北师大版八年级数学勾股定理
北师大版八年级数学上册第一章勾股定理第1课探索勾股定理课件

2. 如图,正方形ABCD的面积为25 cm2,△ABP为直角三角形, ∠APB=90°,且PB=3 cm,那么AP的长为( C )
A. 5 cm
B. 3 cm
C. 4 cm
D. 不能确定
3. 在Rt△ABC中,斜边BC=4,则BC2+AB2+AC2= 32 . 4. 如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7 cm,则正方形A,B,C,D的面积之和 为 49 cm2.
第一章 勾股定理
1 探索勾股定理 第1课时
1. 直角三角形三边存在的关系:在直角三角形中,任意两条边确定了,另 外一条边也就随之 确定 ,三边之间存在着一种特定的 数量 关系.
2. 我国古代把直角三角形中较短的直角边称为 勾 ,较长的直角边称为 股 , 斜边称为 弦 .
3. 勾股定理:直角三角形两直角边的 平方和 等于斜边的 平方 .如果用a, b和c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 .
4. 如图,在△ABC中,∠C=90°. (1)若已知a,b,则c2= a2+b2 ; (2)若已知a,c,则b2= c2-a2 ; (3)若已知b,c,则a2=长分别为3和4,下列说法中正确的是( C )
A. 斜边长为25
B. 三角形的周长为25
C. 斜边长为5
D. 三角形的面积为20
2. 三个正方形的面积如图所示,则S的值为( C )
A. 3
B. 4
C. 9
D. 12
3. 在Rt△ABC中,∠C=90°,AB=25,AC=7,则△ABC的面积为84 . 4. 如图,为了测得湖两岸点A和点B之间的距离,一个观测者在点C设桩, 使∠ABC=90°,并测得AC=20m,BC=16m,则点A和点B之间的距离是 12 m.
北师大版八年级数学上册知识点归纳:第一章勾股定理

北师版八年级数学第1章 勾股定理一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDC B A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 a b ccb a E DC B A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A AD B CCB D A。
北师大版八年级数学勾股定理

北师大版八年级数学勾股定理一、背景介绍在北师大版的八年级数学教材中,勾股定理是一个重要的知识点。
勾股定理是几何学中的基础理论,也是历史上最早的、被人们广泛接受的定理之一。
在中国,勾股定理又被称为“商高定理”,因为它最早出现在商代,由商高提出。
而在西方,勾股定理则通常被称为“毕达哥拉斯定理”,因为毕达哥拉斯学派在公元前6世纪首次明确证明了这一定理。
二、知识概述勾股定理的内容是:在一个直角三角形中,斜边的平方等于两条直角边的平方和。
用数学公式表示就是c² = a² + b²,其中 c 是斜边,a 和 b 是两条直角边。
三、深入分析1.勾股定理的证明:勾股定理的证明方法有很多种,其中最著名的可能是毕达哥拉斯的证明方法。
毕达哥拉斯学派发现,如果将一个直角三角形的三条边分别看作三个正方形的边长,那么斜边和其中一条直角边构成的正方形面积等于另外两条直角边构成的两个正方形面积的和。
因此,正方形面积之和等于斜边平方。
1.勾股定理的应用:勾股定理在数学、物理、工程等多个领域都有广泛的应用。
例如,在解决平面几何问题时,可以通过勾股定理来计算点之间的距离;在物理学中,勾股定理可以用来解决与重力、弹力等相关的问题;在工程学中,勾股定理则被用来进行测量和计算等。
四、案例研究假设我们有一个直角三角形,已知其中两条直角边的长度分别为3和4,我们要求出斜边的长度。
根据勾股定理,我们可以先计算出斜边的平方:c² = 3² + 4² = 9 + 16 = 25,因此,斜边的长度为5。
五、结论总结北师大版八年级数学的勾股定理是一个非常重要的知识点,它不仅揭示了直角三角形中斜边与直角边的关系,也为很多实际问题提供了解决方案。
通过对勾股定理的学习和研究,我们可以更好地理解和应用这个重要的数学定理,为未来的学习和工作打下坚实的基础。
八年级上册数学北师大版知识点总结

第一章勾股定理1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两直角边长分别为\(a\),\(b\),斜边长为\(c\),那么\(a^2 + b^2 = c^2\)。
2. 勾股定理的逆定理:如果三角形的三边长\(a\),\(b\),\(c\)满足\(a^2 + b^2 = c^2\),那么这个三角形是直角三角形。
第二章实数1. 无理数:无限不循环小数叫做无理数。
2. 平方根:如果一个数的平方等于\(a\),那么这个数叫做\(a\)的平方根。
一个正数有两个平方根,它们互为相反数;\(0\)的平方根是\(0\);负数没有平方根。
3. 算术平方根:正数\(a\)的正的平方根叫做\(a\)的算术平方根,记作\(\sqrt{a}\)。
4. 立方根:如果一个数的立方等于\(a\),那么这个数叫做\(a\)的立方根。
正数的立方根是正数,负数的立方根是负数,\(0\)的立方根是\(0\)。
第三章位置与坐标1. 在平面内,确定物体的位置一般需要两个数据。
2. 平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为\(x\)轴或横轴,竖直的数轴称为\(y\)轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
3. 点的坐标:对于平面内任意一点\(P\),过点\(P\)分别向\(x\)轴、\(y\)轴作垂线,垂足在\(x\)轴、\(y\)轴上对应的数\(a\),\(b\)分别叫做点\(P\)的横坐标、纵坐标,有序数对\((a,b)\)叫做点\(P\)的坐标。
4. 各象限内点的坐标的特征:点\(P(x,y)\)在第一象限:\(x>0\),\(y>0\);点\(P(x,y)\)在第二象限:\(x0\),\(y>0\);点\(P(x,y)\)在第三象限:\(x0\),\(y0\);点\(P(x,y)\)在第四象限:\(x>0\),\(y0\)。
北师大版八年级数学上册第一章勾股定理复习与小结课件

P
M
教学过程——典例精析
第一章 勾股定理
听一听
典例3 如图,长方形 ABCD 中,AB=3,AD=9,将此长方形折叠,使点 D与点B
重合,折痕为 EF,求△ABE 的面积。
A
B
E
D
F
C
教学过程——典例精析
第一章 勾股定理
听一听
A
解析:折叠问题中,要找到折叠前
后相等的线段或角,注意这些线段
与其他线段的关系,再利用勾股定
D. 若、、是的△ABC的三边,且 − = ,则∠A=90°
第一章 勾股定理
基础训练
第一章 勾股定理
2. 如图是商场的台阶的示意图,已知每级台阶的宽度都是20cm,每级台
阶的高度都是15cm,则连接AB的线段长为( B )
A. 100cm
B. 150cm
C. 200cm
D. 250cm
解:(1)供水站P的位置如图所示.
(2)过B作BM⊥,过A’作A’M⊥BM于M.
B
A
由已知可得A’M=8,BM=2+4=6.
在Rt△AMB中,
A’B2=AM2+BM2=82+62=100
解得A’B=10
5000×10+50000=100000.
故供水站修建完成后共计要花100000元.
∙∙
A’
∙
是直角三角形.
知识梳理
第一章 勾股定理
内容:直角三角形两
直角边的平方和等于
斜边的平方.
探索勾
股定理
表达式:用
和分别表示直角三
角形的两直角边和斜
边,那么
验证方法:面积法
北师大版八年级上册数学第一章勾股定理全章知识点及习题(经典)

cbaD CAB第一章 勾股定理知识点一:勾股定理定义画一个直角边为3cm 和4cm 的直角△ABC ,量AB 的长;一个直角边为5和12的直角△ABC ,量AB 的长 发现32+42与52的关系,52+122和132的关系,对于任意的直角三角形也有这个性质吗? 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2) 1.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ; ⑵若D 为斜边中点,则斜边中线 ;⑶若∠B=30°,则∠B 的对边和斜边: ;(给出证明) ⑷三边之间的关系: 。
知识点二:验证勾股定理知识点三:勾股定理证明(等面积法)例1。
已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
证明:例2。
已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
证明:知识点四:勾股定理简单应用 在Rt △ABC 中,∠C=90°(1) 已知:a=6, b=8,求c bbbbccccaaaabbb ba accaaACBDAB如果三角形的三边长为c b a ,,,满足222c b a =+,那么,这个三角形是直角三角形. 利用勾股定理的逆定理判别直角三角形的一般步骤: ①先找出最大边(如c )②计算2c 与22a b +,并验证是否相等。
若2c =22a b +,则△ABC 是直角三角形。
若2c ≠22a b +,则△ABC 不是直角三角形。
1.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A.a=7,b=24,c=25 B.a=7,b=24,c=24C.a=6,b=8,c=10D.a=3,b=4,c=52.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形3.已知0)10(862=-+-+-z y x ,则由此z y x ,,为三边的三角形是 三角形. 知识点六:勾股数(1)满足222c b a =+的三个正整数,称为勾股数.(2)勾股数中各数的相同的整数倍,仍是勾股数,如3、4、5是勾股数,6、8、10也是勾股数. (3)常见的勾股数有:①3、4、5②5、12、13;③8、15、17;④7、24、25; ⑤11、60、61;⑥9、40、41.1.设a 、b 、c 是直角三角形的三边,则a 、b 、c 不可能的是( ).A.3,5,4B. 5,12,13C.2,3,4D.8,17,15 1. 若线段a ,b ,c 组成Rt △,则它们的比可以是( )A.2∶3∶4B.3∶4∶6C.5∶12∶13D.4∶6∶7知识点七:确定最短路线1.一只长方体木箱如图所示,长、宽、高分别为5cm 、4cm 、3cm, 有一只甲虫从A 出发,沿表面爬到C ',最近距离是多少?2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π 取3)是 .知识点八:逆定理判断垂直1.在△ABC 中,已知AB 2-BC 2=CA 2,则△ABC 的形状是( )A .锐角三角形;B .直角三角形;C .钝角三角形;D .无法确定. 2.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( )ABCD A 'B 'C 'D 'BC5米3米1.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?2.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要________米.3.一根直立的桅杆原长25m,折断后,桅杆的顶部落在离底部的5m处,则桅杆断后两部分各是多长?4.某中学八年级学生想知道学校操场上旗杆的高度,他们发现旗杆上的绳子垂到地面还多1米,当他们把绳子的下端拉开5米后,发现下端刚好触地面,你能帮他们把旗杆的高度和绳子的长度计算出来吗?综合练习一一、选择题1、下面几组数:①7,8,9;②12,9,15;③m 2+ n 2, m 2– n 2, 2mn(m,n 均为正整数,m >n);④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( )A.①②;B.①③;C.②③;D.③④2已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )A.25B.14C.7D.7或253.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形;B. 钝角三角形;C. 直角三角形;D. 锐角三角形. 4.△ABC 的三边为a 、b 、c 且(a+b)(a-b)=c 2,则( )A.a 边的对角是直角B.b 边的对角是直角C.c 边的对角是直角D.是斜三角形5.以下列各组中的三个数为边长的三角形是直角三角形的个数有( )①6、7、8,②8、15、17,③7、24、25,④12、35、37,⑤9、40、41 A 、1个 B 、2个 C 、3个 D 、4个6.将直角三角形的三边扩大相同的倍数后,得到的三角形是 ( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.不是直角三角形7.若△ABC 的三边a 、b 、c 满足(a-b)(a 2+b 2-c 2)=0,则△ABC 是 ( ) A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.如图,∠C =∠B =90°,AB =5,BC =8,CD =11,则AD 的长为 ( )A 、10B 、11C 、12D 、139.如图、山坡AB 的高BC =5m ,水平距离AC =12m ,若在山坡上每隔0.65m 栽一棵茶树,则从上到下共 ( )A 、19棵B 、20棵C 、21棵D 、22棵10.Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,若c =2,则2a +2b +2c 的值是 ( )A 、6B 、8C 、10D 、4 11.下列各组数据中,不能构成直角三角形的一组数是( )A、9,12,15 B 、45,1,43C 、0.2,0.3,0.4D 、40,41,9 12.已知,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A.25海里B.30海里C.35海里D.40海里二、填空题1.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt △ABC =________2.现有长度分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,能组成直角三角形,则其周长为 cm .3.勾股定理的作用是在直角三角形中,已知两边求 ;勾股定理的逆定理的作用是用来证明 .4.如图中字母所代表的正方形的面积:A = B = . A815.在△ABC 中,∠C =90°,若 a =5,b =12,则 c = .6.△ABC 中,AB=AC=17cm ,BC=16cm ,则高AD= ,S △ABC = 。
北师大版八年级数学上册《勾股定理》课件(共18张PPT)

知识要点
1.勾股定理:如果直角三角形两直角边分别为 a,b,斜边为c,那么__________ . 2.勾股定理各种表达式: 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对 边也分别为a,b,c,则c=_________, b=_________,a=_________.
知识要点
3.勾股定理的逆定理: 在△ABC中,若a、b、c三边满足___________, 则△ABC为___________. 4.勾股数: 满足________的三个________,称为勾股数. 5.几何体上的最短路程是将立体图形的 ________展开,转化为_________上的路程问 题,再利用___________两点之间, ___________,解决最短线路问题.
2.已知△ABC的三边为a,b,c,有下列各
组条件,判定△ABC的形状.
(1)a 4 1 , b 4 0 , c 9 (2)a m 2 n 2 , b m 2 n 2 , c 2 m ( n m n 0 )
合作探究
探究四:勾股定理及逆定理的综合应用
B港有甲、乙两艘渔船,若甲船沿北 偏东60o方向以每小时8 n mile的速度前进, 乙船沿南偏东某个角度以每小时15 n mile的速度前进,2 h后,甲船到M岛,乙 船到P岛,两岛相距34 n mile,你知道乙 船是沿哪个方向航行的吗?
第一章 勾股定理
回顾与思考
情境引入
勾股定理,我们把它称为世界第一定理. 首先,勾股定理是数形结合的最典型的代 表; 其次,正是由于勾股定理得发现,导致无 理数的发现,引发了数学的第一次危机,这一 点,我们将在《实数》一章里讲到; 第三,勾股定理中的公式是第一个不定方 程,有许许多多的数满足这个方程,也是有完 整的解答的最早的不定方程,最为著名的就是 费马大定理,直到1995年,数学家怀尔斯才将 它证明.
新北师大版八年级上数学勾股定理知识点+对应练习

勾股定理1、勾股定理定义:直角三角形的两直角边长的平方和等于斜边的平方。
如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.B弦ca勾ACb股勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边2.勾股定理定义的应用:〔1〕直角三角形的两边求第三边〔在ABC中,C90,那么22cab,22 bca,22 acb〕〔2〕直角三角形的一边与另两边的关系,求直角三角形的另两边〔3〕利用勾股定理可以证明线段平方关系的问题例.在Rt△ABC中,∠C=90°〔1〕假设a=5,b=12,那么c=________;〔2〕b=8,c=17,那么S△ABC=________。
3.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等DC式,推导出勾股定理HEG 常见方法如下:Fba方法一:4SS正方形S正方形ABCD,EFGH1224ab(ba)c,化简2A cBba可证acbc方法二:cbc四个直角三角形的面积与小正方形面积的和等于大正方形的面积.aba四个直角三角形的面积与小正方形面积的和为122S4abc2abc2大正方形面积为222S(ab)a2abb所以222 abc4.勾股定理的逆定理222如果三角形的三边长a、b、c满足a=c,那么这个三角形是直角三角形。
+b5.勾股数:满足a2+b2=c2的三个正整数叫做勾股数〔注意:假设a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
〕常见勾股数:3,4,5;6,8,10;9,12,15;5,12,1372425,81517注:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形〞来确定三角形的可能形状,在运用这一定理时应注意:〔1〕首先确定最大边,不妨设最长边长为:c;〔2〕验证c+b假设c2=a2+b2,那么△ABC是以∠C为直角的直角三角形2>a2+b2,那么△ABC是以∠C为钝角的钝角三角形;假设c2<a2+b2,那么△ABC为锐角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 勾股定理第一节探索勾股定理教学目标:1、 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
重点难点:重点:了结勾股定理的由来,并能用它来解决一些简单的问题。
难点:勾股定理的发现 教学过程掌握勾股定理的内容,能利用勾股定理进行计算与证明。
勾股定理:直角三角形两直角边的平方和等于斜边的平方。
即:c 2=a 2+b 2(c 为斜边)。
它反映了直角三角形三边之间的数量关系,是解决直角三角形中计算问题以及解直角三角形的主要依据之一。
一、问题的提出:小明放学回家要经过一块长方形的麦地。
如图:1、 小明本来应走大路从A 经B 到C 可是他却直接从A 到C ,为什么?2、 为什么近、近多少?3、用数学知识如何解答? 二、量一量,算一算:1、直角三角形的两条直角边的长度分别为3㎝,4㎝和5㎝,12㎝请你量出斜边的长度。
2、进行有关的计算。
3、得出结论: 三、证明结论:利用拼合三角形的方法,如下:(1)b a a bca c cb a a a b a bc b c b b c aa b a b (1) (2)由(1)S ab c ab c 正=⨯+=+412222 ABCD由(2)S a b ab 正=++222 ∴+=++22222ab c a b ab ∴+=a b c 222 (2)如图:S c S S S a b b a a b b a a b a b c a b 正正小正==+=⨯+-=++-=+∴=+222222222441222∆() 练习: 1、判断:(1)已知a 、b 、c 是三角形的三边,则∴+=a b c 222( ) (2)在直角三角形中两边的平方和等于第三边的平方。
( )(3)在Rt ABC ∆90=∠B ∴+=a b c 222 ( )2、填空:在Rt ABC ∆中,∠=C 90(1)如果a=3,b=4,则c=(2)如果a=6,b=8,则c= (3)如果a=5,b=12,则c= (4) 如果a=15,b=20,则c= 3、 解决新课开始提出的问题第2节 能得到直角三角形吗教学目标:1. 经历运用试验的方法说明勾股定理逆定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。
2. 掌握勾股定理逆定理和他的简单应用 重点难点:重点: 能熟练运用勾股定理逆定理解决实际问题难点:用面积证勾股定理能熟练运用勾股定理逆定理解决实际问题 1.把握勾股定理的逆定理;2,用勾股定理的逆定理判定一个三角形是不是直角三角形。
教学过程1.勾股定理的逆定理:如果三角形的三边长a 、b 、c 有下面关系:a 2+b 2= c 2,那么这个三角形是直角三角形。
注意:勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理。
1.用勾股定理的逆定理判定一个三角形是否是直角三角形的步骤:(1)首先求出最大边(如c );c ab ac b b c ba ac(2)验证a 2+b 2与c 2是否具有相等关系;若c 2=a 2+b 2,则△ABC 是以∠C=90°的直角三角形。
若c 2 ≠a 2+b 2,则△ABC 不是直角三角形。
2.直角三角形的判定方法小结: (1)三角形中有两个角互余; (2)勾股定理的逆定理;3.紧记一些常用的勾股数,将为我们应用勾股定理逆定理带来方便,如3、4、5;5、12、13;6、8、10;12、16、20等。
四、典型例题例1. 在Rt ABC ∆中,∠=C 90,CD AB ⊥于D ,求证: (1)AB AD DB CD 22222=++ (2)CD AD DB 2=⋅分析:在图中有∆∆ABC ADC 、与∆BCD 三个直角三角形,利用勾股定理可以求证。
证明:(1) AB AC BC AC AD CD BC BD CD 222222222=+=+=+,,∴=+=+++=++AB AC BC AD CD BD CD AD DB CD 22222222222 (2)又 AB AD D B =+∴=+=++⋅AB AD DB AD DB AD DB 22222()∴++=++⋅∴=⋅AD DB CD AD DB AD DB CD AD DB2222222222即CD AD DB 2=⋅例2、 已知∆ABC 中,AB cm BC cm AC cm ===51213,,,求AC 边上的高线的长。
分析:首先通过所给的三角形的三边长,判断出所求高线长的三角形为直角三角形,并且要求的为斜边上的高线,通过勾股定理可解,未知量可用方程的思想求得。
解: AB BC AC 2222514416925144169===∴+=,,, ∴+=AB BC AC 222∴∆ABC 为Rt ∆,且∠=B 90作BD AC ⊥于D设AD x =,则CD x =-13CA D BB12 5C 13D ABD BC CD AB AD x x x 222222221213252513=-=-∴--=-∴=()∴=-=-=BD AB AD 22222525136013() 答:AC 边上的高线长为6013cm 。
例3.已知:如图,△ABC 中,AB =AC ,D 为BC 上任一点, 求证:AB 2-AD 2=BD ·DC思路分析:通常遇到等腰三角形问题,都是作底边上的高转化为直角三角形,再按解直角三角形的思路探索。
本例首先作AE ⊥BC 于E ,便出现两个全等的直角三角形。
由AB =AC ⇒BE =EC结论又以平方差“面目”出现,也就告知我们应用勾股定理是打开思路的好方法,那么在Rt △ABE ,Rt △ADE 中,由勾股定理,得 AB 2=AE 2+BE 2 AD 2=AE 2+DE 2由于BE 、DE 均在一条直线BC 上,通常是平方差公式进行因式分解,转化为求同一条线段的和差问题,使结论明朗化,于是 AB 2-AD 2=(BE +DE )(BE -DE ) 结合图形知:BE +DE =BD BE -DE =CE -DE =CD 例4.如图,已知四边形ABCD 的四边AB 、BC 、CD 和DA 的长分别为3、4、13、12,∠CBA =90°,求S 四边形ABCD思路分析:遇到四边形,通常是连对角线转化为三角形问题,对本例连对角线AC 为佳,因∠CBA =90°,便出现了直角三角形ABC ,由勾股定理可求 AC 2=AB 2+BC 2=32+42=25在△CAD 中,我们又可发现: AC 2+AD 2=25+122=169 DC 2=132=169∴AC 2+AD 2=CD 2,由勾股定理逆定理知 ∴△ACD 为Rt △,且∠DAC =90°此时,已清晰可知,这个四边形由两个直角三角形构成,求其面积便容易了。
S 四边形ABCD =S △ABC +S △ACD⇒AB 2-AD 2=BE 2-DE 2⇒AB 2-AD 2=BD ·CD=⋅+⋅=⨯⨯+⨯⨯=+=121212341251263036AB BC AC AD ()平方单位 例5、在正方形ABCD 中, F 为DC 的中点, E 为BC 上一点, 且EC =14BC , 求证: ∠EF A = 90︒ 分析: 通过图形结构和求证本题思路十分明显, 就是要找Rt ∆, 那就是要通过勾股定理逆定理来完成。
证明: 设正方形ABCD 的边长为4a 则EC = a , BE = 3a , CF = DF = 2a在Rt ∆ABE 中()()AE AB BE a a a 2222224325=+=+= 在Rt ∆ADF 中()()AF AD DF a a a 2222224220=+=+= 在Rt ∆ECF 中()EF FC EC a a a 22222225=+=+=由上述结果可得AE AF EF 222=+由勾股定理逆定理可知∆AEF 为Rt ∆, 且AE 是最大边, 即∠AFE = 90︒例6、 已知:如图,在正方形ABCD 中,E ,F 分别AB ,AD 上的点,又AB =12,EF =10,△AEF 的面积等于五边形EBCDF 面积的15,求AE ,AF 的长。
思路分析:依题意知△AEF 为Rt △用勾股定理,立马而定,于是有 EF 2=AE 2+AF 2设AE =x ,AF =y ,又EF 2=100,则x 2+y 2=100 ①又即②①②或①②或解得或即或五边形正方形S S S S xy xy x xy y x y x y x xy y x y x y x y x y AE AF AE AEF EBCDFAEF ∆∆=∴=∴=⨯=+++=⇒+=⇒+=---+=⇒-=⇒-=-=======1516121612296219619614142442286688662222222:():():,,,,AF =8本例未告知AF ,AE 谁大,所以应取两解.五、专题检测:1、如图在∆ABC 中, ∠BAC = 90︒, AD ⊥BC 于D , 则图中互余的角有A .2对B .3对C .4对D .5对 2、如果直角三角形的两边的长分别为3、4,则斜边长为 3、 已知:四边形ABCD 中,BD 、AC 相交于O ,且BD 垂直AC ,求证:AB CD AD BC 2222+=+。
4. 已知:钝角∆BAC ,CD 垂直BA 延长线于D ,求证: BC AB AC AB AD 2222=++⋅。
5. 已知:AB AC =,且AB AC ⊥,D 在BC 上,求证:BD CD AD 2222+=。
6.已知:AB AC CD BC ==,,求证:AD AB BC 2222=+。
7 已知:∆ABC 中,AD 为BC 中线,求证:AB AC BD AD 22222+=+()。
8、如果ΔABC 的三边分别为a 、b 、c ,且满足a 2+b 2+c 2+50=6a+8b+10c ,判断ΔABC 的形状。
9.如图,折叠长方形(四个角都是直角,对边相等)的一边AD ,点D 落在BC 边的点F 处,已知:AB =8cm ,BC =10cm ,求EC 的长。
10:已知:如图,∆ABC 中,AB=AC =10,BC =16,点D 在BC 上,DA ⊥CA 于A 。
求:BD 的长。
分析:因为∆ABC 中,AB=AC ,可作AE ⊥BC 于E ,构造直角三角形,由已知条件,AE ,CE ,可求。
根据勾股定理可列方程式求解。
解:作AE ⊥BC 于E ∵AB=AC ,BC =16∴BE=CE=128BC = (等腰三角形的性质) 在Rt ACE ∆中AE AC CE =-=-=22221086 (勾股定理)设DE =x 在Rt ADE ∆中 AD AE DE x 2222236=+=+在Rt ACD ∆中()AD CD AC x 22228100=-=+-D CO ABD AB CAB D CAB C D AB D C∴()36810022+=+-x xx =92∴BD BE DE =-=-=89272答案部分: 2. 在Rt AOB ∆中,AB OA OB 222=+在Rt AOD ∆中,AD OA OD 222=+在Rt OBC ∆中,BC OB OC 222=+在Rt ODC ∆中,CD OD OC 222=+∴+=+AB CD AD BC 22223 在Rt BCD ∆中,BC BD CD 222=+ 在Rt ADC ∆中,AC AD CD 222=+=++=++⋅+=++⋅()BA AD CD AB AD AB AD CD AB AC AB AD2222222224. 作AE BC ⊥于E ,∴==AE BE ECBD CD BE DE CE DE AE DE AE DE AE DE AE DE AD 222222222222222+=-++=-++=+=+=()()()()()B D E C5. 作AE BD ⊥于E ,∴==∴==+=-+=++-=+-=+⋅=+BE EC BC CD BD BCAD AE ED AB BE ED AB ED BE ED BE AB BD ED EC AB BD CD AB BC ,,2222222222222()()()B EC D6. 作AE BC ⊥于E ,∴=+=++=++=+++=+++⋅+=+++⋅+-=++-⋅+++⋅=+++=+AB AE BE AC AE EC AB AC AE BE EC AE BD DE EC AE BD DE BD DE ECAE AD BD BD DE CD DE AE CD DE CD DE AD BD BD DE AD CD AD BD BD AD 22222222222222222222222222222222222222222()()()。