BAO,即,∴,∵sin∠ABC=,∴PN==,∵AP=BQ,∴BQ=5+,∴S=,即S=;(3)如图,延长BE至T使ET=EP,连接AT、PT、AM、PT交OA于点S.∵∠APE=∠EBC,∠BAC=∠BCA,∴180°﹣∠APE﹣∠BAC=180°﹣∠EBC﹣∠ACB,∴∠PEA=∠BEC=∠AET,∴PT⊥AE,PS=ST,∴AP=AT,∠TAE=∠P AE=∠ACB,AT∥BC,∴∠TAF=∠FQB,∵∠AFT=∠BFQ,AT=AP=BQ,∴△ATF≌△QBF,∴AF=QF,TF=BF,∵∠PSA=∠BOA=90°,∴PT∥BM,∴∠TBM=∠PTB,∵∠BFM=∠PFT,∴△MBF≌△PTF,∴MF=PF,BM=PT,∴四边形AMQP为平行四边形,∴AP∥MQ,MQ=AP=BQ,∴∠MQR=∠ABC,过点R作RH⊥MQ于点H,∵sin∠ABC=sin∠MQR=,设QR=25a,HR=24a,则QH=7a,∵tan∠QMR=,∴MH=23a,BQ=MQ=23a+7a=30a,BR=BQ+QR=55a,过点R作RK⊥x轴于点K.∵点R的纵坐标为﹣,∴RK=,∵sin∠BCO=,∴CR=,BR=,∴,a=,∴BQ=30a=3,∴5+=3,t=,∴P(),∴,∵BM=PT=2PS=,BO=4,∴OM=,∴M(0,),设直线PM的解析式为y=mx+n,∴,解得,∴直线PM的解析式为y=.。
一次函数经典测试题含答案

一次函数经典测试题含答案一、选择题1.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC 分割成面积相等的两部分,则直线的表达式( )A .+1y x =B .4455y x =-C .1y x =-D .33y x =-【答案】C【解析】【分析】 根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.【详解】∵点B 的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l 的函数解析式为y kx b =+,则320k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,所以直线l 的解析式为1y x =-. 故选:C .【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.2.如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .﹣5B .32C .52D .7【解析】【分析】把(-2,0)和(0,1)代入y=kx+b ,求出解析式,再将A (3,m )代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b ,得201k b b -+=⎧⎨=⎩, 解得121k b ⎧=⎪⎨⎪=⎩ 所以,一次函数解析式y=12x+1, 再将A (3,m )代入,得 m=12×3+1=52. 故选C.【点睛】 本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.3.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( ) A . B .C .D .【解析】【分析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x- 的图象过一、三象限, 所以此选项不正确; B. 由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0,满足ab<0,∴a −b<0,∴反比例函数y=a b x-的图象过二、四象限, 所以此选项不正确; C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确; D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小4.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y =−4x 和y =kx +b 的图象相交于点A (m ,−8),∴−8=−4m ,解得:m =2,故A 点坐标为(2,−8),∵kx +b >−4x 时,(k +4)x +b >0,则关于x 的不等式(k +4)x +b >0的解集为:x >2.故选:A .【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.5.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .2B 2C 5D 3【答案】D【解析】【分析】【详解】解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣x+22=22,则A (0,22),当y=0时,﹣x+22=0,解得x=22,则B (22,0),所以△OAB 为等腰直角三角形,则AB=2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到PM=22OP OM -=21OP -,当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=.故选D .【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.6.下列函数中,y 随x 的增大而增大的函数是( )A .2y x =-B .21y x =-+C .2y x =-D .2y x =-- 【答案】C【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误;∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误;∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确;∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误.故选C .【点睛】本题考查的是一次函数的性质,一次函数y=kx+b (k≠0)中,当k >0时y 随x 的增大而增大;k<0时y 随x 的增大而减小;熟练掌握一次函数的性质是解答此题的关键.7.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.如图,在同一直角坐标系中,函数13y x =和22y x m =-+的图象相交于点A ,则不等式210y y <<的解集是( )A .01x <<B .502x <<C .1x >D .512x << 【答案】D【解析】【分析】 先利用y 1=3x 得到A(1,3),再求出m 得到y 2═-2x+5,接着求出直线y 2═-2x+m 与x 轴的交点坐标为(52,0),然后写出直线y 2═-2x+m 在x 轴上方和在直线y 1=3x 下方所对应的自变量的范围【详解】当x=1时,y=3x=3,∴A(1,3),把A(1,3)代入y 2═−2x+m 得−2+m=3,解得m=5,∴y 2═−2x+5,解方程−2x+5=0,解得x=52, 则直线y 2═−2x+m 与x 轴的交点坐标为(52,0), ∴不等式0<y 2<y 1的解集是1<x<52故选:D【点睛】 本题考查了一次函数与一元一次不等式,会观察一次函数图象.9.如图,在矩形AOBC 中,A (–2,0),B (0,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )A .–12B .12C .–2D .2【答案】A【解析】【分析】根据已知可得点C 的坐标为(-2,1),把点C 坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB 是矩形,∴BC=OA=2,AC=OB=1,∵点C 在第二象限,∴C 点坐标为(-2,1),∵正比例函数y =kx 的图像经过点C ,∴-2k=1,∴k=-12, 故选A. 【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C 的坐标是解题的关键.10.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭ 【答案】B【解析】【分析】作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;∵A 的坐标为(-4,5),D 是OB 的中点,∴D (-2,0),由对称可知A'(4,5),设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩ 5563y x ∴=+ 当x=0时,y=53 50,3E ⎛⎫∴ ⎪⎝⎭故选:B【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.11.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.若正比例函数y=kx的图象经过第二、四象限,且过点A(2m,1)和B(2,m),则k的值为()A.﹣12B.﹣2 C.﹣1 D.1【答案】A【解析】【分析】根据函数图象经过第二、四象限,可得k<0,再根据待定系数法求出k的值即可.【详解】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0.∵正比例函数y=kx的图象过点A(2m,1)和B(2,m),∴2km1 2k m=⎧⎨=⎩,解得:m11k2=-⎧⎪⎨=-⎪⎩或m11k2=⎧⎪⎨=⎪⎩(舍去).故选:A.【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.13.如图,已知正比例函数y1=ax与一次函数y2=12x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④【答案】D【解析】【分析】根据正比例函数和一次函数的性质判断即可.【详解】因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数21 2y x b=+ \过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<−2时,y1>y2,④正确;故选D.【点睛】考查一次函数的图象与系数的关系,一次函数与不等式,熟练掌握和灵活运用相关知识是解题的关键.14.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC -CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长是()A.1.5cm B.1.2cm C.1.8cm D.2cm【答案】B【解析】【分析】【详解】由图2知,点P在AC、CB上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+,解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .15.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A.B.C.D.【答案】D【解析】试题解析:当x>-1时,x+b>kx-1,即不等式x+b>kx-1的解集为x>-1.故选A.考点:一次函数与一元一次不等式.16.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是()A.B.C.D.【答案】B【解析】【分析】过C作CD⊥AB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=4,则DB=5-4=1,BC=3-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.【详解】过C作CD⊥AB于D,如图,对于直线,当x=0,得y=3;当y=0,x=4,∴A(4,0),B(0,3),即OA=4,OB=3,∴AB=5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,∴AC 平分∠OAB ,∴CD=CO=n ,则BC=3-n ,∴DA=OA=4,∴DB=5-4=1,在Rt △BCD 中,DC 2+BD 2=BC 2,∴n 2+12=(3-n )2,解得n=,∴点C 的坐标为(0,).故选B.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.17.已知直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于不等式12k x b k x +>的解集为( )A .1x <B .1x >C .2x >D .0x <【答案】A【解析】【分析】 根据函数图象可知直线l 1:y=k 1x+b 与直线l 2:y=k 2x 的交点是(1,2),从而可以求得不等式12k x b k x +>的解集.【详解】由图象可得,12k x b k x +>的解集为x <1,故选:A .【点睛】此题考查一次函数与一元一次不等式的关系,解题的关键是明确题意,利用数形结合的思想解答问题.18.已知一次函数y=kx+k,其在直角坐标系中的图象大体是()A.B.C.D.【答案】A【解析】【分析】函数的解析式可化为y=k(x+1),易得其图象与x轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y=k(x+1),即函数图象与x轴的交点为(﹣1,0),观察四个选项可得:A符合.故选A.【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.19.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),4x+2<kx+b<0的解集为()A.x<﹣2 B.﹣2<x<﹣1 C.x<﹣1 D.x>﹣1【答案】B【解析】【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(-1,-2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【详解】∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.20.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.。
初中数学八下一次函数、平行四边形综合提高(1)

一次函数、平行四边形综合提高学生姓名年级学科授课教师日期时段核心内容一次函数、平行四边形知识的综合运用课型一对一/一对N教学目标1.能解决一次函数中平行四边形的存在问题2.能解决一次函数中的面积问题3.能解决一次函数中的长度问题重、难点对条件综合分析,有函数参数思想,结合平行四边形与一次函数相关知识进行综合解题课首沟通1.了解学生在校学习情况和进度2.检查作业知识导图课首小测1.[单选题] (2012年从化市一模)已知正比例函数y=kx(k≠0)函数值随x的增大而增大,则一次函数y=-kx+k的图象大致是()A. B. C. D.2.(2012 番禺期末)如图,直线:与直线:相交于点P(,2),则关于的不等式的解集为.3.[单选题] (2015番禺区一模)如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.cm B.2cm C.3cm D.4cm4.[单选题] (2015 青岛中考)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF= ,BD=4,则菱形ABCD的周长为()A.4B.C.D.285.[单选题] (2015天河区期末)如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是()。
A. B.2 C. D.导学一:一次函数中的一般平行四边形存在问题知识点讲解 1:一次函数中一般平行四边形的存在问题——三定一动型例 1. (2014校级期末)如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2 交于点C.(1)求直线l2的函数关系式;(2)求△ADC的面积;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由。
09 专题九:一次函数与平行四边形存在性问题(方法专题)

1、如图,在平面直角坐标系xOy中,已知A(2,-2),B(4,0),若C是坐标平面内一点,且以A,B,C,O为顶点的平行四边形是_______________________。
【答案】(-2,-2),(6,-2)或(2,2)。
2、已知M(1,1)是AB的中点,若点A的坐标为(3,2)则点B的坐标为_________。
【答案】(-1,0)。
1.线段中点坐标公式平面直角坐标系中,点A坐标为(x1,y1),点B坐标为(x2,y2),则线段AB的中点坐标为1212,22x x y y++⎛⎫⎪⎝⎭。
2.平行四边形顶点坐标公式ABCD的顶点坐标分别为A(x A,y A)、B(x B,y B)、C(x C,y C)、D(x D,y D),则:x A+x C=x B+x D;y A+y C=y B+y D。
即平行四边形对角线两端点的横坐标、纵坐标之和分别相等。
解法点睛专题导入一次函数与平行四边形存在性问题3.一个基本事实,确定动点位置如图,已知不在同一直线上的三点A 、B 、C ,在平面内另找一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形.答案有三种:以AB 为对角线的ACBD 1,以AC 为对角线的ABCD 2,以BC 为对角线的ABD 3C 。
例1、已知:在平面直角坐标系中,点(1,0)A ,点(4,0)B ,点C 在y 轴正半轴上,且2OB OC =.(1)试确定直线BC 的解析式;(2)在平面内确定点M ,使得以点M 、A 、B 、C 为顶点的四边形是平行四边形,请直接写出点M 的坐标. 【答案】解:(1)(4,0)B ,4OB ∴=,又2OB OC =,C 在y 轴正半轴上,(0,2)C ∴.设直线BC 的解析式为(0)y kx b k =+≠.过点(4,0)B ,(0,2)C ,∴402k b b +=⎧⎨=⎩, 解得122k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为122y x =-+. 专题精析(2)如图,①当BC 为对角线时,易求1(3,2)M ;②当AC 为对角线时,//CM AB ,且CM AB =.所以2(3,2)M -;③当AB 为对角线时,//AC BM ,且AC BM =.则||2y M OC ==,||5x M OB OA =+=,所以3(5,2)M -. 综上所述,符合条件的点M 的坐标是1(3,2)M ,2(3,2)M -,3(5,2)M -.【举一反三】如图,在平面直角坐标系中,直线4y x =-+与x 轴、y 轴分别交于A ,B 两点,直线3y kx =-经过点A ,且与y 轴交于点C ,若点M 在直线AB 上运动,点N 在直线AC 上运动,且以O ,B ,M ,N 为顶点的四边形是平行四边形,则点M 的坐标 ______ .【答案】解:把0x =代入4y x =-+得:4y =,即点B 的坐标为:(0,4),线段OB 的长度为:4,把0y =代入4y x =-+得:40x -+=,解得:4x =,即点A 的坐标为:(4,0),把点(4,0)A 代入直线3y kx =-的:430k -=,解得:34k =,即直线AC 的解析式为:334y x =-,设点M 的横坐标为m ,则M 的坐标为:(,4)m m -+,根据题意得:点N 的坐标为:3(,3)4m m -当04m <<时,3(4)(3)44m m -+--=, 解得:127m =, 即点M 的坐标为:12(7,16)7, 当4m >时, 3(3)(4)44m m ---+=, 解得:447m =, 即点M 的坐标为:44(7,16)7-, 综上,点M 的坐标为:12(7,16)7或44(7,16)7-,如下图所示: 故答案为:12(7,16)7或44(7,16)7-.2.如图在平面直角坐标系中,点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,且OA、OB 的长满足|2|0OA -.(1)求AB 的长;(2)若直线y kx b =+与线段AB 交于点E ,与坐标轴分别交于C 、D 两点,且点3(0,)2D ,(1,2)E ,求点C 的坐标;(3)在(2)的条件下,在坐标平面内是否存点P ,使以A 、B 、C 、P 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】解:|2|0OA -,2OA ∴=,4OB =,在RtAOB ∆中,根据勾股定理得,AB(2)将点3(0,)2D ,(1,2)E 代入直线y kx b =+中得,232k b b +=⎧⎪⎨=⎪⎩, ∴1232k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线CD 是解析式为1322y x =+, 令0y =,则13022x +=,3x ∴=-, ∴点C 的坐标(3,0)-;(3)如图,连接BC ,由(1)知,2OA =,4OB =,点A 在x轴的正半轴上,点B 在y 轴的正半轴上,(2,0)A∴,(0,4)B,由(2)知,(3,0)C-,5AC∴=,以A、B、C、P为顶点的四边形是平行四边形,①当AC为边时,//BP AC,5BP AC==,(5,4)P∴-或(5,4);②当AC为对角线时,点B向下平移4个单位,再向右平移2个单位,∴点C向下平移4个单位,再向右平移2个单位得到点P的坐标(32,04)-+-,(1,4)P∴--,即:点P的坐标为(5,4)-或(5,4)或(1,4)--.例2、如图,在已建立直角坐标系的44⨯正方形方格纸中,若每个小正方形的边长为1,将ABC∆绕点B顺时针旋转90︒到DBE∆(1)求线段BC扫过的面积;(2)平移线段DE后的像为GF,在正方形格点上是否存在点F,G,使得以D,E,F,G为顶点的四边形是菱形,求线段FG所在的直线解析式.【答案】解:(1)2902360Sππ==;(2)当(2,2)F ,(0,3)G 时,D ,E ,F ,G 为顶点的四边形是菱形,设直线FG 的解析式为y kx b =+,223k b b +=⎧⎨=⎩, 解得123k b ⎧=-⎪⎨⎪=⎩,132FG y x =-+; 当(4,2)F ,(2,3)G 时,D ,E ,F ,G 为顶点的四边形是菱形,设直线FG 的解析式为y mx n =+,4223m n m n +=⎧⎨+=⎩, 解得124m n ⎧=-⎪⎨⎪=⎩,142FG y x =-+.【举一反三】如图,在平面直角坐标系xOy 中,直线21y x =-+与坐标轴分别交于A ,B 两点,与直线y x a =+交于点D ,点B 绕点A 顺时针旋转90︒的对应点C 恰好落在直线y x a =+上.(1)求直线CD 的表达式;(2)若点E 在y 轴上,且CDE ∆的周长最小,求点E 的坐标;(3)点F 是直线21y x =-+上的动点,G 为平面内的点,若以点C ,D ,F,G 为顶点的四边形是菱形,请直接写出点G 的坐标.【答案】解:(1)如图1中,连接AC ,作CE x ⊥轴于E .90BAC ∠=︒,90ABO BAO ∴∠+∠=︒,90BAO CAE ∠+∠=︒,ABO CAE ∴∠=∠,AB OC =,90AOB CEA ∠=∠=︒,ABO CAE ∴∆≅∆,12CE OA ∴==,1AE OB ==, 3(2C ∴,1)2, 把3(2C ,1)2代入y x a =+,得到1322a =+, 1a ∴=-,∴直线CD 的解析式为1y x =-.(2)如图2中,作D 关于y 轴的对称点D ',连接CD '交y 轴于E ,此时CDE ∆的周长最小.由121y x y x =-⎧⎨=-+⎩解得2313x y ⎧=⎪⎪⎨⎪=-⎪⎩, 2(3D ∴,1)3-,2(3D '-,1)3-, ∴直线CD '的解析式为511313y x =-,1(0,)13E ∴-.(3)如图3中,①如图3中,当DF 为菱形对角线时,四边形DCFG 是菱形,C ∴、G 关于AB 对称,易求直线CG 的解析式为1124y x =-, 由112421y x y x ⎧=-⎪⎨⎪=-+⎩,解得120x y ⎧=⎪⎨⎪=⎩,G ∴与C 关于1(2,0)对称,可得1(2G -,1)2-.②如图4中,当AC 为菱形的对角线时,F 、G 关于CD 对称,求出线段CD 的垂直平分线,同法可得7(3G ,7)6-. ③如图5中,当CF为菱形的对角线时,可得3(2G,12或32+,12.综上所述,满足条件的点G 坐标为1(2-,1)2-或7(3,7)6-或3(2,12+或32+,12.1.如图,直角坐标系中的网格由单位正方形构成,在格点ABC ∆中,点A 的坐标为(2,3)(1)若以A 、B 、C 及点D 为顶点的四边形是矩形,直接写出点D 的坐标: (0,4) ;(2)若以A 、B 、C 及点E 为顶点的四边形是平行四边形,请画出所有点E 的位置.【答案】解:(1)如图1所示:四边形ADBC是矩形,5CD AB ∴=,1OD =,4OD ∴=,(0,4)D ∴,故答案为:(0,4);专题过关(2)如图2所示:2.如图,直线2y =+与坐标轴分别交于A ,B 两点,点C 在y 轴上,且12OA AC =,直线CD AB ⊥于点P ,交x 轴于点D (1)求点P 的坐标(2)坐标系内是否存在点M ,使以点B ,P ,D ,M 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】解:(1)对于直线2y +,令0x =得到2y =,令0y =得到-(0,2)A ∴,(B -0),2AC AO =,4AC ∴=,(0,6)C ∴,CD AB ⊥,∴直线CD 的解析式为6y =+,由26y x y ⎧+⎪⎨⎪=+⎩,解得3x y ⎧=⎪⎨=⎪⎩P ∴,3).(2)存在,P 点坐标3),(23D,0),(B -0), BD ∴=,当1PM BD是平形四边形, 则1BD PM ==1(M ∴-3),当2PBDM 是平形四边形,则2BD PM ==2M ∴,3),P 到x 轴距离等于3M 到x 轴距离,故3M 的纵坐标为3-,BE DF BD DE ==-=FO ∴3M ∴的横坐标为 3M ∴的坐标为(3)-;综上所述M 点的坐标为:1(M -3),2M3),3(M ,3)-.3.如图, 在平面直角坐标系xOy ,直线1y x =+与24y x =-+交于点A ,两直线与x 轴分别交于点B 和点C ,D 是直线AC 上的一个动点, 直线AB 上是否存在点E ,使得以E ,D ,O ,A 为顶点的四边形是平行四边形?若存在, 求出点E 的坐标;若不存在, 请说明理由 .【答案】解:①如下图: 当//OE AD 时,//OE AC ,所以直线OE 的解析式为2y x =-, 联立OE 、AB ,得12y x y x =+⎧⎨=-⎩①②,解得1323x y ⎧=-⎪⎪⎨⎪=⎪⎩,即11(3E -,2)3;②如下图: 当//DE OA 时,//OD AB 时,//OD AB ,∴直线OD 的解析式为y x =,联立OD 、AC ,得24y xy x =⎧⎨=-+⎩,解得4343x y ⎧=⎪⎪⎨⎪=⎪⎩,4(3D ,4)3. 联立AB 、AC 得241y x y x =-+⎧⎨=+⎩,解得12x y =⎧⎨=⎩,(1,2)A .OA 的解析式为2y x =, //DE OA ,∴设直线DE 的解析式为2y x b =+,将点D 的坐标代入直线的解析式得:42y x =-联立DE 、AB 得4231y x y x ⎧=-⎪⎨⎪=+⎩,解得73103x y ⎧=⎪⎪⎨⎪=⎪⎩,27(3E ,10)3. ③当OA 为对角线时,(1,2)A ,OA ∴的中点坐标为1(2,1),点D 在直线24y x =-+上,∴设(,24)D m m -+,点E 在直线1y x =+上,∴设(,1)E n n +,DE ∴的中点坐标为(2m n +,241)2m n -+++, ∴122m n +=,24112m n -+++=, 43m ∴=,13n =-,1(3E ∴-,2)3综上所述:11(3E -,2)3,27(3E ,10)3.4.如图,四边形OABC 为矩形,A 点在x 轴上,C 点在y 轴上,矩形一角经过翻折后,顶点B 落在OA边的点G 处,折痕为EF ,F 点的坐标是(4,1),30FGA ∠=︒. (1)求B 点坐标. (2)求直线EF 解析式.(3)若点M 在y 轴上,直线EF 上是否存在点N ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,求N 点的坐标;若不存在,请说明理由.【答案】解:(1)F点的坐标是(4,1),1FA∴=,4OA=,30 FGA∠=︒,GA∴=,2FG=,由折叠的性质知2BF FG==,3AB∴=,四边形OABC为矩形,4CB OA∴==,B∴点坐标为(4,3);(2)903060AFG∠=︒-︒=︒,由折叠的性质知1(18060)602EFB EFG∠=∠=︒-︒=︒,BE∴=4CE∴=-(4E∴-3),设直线EF的解析式是y kx b=+,∴41(44k bk b+=⎧⎪⎨-+=⎪⎩,解得1kb⎧=⎪⎪⎨⎪=+⎪⎩,∴直线EF的解析式是1y=++(3)①如图1中,当四边形MNGF是平行四边形时,易知点N的横坐标为点N在直线EF上,(N ∴2.②如图2中,当四边形MNFG 是平行四边形时,易知点N 点N 在直线EF 上,N ∴.③如图3中,当四边形MFNG 是平行四边形时,易知点N 的横坐标为8(8N ∴2).5.平面直角坐标系中,直线132y x =-+与x 轴交于点A ,与y 轴交于点B ,与直线(0)y kx k =≠交于点(2,)C m .(1)求k 的值;(2)求OBC ∆的面积;(3)点M 为直线132y x =-+上一动点,过M 作/MN x 轴交直线y kx =于点N ,作MP x ⊥轴于点P ,过N作NQ x ⊥轴于点Q ,当以M ,N ,Q ,P 为顶点的四边形是正方形时,直接写出点M 的坐标.【答案】解:(1)(2,)C m 在直线132y x =-+上2m ∴=(2,2)C ∴将(2,2)C 代入(0)y kx k =≠中得:1k =(2)直线132y x =-+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴,(0,3)B (2,2)COBC ∴∆的面积为:13232⨯⨯= (3)MP x ⊥轴,NQ x ⊥轴//MP NQ ∴,90MPQ ∠=︒/MN x 轴,即/MN PQ∴以M ,N ,Q ,P 为顶点的四边形是矩形当以M ,N ,Q ,P 为顶点的四边形是正方形时,即四边形MNQP 为正方形∴当满足MN NQ =时,必有以M ,N ,Q ,P 为顶点的四边形是正方形设(,)N a a ,则(62,)M a a -|63|MN a ∴=-,||NQ a =|63|||a a ∴-=3a ∴=或32(0,3)M ∴或3(3,)26.已知,如图,在平面直角坐标系xoy 中,直线1:3l y x =+分别交x 轴、y 轴于点A 、B 两点,直线2:3l y x =-过原点且与直线1l 相交于C ,点P 为y 轴上一动点. (1)求点C 的坐标;(2)在平面坐标系中是否存在点M ,使以A 、O 、C 、M 为顶点的四边形为平行四边形.若存在,求出点M 的坐标;若不存在,请说明理由;(3)当PA PC +的值最小时,求此时点P 的坐标,并求PA PC +的最小值.【答案】解:(1)直线1:3l y x =+①与直线2:3l y x =-②相交于C , 联立①②解得,34x =-,94y =,3(4C ∴-,9)4;(2)直线3y x =+交x 轴于点A ,(3,0)A ∴-,由(1)知,3(4C -,9)4,以A 、O 、C 、M 为顶点的四边形为平行四边形, 设(,)M m n 如图1,∴①当AC 是对角线时,131(3)242m --=,191(0)242n +=,154m ∴=-,94n =, 15(4M ∴-,9)4, ②当OC 是对角线时,131(0)(3)242m -=-+,191(0)(0)242n +=+,94m ∴=,94n =,19(4M ,9)4, ③当OA 为对角线时,113(03)()224m -=-,119(00)()224m +=+,94m ∴=-,94n =-.29(4M -,9)4,(3)如图2,作点(3,0)A -关于y 轴的对称点(3,0)A ',连接CA '交y 轴于点P ,此时,PC PA +最小,最小值为CA '= 由(1)知,3(4C -,9)4,(3,0)A ',∴直线A C '的解析式为3955y x =-+, 9(0,)5P ∴.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数、平行四边形复习题
姓名__________ 班级___________ 得分___________
1、已知点A(-1/2,a), B(3,b)在函数y=-3x+4的象上,则a与b的大小关系是___________
2、一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为_________________
3、若直线y=3x+1与y=4x-2a的函数图像交于第四象限内的一点,则a的取值范围为________
4、已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x 轴交于点B(3,0) (1)求这两个函数的解析式
5、已知y -2与x成正比,且当x=1时,y= -6
(1)求y与x之间的函数关系式(2)若点(a,2)在这个函数图象上,求a的值
6、已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数y= 1 /2 x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形的面积。
7、今年我市水果大丰收,A、B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.
(1)设从A基地运往甲销售点水果x件,总运费为W元,请用含x的代数式表示W,并写出x的取值范围;
(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.
8、如图,点D、E、F分别为△ABC三边的中点,若△DEF的周长为10,则△ABC的周长为()
A.5 B.10 C.20 D.40
9、如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()
A.8 B.9 C.10 D.11
10.如图,▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=4,CE=3,则AB的长是()
A.2/5B.3 C.4 D.5
11.四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()
A.OA=OC,OB=OD B.AD∥BC,AB∥DC
C.AB=DC,AD=BC D.AB∥DC,AD=BC
第(8)题图第(9)题图第(10)题图
12.如图,△ABC中,∠C=90°,D在CB上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE=()
A.40°B.50°C.60°D.70°
13.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1 B.3C.2 D.23
14.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()
A.3.5 B.4 C.7 D.14
第(12)题图第(13)题图第(14)题图15.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()
A.4 B.12/5C.24/5D.5
16.如图,四边形ABCD 是菱形,对角线AC=8,DB=6,DE⊥BC 于点E ,则DE 的长为( )
A .2.4
B .3.6
C .4.8
D .6 17.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,垂足为
E ,连接D
F ,则∠CDF 等于( )
A .50°
B .60°
C .70°
D .80°
18.如图,四边形ABCD 为矩形纸片,把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF ,若CD=6,则AF 等于( )
A .4 3
B .3 3
C .4 2
D .8
第(15)题图
第(16)题图 第(17)题图 第(18)题图
19.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为( )
A .45°
B .55°
C .60°
D .75°
20.如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高是( )
A . 223
B .5103
C .553
D . 554
21、如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是边AB ,AC 的中点,延长BC 到点F ,使CF= 1/2BC .若AB=10,则EF 的长是 _________
22、如图,在△ABC 中,AB=AC ,AD ⊥BC ,垂足为D ,E 是AC 的中点.若DE=5,则
AB 的长为 _________
第(19)题图
第(20)题图第 (21)题图第 (22)题图
23.如图,已知△ABC ,按如下步骤作图:
①分别以A ,C 为圆心,大于 1/2AC 的长为半径画弧,两弧交于P ,Q 两点;
②作直线PQ,分别交AB,AC于点E,D,连接CE;
③过C作CF∥AB交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形
24.如图:在▱ABCD中,AC为其对角线,过点D作AC的平行线与BC的延长线交于E.
(1)求证:△ABC≌△DCE;
(2)若AC=BC,求证:四边形ACED为菱形.
25.如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG 以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).
(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;
(2)填空并证明:①当t为_____s时,四边形ACFE是菱形;②当t为_____s时,以A、
F、C、E为顶点的四边形是直角梯形.
26.如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;
(2)若∠B=60°,求证:四边形ABCD是菱形
27.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E. (1)求证:四边形ADCE为矩形;(2)当△ABC
满足什么条件时,四边形ADCE是一个正方形?并给出证明
28.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?
并说明理由
29.如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.
(1)求OC的长;(2)求证:四边形OBEC为矩形;(3)求矩形OBEC的面积.
30.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为
什么?
31.如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形
32.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°。
求矩形ABCD的面积
33.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,
BE交AC于F,连接DF.
(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,
并说明理由.
34.如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分
∠COB,CF⊥OF于点F.
(1)求证:四边形CDOF是矩形;
(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.
35.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.
(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明
你的理由。