广东省2021年中考数学试题真题(Word版,含答案与解析)

合集下载

2021年广东省佛山市数学中考真题含答案解析及答案(word解析版)

2021年广东省佛山市数学中考真题含答案解析及答案(word解析版)


解:图象应分三个阶段,第一阶段:匀速跑步到公园,在这个阶段,离家的距离随时间的增大而增大。
第二阶段:在公园停留了一段时间,这一阶段离家的距离不随时间的变化而改变.故 D 错误。
第三阶段:沿原路匀速步行回家,这一阶段,离家的距离随时间的增大而减小,故 A 错误,并且这段的速度小于于第
一阶段的速度,则 C 错误.
项的系数化为 1。(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为 1,一次项的系数是 2 的倍数.
13.(2013•佛山)在 1,2,3,4 四个数字中随机选两个不同的数字组成两位数,则组成的两位数大于 40 的概率
是 .
分析:画出树状图,然后根据概率公式列式计算即可得解
9.(2021 年佛山市)多项式1 2xy 3xy 2 的次数及最高次项的系数分别是(
)
A. 3, 3
B. 2, 3
C. 5, 3
D. 2,3
分析:根据多项式中次数最高的项的次数叫做多项式的次数可得此多项式为 3 次,最高次项是﹣3xy2,系数是数字
因数,故为﹣3. 解:多项式 1+2xy﹣3xy2 的次数是 3, 最高次项是﹣3xy2,系数是﹣3。
D. 2 2
解:原式=
=
=2+ .
故选 D. 点评:本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键
6.(2021 年佛山市)掷一枚有正反面的均匀硬币,正确的说法是(
)
1
B
A.正面一定朝上
B.反面一定朝上
C.正面比反面朝上的概率大
D.正面和反面朝上的概率都是 0.5
解:根据题意画出树状图如下:

专题11:实际问题与一元二次方程-2021年广东地区中考数学真题与模拟试题精选汇编(解析版)

专题11:实际问题与一元二次方程-2021年广东地区中考数学真题与模拟试题精选汇编(解析版)

专题11:实际问题与一元二次方程-2021年广东地区中考数学真题与模拟试题精选汇编一、单选题1.(2021·广东广州市·九年级一模)参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛240场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是( ) A .x (x ﹣1)=240 B .12x (x ﹣1)=240 C .x (x +1)=240 D .12x (x +1)=240 【答案】A【解析】根据参加比赛的球队数量、总共要比赛的场数列出方程即可得. 【解答】解:由题意,可列方程为(1)240x x -=, 故选:A .【点评】本题考查了列一元二次方程,理解题意,正确找出等量关系是解题关键.2.(2021·广东广州市·九年级一模)一种药品原价每盒25元经过两次降价后每盒16元.设两次降价的百分率都相同为x ,则x 满足方程( ) A .()2251216x -= B . ()225116x -= C .()2161225x +=D .()216125x+=【答案】B【解析】等量关系为:原价×(1-下降率)2=16,把相关数值代入即可. 【解答】解:第一次降价后的价格为25(1-x ),第二次降价后的价格为25(1-x )×(1-x )=25×(1-x )2, ∴列的方程为25(1-x )2=16, 故选:B .【点评】本题考查求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 3.(2021·广东深圳市·九年级二模)有一个模拟传染病传播的电子游戏模型:在一个方框中,先放入足够多的白球(模拟健康人),然后在框中同时放入若干个红球(模拟最初感染源),程序设定,每经过一分钟,每个红球均恰好能使方框中0R 个白球同时变成红球(0R 为程序设定的常数),若最初放入的白球数为400个,红球数为4个,从放入红球开始,经过2分钟后,红球总数变为64个,则0R 应满足的方程是( )A .4(1+0R )=64B .4(1+0R )=400C .4()201R +=64 D .4()201R +=400【答案】C【解析】原有4个红球,1分钟后红球数为0(44)R +个,2分钟新增加的红球数为0(44)x R +个,由2分钟后,红球总数变为了64个列方程可得结论. 【解答】根据题意得:00044(44)64R R R +++=,即:204(1)64R +=,故选:C .【点评】考查了由实际问题抽象出一元二次方程的知识,了解增长率问题是解题的关键.4.(2021·广东九年级专题练习)目前以5G 等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G 用户2万户,计划到2021年底全市5G 用户数累计达到8.72万户.设全市5G 用户数年平均增长率为x ,则x 值为( ) A .20% B .30%C .40%D .50%【答案】C【解析】先用含x 的代数式表示出2020年底、2021年底5G 用户的数量,然后根据2019年底到2021年底这三年的5G 用户数量之和=8.72万户即得关于x 的方程,解方程即得答案. 【解答】解:设全市5G 用户数年平均增长率为x ,根据题意,得:()()2221218.72x x ++++=,解这个方程,得:10.440%x ==,2 3.4x =-(不合题意,舍去). ∴x 的值为40%. 故选:C .【点评】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.5.(2021·广东广州市·西关外国语学校九年级一模)如图,Rt △ABC 中,∠C =90°,AB =5cm ,AC =4cm ,点P 从点A 出发,以1cm/s 的速度沿A→C 向点C 运动,同时点Q 从点A 出发,以2cm/s 的速度沿A→B→C 向点C 运动,直到它们都到达点C 为止.若△APQ 的面积为S (cm 2),点P 的运动时间为t (s ),则S 与t 的函数图象是( )A .B .C .D .【答案】D【解析】分两种情况讨论:当502t 时,过Q 作QD AC ⊥交AC 于点D ,12APQ S AP QD ∆=⨯⨯;当542t <时,APQ ABC ABQ CPQ S S S S -∆∆∆∆=-.【解答】解:①当502t时,点Q 在AB 上, 2AQ t ∴=,AP t =,过Q 作QD AC ⊥交AC 于点D ,Rt ABC ∆中,90C ∠=︒,5AB cm =,4AC cm =,3BC cm ∴=,∴QD AQBC BC=, 65QD t ∴=,211632255APQ S AP QD t t t ∆=⨯⨯=⨯⨯=,②当542t <时,点Q 在BC 上, 2211134(4)(82)4(25)4(2)4222APQ ABC ABQ CPQ S S S S t t t t t t -∆∆∆∆=-=⨯⨯-⨯-⨯--⨯⨯-=-+=--+, 综上所述,正确的图象是D . 故选:D .【点评】本题考查动点运动,三角形面积.B 点是Q 点运动的分界点,将运动过程分两种情况进行讨论是解题的关键.二、填空题6.(2021·广东九年级专题练习)在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信,已知全公司共发出2450条短信,那么这个公司有_________员工人. 【答案】50【解析】设这个公司有员工x 人,则每人需发送(1)x -条祝贺元旦的短信,根据全公司共发出2450条短信,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【解答】解:设这个公司有员工x 人,则每人需发送(1)x -条祝贺元旦的短信, 依题意,得:(1)2450x x -=,解得:150x =,249x =-(不合题意,舍去). 故答案为:50.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 7.(2021·广东九年级专题练习)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______. 【答案】20%【解答】解:设该药品平均每次降价的百分率是x ,根据题意得25×(1-x )(1-x )=16, 整理得,解得x=0.2或1.8(不合题意,舍去); 即该药品平均每次降价的百分率是20%.8.(2021·广东九年级专题练习)如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m²,设道路的宽为x m ,则根据题意,可列方程为_______.【答案】(12-x )(8-x )=77【解析】道路外的四块土地拼到一起正好构成一个矩形,矩形的长和宽分别是(12-x)和(8-x),根据矩形的面积公式,列出关于道路宽的方程求解.【解答】道路的宽为x米.依题意得:(12-x)(8-x)=77,故答案为(12-x)(8-x)=77.【点评】本题考查了一元二次方程的应用,关键将四个矩形用恰当的方式拼成大矩形列出等量关系.9.(2021·广东九年级专题练习)圣诞节时,某班一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.【答案】x(x﹣1)=110【解析】设这个小组有x人,要求他们之间互送贺卡,即除自己外,每个人都要求送其他的人一张贺卡,即每个人要送x-1张贺卡,所以全组共送x(x-1)张,又知全组共送贺卡110张,由送贺卡数相等为等量关系,列出方程即可.【解答】设这个小组有x人,则每人应送出x−1张贺卡,由题意得:x(x−1)=110,故答案为x(x−1)=110.【点评】本题考查了由实际问题抽象出二元一次方程,熟练掌握该知识点是本题解题的关键. 10.(2021·广东九年级专题练习)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.【答案】12x(x﹣1)=21【解答】【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为12x(x﹣1),即可列方程.【详解】有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:12x(x﹣1)=21,故答案为12x(x﹣1)=21.【点评】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 11.(2021·广东九年级专题练习)参加一次足球联赛的每两队之间都进行两场比赛,共比赛90场比赛,共有____个队参加比赛.【答案】10【解答】设有x支球队,由题意则有:x(x-1)=90,解得:x1=10,x2=-9(舍去),所以共有10个队参加比赛,故答案为10.12.(2021·广东广州市·九年级一模)如图,ABC 中90A ∠=︒,5AB =,12AC =,点D 为动点,连接BD 、CD ,BDC ∠始终保持为90︒,线段AC 、BD 相交于点E ,则DEBE的最大值为__________.【答案】45【解析】设AE x =,从而可得12CE x =-,先利用勾股定理可得225BE x =+判定与性质可得AE BEDE CE =,求出DE 的值,从而可得DE BE的值,然后利用一元二次方程、二次函数的性质求解即可得.【解答】解:由题意,设AE x =,则12CE x =-,22225BE AB AE x ∴+=+在ABE △和DCE 中,90A D AEB DEC ∠=∠=︒⎧⎨∠=∠⎩,ABE DCE ∴~,AE BE DE CE ∴=,即225x x DE += 解得225DE x=+,则2(12)25x x E x D BE -=+, 令(0)DE k k BE =>,则2(12)25x x k x-+=, 整理得:2(1)12250k x x k +-+=,关于x 的一元二次方程2(1)12250k x x k +-+=有实数根,∴方程根的判别式144425(1)0k k ∆=-⨯+≥,即22525360k k +-≤, 令22525360k k +-=,解得1249,55k k ==-, 由二次函数2252536y k k =+-的性质可知,当0y ≤时,9455k -≤≤, 则k 的最大值为45, 即DE BE的最大值为45,故答案为:45.三、解答题13.(2021·东莞市东莞中学初中部九年级一模)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【答案】每轮感染中平均1台电脑会感染8台电脑,3轮感染后被感染的电脑会超过700台.【解析】根据题意可直接设每轮传染x 台,从而列出两轮后共计传染数量为()21x +台,建立一元二次方程求解即可,求出每轮传染数之后即可判断三轮传染之后的总数,即可得出结论. 【解答】设每轮感染中平均1台电脑会感染x 台电脑. 根据题意可列:()1181x x x +++=, 解得:18x =,210x =-(舍去).∴3轮感染后,被感染得电脑为:81818729700+⨯=>.答:每轮感染中平均1台电脑会感染8台电脑,3轮感染后被感染的电脑会超过700台. 14.(2021·广东阳江市·九年级一模)甲商品的进价为每件20元,商场确定其售价为每件40元.(1)若现在需进行降价促销活动,预备从原来的每件40元进行两次调价,已知该商品现价为每件32.4元.若该商品两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若该商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在原售价的基础上应如何调整? 【答案】(1)这个降价率为10%;(2)该商品在原售价的基础上,再降低10元.【解析】(1)设调价百分率为x ,根据售价从原来每件40元经两次调价后调至每件32.4元,可列方程求解. (2)根据已知条件求出多售的件数,根据该商场希望该商品每月能盈利10000元列出方程,求解即可. 【解答】解:(1)设这种商品平均降价率是x ,依题意得:40(1﹣x )2=32.4, 解得:x 1=0.1=10%,x 2=1.9(舍去); 答:这个降价率为10%;(2)设降价y元,则多销售y÷0.2×10=50y件,根据题意得(40﹣20﹣y)(500+50y)=10000,解得:y=0(舍去)或y=10,答:该商品在原售价的基础上,再降低10元.15.(2021·广东华侨中学九年级二模)已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.【答案】(1)1秒;(2)不可能,见解析【解析】(1)经过x秒钟,△PBQ的面积等于4cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解;(2)看△PBQ的面积能否等于7cm2,只需令12×2x(5﹣x)=7,化简该方程后,判断该方程的△与0的关系,大于或等于0则可以,否则不可以.【解答】解:(1)设经过x秒以后△PBQ面积为4cm2,根据题意得12(5﹣x)×2x=4,整理得:x2﹣5x+4=0,解得:x=1或x=4(舍去).答:1秒后△PBQ的面积等于4cm2;(2)由(1)同理可得12(5﹣x)2x=7.整理,得x2﹣5x+7=0,因为b2﹣4ac=25﹣28<0,所以,此方程无解.所以△PBQ的面积不可能等于7cm2.【点评】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.16.(2021·广东惠州市·九年级二模)某校有200台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染. (1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,______轮感染后机房内所有电脑都被感染. 【答案】(1)3台;(2)四【解析】(1)设每轮感染中平均一台电脑会感染x 台电脑,根据“如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染”,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)分别求出三轮及四轮感染后感染病毒电脑的数量,结合机房共(2001)+台电脑,即可得出结论. 【解答】解:(1)设每轮感染中平均一台电脑会感染x 台电脑, 依题意得:2(1)16+=x ,解得:13x =,25x =-(不合题意,舍去). 答:每轮感染中平均一台电脑会感染3台电脑.(2)经过三轮感染后感染病毒的电脑数量为16(13)64⨯+=(台), 经过四轮感染后感染病毒的电脑数量为64(13)256⨯+=(台), 2562001>+,∴四轮感染后机房内所有电脑都被感染.故答案为:四.17.(2021·清远市清新区凤霞中学九年级一模)学海书店购一批故事书进行销售,其进价为每本40元,如果按每本故事书50元进行出售,每月可以售出500本故事书,后来经过市场调查发现,若每本故事书涨价1元,则故事书的销量每月减少20本.(1)若学海书店要保证每月销售此种故事书盈利6000元,同时又要使购书者得到实惠,则每本故事书需涨价多少元?(2)若使该故事书的月销量不低于300本,则每本故事书的售价应不高于多少元? 【答案】(1)5元;(2)60元【解析】(1)设每本故事书需涨价x 元,根据“每本故事书涨价1元,则故事书的销量每月减少20本”表示出销售量,由售价-进价=利润列出方程,求出方程的解即可得到结果;(2)设每本故事书的售价为m 元,由关键描述语“该故事书的月销量不低于300本”列出不等式. 【解答】(1)解:设每本故事书需涨价x 元,由题意,得(5040)(50020)6000x x +--=,解得15=x ,210x =(不合题意,舍去). 答:每本故事书需涨5元;(2)解:设每本故事书的售价为m 元, 则()5002050300m --≥,解得60m ≤,答:每本故事书的售价应不高于60元.【点评】本题考查了一元二次方程的应用,弄清“每本故事书涨价1元,则故事书的销量每月减少20本”是解本题的关键.18.(2021·广东佛山市·九年级一模)春节期间,佛山连锁超市派调查小组调查某种商品的销售情况,下面是调查后小李与其他两位成员交流的情况. 小李:“该商品的进价为50元/件.”成员甲:“当定价为60元/件时,平均每天可售出800件.” 成员乙:“若售价每提高5元,则平均每天少售出100件.” 根据他们的对话,完成下列问题:(1)若售价定为65元/件时,平均每天可售出______件;(2)若超市希望该商品平均每天能盈利12000元,且尽可能扩大销售量,则该商品应该怎样定价? 【答案】(1)700;(2)该商品应该定价为70元/件 【解析】(1)根据题意,直接列出算式,即可求解;(2)设该商品应该定价为x 元/件,列出关于x 的方程,进而即可求解. 【解答】解:(1)由题意得:800-(65-60)÷5×100=700(件); (2)设该商品应该定价为x 元/件, 由题意得:()6050800100120005x x -⎛⎫--⋅= ⎪⎝⎭,解得:170x =,280x =, ∵尽可能扩大销售量, ∴70x =,答:该商品应该定价为70元/件.19.(2021·广东江门市·九年级一模)某服装店自2018年以来,销售成衣数量在稳健地上涨,2018年全年售出10000件成衣,2020年全年售出14400件成衣.(1)求该服装店2018年到2020年成衣销售量的年平均增长率;(2)若服装店售出成衣数量还将保持相同的年平均增长率,请你预算2022年该服装店售出成衣将达到多少件?【答案】(1)20%;(2)20736件【解析】(1)设该服装店2018年到2020年成衣销售量的年平均增长率为x .2019年成衣销售量10000+10000x =10000(1+x);2020年成衣销售量在2019年基础上平均增长率为x ,10000(1+x)+ 10000(1+x) x =10000(1+x) (1+x)=10000 (1+x)2,利用2020年售出14400件成衣构造方程求解即可. (2)利用增长率公式计算即可【解答】解:(1)设该服装店2018年到2020年成衣销售量的年平均增长率为x . 依题意,得()210000114400x +=,解得10.220%x ==,2 2.2x =-(舍去).答:该服装店2018年到2020年成衣销售量的年平均增长率为20%.(2)()214400120%20736⨯+=(件).答:2022年该服装店售出成衣将达到20736件.【点评】本题考查列一元二次方程解增长率应用题,掌握列一元二次方程解增长率应用题的方法与步骤,抓住等量关系用两种方式表示同一量,列出方程是解题关键.20.(2021·广东九年级专题练习)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.【答案】(1)504万元;(2)20%.【解析】(1)根据“前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%”即可求解;(2)设去年8、9月份营业额的月增长率为x ,则十一黄金周的月营业额为350(1+x )2,根据“十一黄金周这七天的总营业额与9月份的营业额相等”即可列方程求解.【解答】解:(1)第七天的营业额是450×12%=54(万元), 故这七天的总营业额是450+450×12%=504(万元). 答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x ,依题意,得:350(1+x )2=504,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.21.(2021·广东华侨中学九年级二模)已知:如图所示,在ABC 中,90B ∠=,5AB cm =,7BC cm =,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动,当其中一点到达终点后,另外一点也随之停止运动.() 1如果P 、Q 分别从A 、B 同时出发,那么几秒后,PBQ 的面积等于24cm ?()2在()1中,PQB 的面积能否等于27cm ?请说明理由.【答案】(1)1秒后PBQ 的面积等于24cm ;(2) PBQ 的面积不可能等于27cm .【解析】(1)经过x 秒钟,△PBQ 的面积等于4cm 2,根据点P 从A 点开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm/s 的速度移动,表示出BP 和BQ 的长可列方程求解; (2)看△PBQ 的面积能否等于7cm 2,只需令12×2x (5-x )=7,化简该方程后,判断该方程的△与0的关系,大于或等于0则可以,否则不可以.【解答】(1)设经过x 秒以后△PBQ 面积为4cm 2,根据题意得12(5-x )×2x=4, 整理得:x 2-5x+4=0,解得:x=1或x=4(舍去).答:1秒后△PBQ 的面积等于4cm 2; ()2仿()1得()15272x x -=,整理,得2570x x -+=,因为2425280b ac -=-<,所以,此方程无解.所以PBQ 的面积不可能等于27cm .【点评】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.22.(2021·广东惠州市·九年级一模)随着疫情形势稳定向好,“复工复产”成为主旋律.某生产无人机公司统计发现,公司今年2月份生产A 型无人机2000架,4月份生产A 型无人机达到12500架.(1)求该公司生产A 型无人机每月产量的平均增长率;(2)该公司还生产B 型无人机,已知生产1架A 型无人机的成本是200元,生产1架B 型无人机的成本是300元,现要生产A 、B 两种型号的无人机共100架,其中A 型无人机的数量不超过B 型无人机数量的3倍,公司生产A 、B 两种型号的无人机各多少架时才可能使生产成本最少?【答案】(1)150%;(2)公司生产A 型号无人机75架,生产B 型号无人机25架成本最小【解析】(1)直接利用连续两次平均增长率求法得出等式求出答案;(2)根据题意求出a 的取值范围,再利用一次函数增减性得出答案.【解答】(1)设该公司生长A 型无人机每月产量的平均增长率为x ,根据题意可得:2000(1+x )2=12500,解得:x 1=1.5=150%,x 2=﹣3.5(不合题意舍去),答:该公司生长A 型无人机每月产量的平均增长率为150%;(2)设生产A 型号无人机a 架,则生产B 型号无人机(100﹣a )架,需要成本为w 元,依据题意可得: a≤3(100﹣a ),解得:a≥75,w =200a+300(100﹣a )=﹣100a+30000,∵﹣100<0,∴当a 的值增大时,w 的值减小,∵a 为整数,∴当a =75时,w 取最小值,此时100﹣75=25,w =﹣100×75+30000=22500,∴公司生产A 型号无人机75架,生产B 型号无人机25架成本最小.23.(2021·广州大学附属中学九年级一模)如图,在△ABC 中,∠B =90°,AB =5cm ,BC =7cm ,点Q 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点P 从点B 开始沿BC 边向点C 以2cm/s 的速度移动. (1)如果P 、Q 两点同时出发,那么几秒后,△PBQ 的面积等于4cm 2?(2)△PBQ 的面积能否等于7cm 2?试说明理由.【答案】(1)1秒或4秒;(2)不能,理由见解析【解析】(1)点Q 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点P 从点B 开始沿BC 边向点C 以2cm/s 的速度移动,表示出BQ 和BP 的长度,利用三角形的面积公式可列方程求解.(2)参照(1)的解法列出方程,根据根的判别式来判断该方程的根的情况.【解答】解:(1)设t 秒后,△PBQ 的面积等于42cm .则()15242t t -⨯= , 整理,得t 2﹣5t +4=0,解得 1t =1,2t =4.答:如果P 、Q 两点同时出发,那么1秒或4秒后,△PBQ 的面积等于42cm ;(2)△PBQ 的面积能不能等于72cm 理由如下:设x 秒后,△PBQ 的面积等于42cm 则()15272t t -⨯=, 整理,得t 2﹣5t +7=0,则△=25﹣28=﹣3<0,所以该方程无解.∴△PBQ 的面积不能等于72cm .24.(2021·深圳市南山外国语学校(集团)九年级一模)某环保公司研发了甲、乙两种智能设备,可将垃圾处理变为新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费360万元,购买乙型智能设备花费480万元,购买的两种设备数量相同,且两种智能设备的单价和为140万元.(1)求甲、乙两种智能设备单价;(2)垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知每吨燃料棒的成本为100元.调查发现,若燃料棒售价为每吨200元,平均每天可售出350吨,而当销售价每降低1元,平均每天可多售出5吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到36080元,且保证售价在每吨200元基础上降价幅度不超过8%,求每吨燃料棒售价应为多少元?【答案】(1)甲设备60万元/台,乙设备80万元/台;(2)188元【解析】(1)设甲智能设备单价x 万元,则乙单价为(14﹣x )万元,利用购买的两种设备数量相同,列出分式方程求解即可;(2)设每吨燃料棒在200元基础上降价y 元,根据题意列出方程,求解后根据降价幅度不超过8%,即可得出售价.【解答】解:(1)设甲智能设备单价x 万元,则乙单价为(14﹣x )万元, 由题意得:360x =480140x-, 解得:x =60,经检验x =60是方程的解,∴x =60,140﹣x =80,答:甲设备60万元/台,乙设备80万元/台;(2)设每吨燃料棒在200元基础上降价y 元,由题意得:(200100)(3505)36080y y --+=,解得:112y =,218y =,∵2008%y ≤⨯,即16y ≤,∴y =12,200﹣y =188,答:每吨燃料棒售价应为188元.。

广东省深圳高级中学南校区2021-2022学年八年级上学期期中数学试题(含答案与解析)

广东省深圳高级中学南校区2021-2022学年八年级上学期期中数学试题(含答案与解析)
5.如图,在△ABC中,∠C=90°,M是AB的中点,点N在AC上,MN⊥AB,若AC=8,BC=4,则NC的长为()
A 5B.4C.3D.2
【答案】C
【解析】
【分析】连接BN,由中垂线的性质可得AN=BN,设NC=x,则AN=BN=AC-NC=8-x,由勾股定理可得 即 由此求解即可.
【详解】解:如图所示,连接BN,
14.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点E是AB边上一点.将△CEB沿直线CE折叠到△CEF,使点B与点F重合.当CF⊥AB时,线段EB的长为_____.
15.如图,在平面直角坐标系xOy中,直线 分别与x轴、y轴交于点A、B, ,那么直线BC的表达式是_________.
【答案】B
【解析】
【分析】A、B、C选项先根据三角形内角和定理计算出△ABC中最大角的度数,再依据直角三角形定义进行判断,D选项根据勾股逆定理进行判断即可.
【详解】解:A、在△ABC中,若∠C= ∠B= ∠A,可得∠A=180°×(1+ + )=90°,则△ABC是直角三角形,故此选项不符合题意;
B、在△ABC中,若∠A:∠B:∠C=3:4:5,可得∠C=180°× =75°,则△ABC不是直角三角形,故此选项符合题意;
A. B. C. D.
【答案】C
【解析】
【分析】根据题意得出前若干个点的坐标,得到规律,利用规律解决问题即可.
【详解】解:由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),...,A2n-1(-2+n,n),
∵M为AB 中点,MN⊥AB,
∴AN=BN,
∴ ,
∴ ,
解得 ,
∴NC=3,

广东省2021年中考真题数学试卷真题(word版,含答案与解析)

广东省2021年中考真题数学试卷真题(word版,含答案与解析)
【详解】解:如下图所示:过C点作y轴垂线,垂足为H,AB与x轴的交点为D,
设A(a,a²),B(b,b²),其中a≠0,b≠0,
∵OA⊥OB,
∴ ,
∴ ,
即 ,

设AB的解析式为: ,代入A(a,a²),
解得: ,
∴ ,
∵ ,即 ,
∴C点在以OD的中点E为圆心,以 为半径的圆上运动,
当CH为圆E的半径时,此时CH的长度最大,
【详解】解:如图:过D作DE⊥AB,垂足为E
∵AB是直径
∴∠ACB=90°
∵∠ABC的角平分线BD
∴DE=DC=1
Rt△DEB和Rt△DCB中
DE=DC、BD=BD
∴Rt△DEB≌Rt△DCB(HL)
∴BE=BC
在Rt△ADE中,AD=AC-DC=3-1=2
AE=
设BE=BC=x,AB=AE+BE=x+
∴ ,

故选:B.
【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.
6.下列图形是正方体展开图的个数为()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】根据正方体的展开图的特征,11种不同情况进行判断即可.
【详解】解:根据正方体的展开图的特征,只有第2个图不是正方体的展开图,故四个图中有3个图是正方体的展开图.
∴S的最大值为
故选:C.
【点睛】本题考查了二次函数的性质,关键是由已知得出a+b=6,把面积最大值问题转化为二次函数的最大值问题.
10.设O为坐标原点,点A、B为抛物线 上的两个动点,且 .连接点A、B,过O作 于点C,则点C到y轴距离的最大值()

2021年广东省东莞市数学中考真题含答案解析

2021年广东省东莞市数学中考真题含答案解析

2021年广东省东莞市中考数学试卷一、选择题:本大题10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。

1.(3分)(2015•东莞)|﹣2|=( ) A.2B.﹣2C.D.2.(3分)(2015•东莞)据国家统计局网站2021年12月4日发布的消息,2021年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( ) A.1.3573×106B.1.3573×107C.1.3573×108D.1.3573×1093.(3分)(2015•东莞)一组数据2,6,5,2,4,则这组数据的中位数是( ) A.2B.4C.5D.64.(3分)(2015•东莞)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是( ) A.75°B.55°C.40°D.35°5.(3分)(2015•东莞)下列所述图形中,既是中心对称图形,又是轴对称图形的是( ) A.矩形B.平行四边形C.正五边形D.正三角形6.(3分)(2015•东莞)(﹣4x)2=( ) A.﹣8x2B.8x2C.﹣16x2D.16x27.(3分)(2015•东莞)在0,2,(﹣3)0,﹣5这四个数中,最大的数是( ) A.0B.2C.(﹣3)0D.﹣58.(3分)(2015•东莞)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是( ) A.a≥2B.a≤2C.a>2D.a<29.(3分)(2015•东莞)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为( ) A.6B.7C.8D.910.(3分)(2015•东莞)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是( ) A.B.C.D.二、填空题:本大题6小题,每小题4分,共24分。

2021年全国各地中考数学真题分类汇编(通用版)三角形(三)(含答案与解析)

2021年全国各地中考数学真题分类汇编(通用版)三角形(三)(含答案与解析)

2021年全国各地中考数学真题分类汇编(通用版)三角形(三)参考答案与试题解析一.选择题(共5小题)1.(2021•贵港)如图,在正方形ABCD中,E,F是对角线AC上的两点,且EF=2AE=2CF,连接DE并延长交AB于点M,连接DF并延长交BC于点N,连接MN,则=()A.B.C.1D.解:设AB=AD=BC=CD=3a,∵四边形ABCD是正方形,∴∠DAE=∠DCF=45°,∠DAM=∠DCN=90°,在△DAE和△DCF中,,∴△DAE≌△DCF(SAS),∴∠ADE=∠CDF,在△DAM和△DCN中,,∴△DAM≌△DCN(ASA),∴AM=CN,∵AB=BC,∴BM=BN,∵CN∥AD,∴==,∴CN=AM=a,BM=BN=2a,∴===,故选:A.2.(2021•云南)在△ABC中,∠ABC=90°.若AC=100,sin A=,则AB的长是()A.B.C.60D.80解:∵AC=100,sin A=,∴BC=60,∴AB==80,故选:D.3.(2021•贵港)如图,在△ABC中,∠ABC=90°,AB=8,BC=12,D为AC边上的一个动点,连接BD,E为BD上的一个动点,连接AE,CE,当∠ABD=∠BCE时,线段AE的最小值是()A.3B.4C.5D.6解:如图,取BC的中点T,连接AT,ET.∵∠ABC=90°,∴∠ABD+∠CBD=90°,∵∠ABD=∠BCE,∴∠CBD+∠BCE=90°,∴∠CEB=90°,∵CT=TB=6,∴ET=BC=6,AT===10,∵AE≥AT﹣ET,∴AE≥4,∴AE的最小值为4,故选:B.4.(2021•毕节市)如图,拦水坝的横断面为梯形ABCD,其中AD∥BC,∠ABC=45°,∠DCB=30°,斜坡AB长8m,则斜坡CD的长为()A.6m B.8m C.4m D.8m解:过A作AE⊥BC于E,过D作DF⊥BC于F,∴AE∥DF,∵AD∥BC,∴AE=DF,在Rt△ABE中,AE=AB sin45°=4,在Rt△DCF中,∵∠DCB=30°,∴DF=CD,∴CD=2DF=2×4=8,故选:B.5.(2021•铜仁市)如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,按下列步骤作图:步骤1:以点A为圆心,小于AC的长为半径作弧分别交AC、AB于点D、E.步骤2:分别以点D、E为圆心,大于DE的长为半径作弧,两弧交于点M.步骤3:作射线AM交BC于点F.则AF的长为()A.6B.3C.4D.6解:由作法得AF平分∠BAC,过F点作FH⊥AB于H,如图,∵AF平分∠BAC,FH⊥AB,FC⊥AC,∴FH=FC,在△ABC中,∵∠C=90°,AB=10,BC=8,∴AC==6,设CF=x,则FH=x,∵S△ABF+S△ACF=S△ABC,∴×10•x+×6•x=×6×8,解得x=3,在Rt△ACF中,AF===3.故选:B.二.填空题(共9小题)6.(2021•海南)如图,△ABC的顶点B、C的坐标分别是(1,0)、(0,),且∠ABC=90°,∠A=30°,则顶点A的坐标是(4,).解:过点A作AG⊥x轴,交x轴于点G.∵B、C的坐标分别是(1,0)、(0,),∴OC=,OB=1,∴BC==2.∵∠ABC=90°,∠BAC=30°,∴AB====2.∵∠ABG+∠CBO=90°,∠BCO+∠CBO=90°,∴∠ABG=∠BCO.∴sin∠ABG===,cos∠ABG===,∴AG=,BG=3.∴OG=1+3=4,∴顶点A的坐标是(4,).故答案为:(4,).7.(2021•江西)如图,在边长为6的正六边形ABCDEF中,连接BE,CF,其中点M,N分别为BE和CF上的动点.若以M,N,D为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为9或10或18.解:连接DF,DB,BF.则△DBF是等边三角形.设BE交DF于J.∵六边形ABCDEF是正六边形,∴由对称性可知,DF⊥BE,∠JEF=60°,EF=ED=6,∴FJ=DJ=EF•sin60°=6×=9,∴DF=18,∴当点M与B重合,点N与F重合时,满足条件,∴△DMN的边长为18,如图,当点N在OC上,点M在OE上时,等边△DMN的边长的最大值为6≈10.39,最小值为9,∴△DMN的边长为整数时,边长为10或9,综上所述,等边△DMN的边长为9或10或18.故答案为:9或10或18.8.(2021•桂林)如图,在△ABC中,点D,E分别是AB,AC的中点,若DE=4,则BC=8.解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=4,∴BC=2×4=8.故答案是:8.9.(2021•梧州)某市跨江大桥即将竣工,某学生做了一个平面示意图(如图),点A到桥的距离是40米,测得∠A=83°,则大桥BC的长度是326米.(结果精确到1米)(参考数据:sin83°≈0.99,cos83°≈0.12,tan83°≈8.14)解:由题意,在Rt△ABC中,∵AC=40,∠A=83°,tan A=,∴BC=tan A•AC≈8.14×40=325.6≈326(米).故答案为:326.10.(2021•广西)如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的俯角为60°,已知楼高AB为30米,则荷塘的宽CD为(30﹣10)米(结果保留根号).解:由题意可得,∠ADB=60°,∠ACB=45°,AB=30m,在Rt△ABC中,∵∠ACB=45°,∴AB=BC,在Rt△ABD中,∵∠ADB=60°,∴BD=AB=10(m),∴CD=BC﹣BD=(30﹣10)m,故答案为:(30﹣10).11.(2021•云南)如图,在△ABC中,点D,E分别是BC,AC的中点,AD与BE相交于点F.若BF=6,则BE的长是9.解:如图,在△ABC中,点D,E分别是BC,AC的中点,∴DE∥AB,且DE=AB,∴==,∵BF=6,∴EF=3.∴BE=BF+EF=9.故答案为:9.12.(2021•毕节市)学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8m到达点D处,测得影子DE长是2m,则路灯灯泡A离地面的高度AB为8.5m.解:∵AB⊥BE,CD⊥BE,∴AB∥CD,∴△ECD∽△EAB,∴=,∴=,解得:AB=8.5,答:路灯灯泡A离地面的高度AB为8.5米,故答案为:8.5.13.(2021•黔东南州)已知在平面直角坐标系中,△AOB的顶点分别为点A(2,1)、点B(2,0)、点O(0,0),若以原点O为位似中心,相似比为2,将△AOB放大,则点A的对应点的坐标为(4,2)或(﹣4,﹣2).解:如图,观察图象可知,点A的对应点的坐标为(4,2)或(﹣4,﹣2).故答案为:(4,2)或(﹣4,﹣2).14.(2021•贵阳)在综合实践课上,老师要求同学用正方形纸片剪出正三角形且正三角形的顶点都在正方形边上.小红利用两张边长为2的正方形纸片,按要求剪出了一个面积最大的正三角形和一个面积最小的正三角形.则这两个正三角形的边长分别是2﹣2,2.解:如图,设△GEF为正方形ABCD的一个内接正三角形,作正△GEF的高EK,连接KA,KD,∵∠EKG=∠EDG=90°,∴E、K、D、G四点共圆,∴∠KDE=∠KGE=60°,同理∠KAE=60°,∴△KAD是一个正三角形,则K必为一个定点,∵正三角形面积取决于它的边长,∴当FG⊥AB,边长FG最小,面积也最小,此时边长等于正方形边长为2,当FG过B点时,即F'与点B重合时,边长最大,面积也最大,此时作KH⊥BC于H,由等边三角形的性质可知,K为FG的中点,∵KH∥CD,∴KH为三角形F'CG'的中位线,∴CG'=2HK=2(EH﹣EK)=2(2﹣2×sin60°)=4﹣2,∴F'G'====2﹣2,故答案为:2﹣2,2.三.解答题(共12小题)15.(2021•海南)如图,在某信号塔AB的正前方有一斜坡CD,坡角∠CDK=30°,斜坡的顶端C 与塔底B的距离BC=8米,小明在斜坡上的点E处测得塔顶A的仰角∠AEN=60°,CE=4米,且BC∥NE∥KD,AB⊥BC(点A,B,C,D,E,K,N在同一平面内).(1)填空:∠BCD=150度,∠AEC=30度;(2)求信号塔的高度AB(结果保留根号).解:(1)∵BC∥DK,∴∠BCD+∠D=180°,又∵∠D=30°,∴∠BCD=180°﹣30°=150°,∵NE∥KD,∴∠CEN=∠D=30°,又∵∠AEN=60°,∴∠ACE=∠AEN﹣∠CEN=60°﹣30°=30°,故答案为:150,30;(2)如图,过点C作CG⊥EN,垂足为G,延长AB交EN于点F,在Rt△CEG中,∵∠CEG=30°,CE=4m,∴CG=CE=2(m)=BF,∴EG=CG=2(m),设AB=x,则AF=(x+2)m,EF=BC+EG=(8+2)m,在Rt△AEF中,∵∠AEN=60°,∴AF=EF,即x+2=(8+2),x=(4+8)m,即信号塔的高度AB为(4+8)m.16.(2021•桂林)如图,在平行四边形ABCD中,点O是对角线BD的中点,EF过点O,交AB于点E,交CD于点F.(1)求证:∠1=∠2;(2)求证:△DOF≌△BOE.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠2;(2)∵点O是BD的中点,∴OD=OB,在△DOF和△BOE中,,∴△DOF≌△BOE(AAS).17.(2021•贵港)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知△ABC,且AB>AC.(1)在AB边上求作点D,使DB=DC;(2)在AC边上求作点E,使△ADE∽△ACB.解:(1)如图,点D即为所求.(2)如图,点E即为所求.18.(2021•梧州)如图,在正方形ABCD中,点E,F分别为边BC,CD上的点,且AE⊥BF于点P,G为AD的中点,连接GP,过点P作PH⊥GP交AB于点H,连接GH.(1)求证:BE=CF;(2)若AB=6,BE=BC,求GH的长.(1)证明:∵AE⊥BF,∠ABE=90°,∴∠EAB+∠ABF=90°,∠ABF+∠CBF=90°,∴∠EAB=∠CBF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF;∵tan∠EAB=,∵BE=BC,∴=3,∵G为AD的中点,∴AG=3,∴HB=1,∴AH=5,∴GH==.19.(2021•贵港)已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是AE=CF;(2)如图2,当∠BAC=90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC=6时,求DE的长.解:(1)结论:AE=CF.理由:如图1中,∵AB=AC,∠BAC=90°,OC=OB,∴OA=OC=OB,AO⊥BC,∵∠AOC=∠EOF=90°,∴∠AOE=∠COF,∵OA=OC,OE=OF,∴△AOE≌△COF(SAS),∴AE=CF.(2)结论成立.理由:如图2中,∵∠BAC=90°,OC=OB,∴OA=OC=OB,∵∠AOC=∠EOF,∴∠AOE=∠COF,∵OA=OC,OE=OF,∴△AOE≌△COF(SAS),∴AE=CF.(3)如图3中,由旋转的性质可知OE=OA,∵OA=OD,∴OE=OA=OD=5,∴∠AED=90°,∵OA=OE,OC=OF,∠AOE=∠COF,∴=,∴△AOE∽△COF,∴=,∵CF=OA=5,∴=,∴AE=,∴DE===.20.(2021•广西)如图,四边形ABCD中,AB∥CD,∠B=∠D,连接AC.(1)求证:△ABC≌△CDA;(2)尺规作图:过点C作AB的垂线,垂足为E(不要求写作法,保留作图痕迹);(3)在(2)的条件下,已知四边形ABCD的面积为20,AB=5,求CE的长.(1)证明:∵AB∥CD,∴∠ACD=∠CAB,在△ABC和△CDA中,,∴△ABC≌△CDA(AAS);(2)解:过点C作AB的垂线,垂足为E,如图:21.(2021•铜仁市)如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为①、③,结论为②;(2)证明你的结论.(1)解:由AAS,选的条件是:①,③,结论是②,故答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.22.(2021•云南)如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.证明:在△DCA和△DCB中,,∴△CDA≌△DCB(SSS),∴∠DAC=∠CBD.23.(2021•贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=2,AN=4,求四边形BCMN的面积.(1)证明:在矩形ABCD中,∠D=90°,DC∥AB,∴∠BAN=∠AMD,∵BN⊥AM,∴∠BNA=90°,在△ABN和△MAD中,,∴△ABN≌△MAD(AAS);(2)解:∵△ABN≌△MAD,∴BN=AD,∵AD=2,∴BN=2,又∵AN=4,在Rt△ABN中,AB===2,∴S矩形ABCD=2×2=4,S△ABN=S△MAD=×2×4=4,∴S四边形BCMN=S矩形ABCD﹣S△ABN﹣S△MAD=4﹣8.24.(2021•铜仁市)如图,在一座山的前方有一栋住宅,已知山高AB=120m,楼高CD=99m,某天上午9时太阳光线从山顶点A处照射到住宅的点E外.在点A处测得点E的俯角∠EAM=45°,上午10时太阳光线从山顶点A处照射到住宅点F处,在点A处测得点F的俯角∠F AM=60°,已知每层楼的高度为3m,EF=40m,问:以当天测量数据为依据,不考虑季节天气变化,至少要买该住宅的第几层楼,才能使上午10时太阳光线照射到该层楼的外墙?(≈1.73)解:根据题意可知:四边形ABDM是矩形,∴AB=MD=120m,在Rt△AME中,ME=AM tan45°=AM,在Rt△AMF中,MF=AM tan60°=AM,∵EF=MF﹣ME=40m,∴AM﹣AM=40,∴AM≈54.8(m),∴MF≈54.8×1.73≈94.80(m),∴DF=120﹣94.80=25.2(m),25.2÷3≈8.4,∴至少要买该住宅的第9层楼,才能使上午10时太阳光线照射到该层楼的外墙.答:至少要买该住宅的第9层楼,才能使上午10时太阳光线照射到该层楼的外墙.25.(2021•贵阳)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).(1)求仰角α的正弦值;(2)求B,C两点之间的距离(结果精确到1m).(sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)解:(1)如图,过A点作AD⊥BC于D,过E点作EF⊥AD于F,∵∠EBD=∠FDB=∠DFE=90°,∴四边形BDFE为矩形,∴EF=BD,DF=BE=1.6m,∴AF=AD﹣DF=41.6﹣1.6=40(m),在Rt△AEF中,sin∠AEF===,即sinα=.答:仰角α的正弦值为;(2)在Rt△AEF中,EF===30(m),在Rt△ACD中,∠ACD=63°,AD=41.6,∵tan∠ACD=,∴CD==≈21.22(m),∴BC=BD+CD=30+21.22≈51(m).答:B,C两点之间的距离约为51m.26.(2021•江西)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.(1)求∠ABC的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6°≈0.40,≈1.414)解:(1)过点B作BH⊥MP,垂足为H,过点M作MI⊥FG,垂足为I,过点P作PK⊥DE,垂足为K,∵MP=25.3cm,BA=HP=8.5cm,∴MH=MP﹣HP=25.3﹣8.5=16.8(cm),在Rt△BMH中,cos∠BMH===0.4,∴∠BMH=66.4°,∵AB∥MP,∴∠BMH+∠ABC=180°,∴∠ABC=180°﹣66.4°=113.6°;(2)∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMI=180°﹣∠BMN﹣∠BMH=180°﹣68.6°﹣66.4°=45°,∵MN=28cm,∴cos45°==,∴MI≈19.80cm,∵KI=50cm,∴PK=KI﹣MI﹣MP=50﹣19.80﹣25.3=4.90≈5.0(cm),∴此时枪身端点A与小红额头的距离是在规定范围内.。

2021年广东省广州市数学中考真题含答案解析及答案(word解析版)

2021年广东省广州市数学中考真题含答案解析及答案(word解析版)

解:从几何体的正面看可得图形.点评:从几何体的正面看可得图形.向下移动1格 B 向上移动1格 C 向上移动2格 D分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图可以将图形N向下移动2格.故选点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位是一道基础题:电视,C:网络,D:身边的人,E:其名中学生进行该问卷调查,根据调查的结分析:根据等量关系为:两数x,y之和是得:.故选:点评:此题主要考查了由实际问题抽象出二元一次方程组)分析:根据二次根式的性质和分式的意义解:根据题意得:,解得:点评:本题考查的知识点为:分式有意义EF=AB=2,∵==1,,AF==4,则AC=2AF=8,tanB===2.故选D=AOD=OA=3,OP=,OD=3,PD===2,BO==3,===x+y=1+2+12=2,∴△BA′E≌△DCE点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.21.(本小题满分12分)(2021年广州市)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率。

(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数。

(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.分析:(1)由抽取30个符合年龄条件的青年人中A级的有15人,即可求得样本数据中为A级的频率。

中考数学临考题号押广东卷21题(几何证明与计算)(解析版)

中考数学临考题号押广东卷21题(几何证明与计算)(解析版)
∴平行四边形AFCE是菱形;
【小问2详解】
根据(1)的结论,平行四边形AFCE是菱形,
∴EF、AC相互垂直平分,且AE=EC=CF=FA,
∴EF=2OE,AC=2OA,
∵BC=8,AB=4,
∴BE=BC-EC=8-EC=8-AE, ,
∴OA= ,
在Rt△ABE中,利用勾股定理,有 ,
即: ,解得:AE=5,
(1)求证:四边形 是菱形.
(2)当AB 4,BC 8时,求线段EF的长.
【分析】(1)利用EF是AC的垂直平分线,可得∠EAC=∠ECA,∠CAF=∠FCA,在矩形中有 ,即有∠ECA=∠CAF,∠ECF=∠CFD,即可证得∠CFD=∠EAF,则有 ,再结合 ,AE=EC,可证四边形AFCE是菱形;
∴∠ACF=∠EDC.
∴ED=EC.
【小问2详解】
解:如(1)中图所示,过点C作CG⊥OB于点G,设线段OE与 交于点H.
∵ 的直径 ,OC,OB是 的半径,
∴ .
∵∠A和∠BOC分别是 所对的圆周角和圆心角,∠A=30°,
∴∠BOC=2∠A=60°.
∴ ,S扇OBC .
∴ .
∴点C右侧的阴影面积S右=S扇OBC- .
(2)连接 ,根据同弧所对的圆周角相等,可得 ,进而根据正切值以及已知条件可得 的长,勾股定理即可求得 ,进而即可求得圆的半径.
【详解】
(1)连接 ,如图,
是 的切线,







(2)连接
是 的直径,









即 的半径为 .
6.(2021·山东青岛·中考真题)如图,在 中, 为 边的中点,连接 并延长,交 的延长线于点 ,延长 至点 ,使 ,分别连接 , , .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省2021年中考数学试卷一、单选题1.(2021·广东)下列实数中,最大的数是( )A. πB. √2C. |−2|D. 3 【答案】 A【考点】实数大小的比较 【解析】【解答】解: π≈3.14,√2≈1.414,|-2|=2, 3.14>3>2>1.414 π>3>|-2|>√2 故π最大。

故答案为:A .【分析】本题考查实数的大小比较,需要记住常用的无理数的近似数,然后排序即可。

2.(2021·广东)据国家卫生健康委员会发布,截至2021年5月23日,31个省(区、市)及新疆生产建设兵团累计报告接种新冠病毒疫苗51085.8万剂次,将“51085.8万”用科学记数法表示为( ) A. 0.510858×109 B. 51.0858×107 C. 5.10858×104 D. 5.10858×108 【答案】 D【考点】科学记数法—表示绝对值较大的数【解析】【解答】解: 51085.8万 = 510858000=5.10858×108 故答案为:D .【分析】考查科学记数法的表示方法,将一个大于10或小于1的整数表示为a×10n (1≤|a|<10,n 为正整数)的记数法叫做科学记数法。

注意其中a 的范围和小数点移动的位数。

3.(2021·广东)同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是( ) A. 112 B. 16 C. 13 D. 12 【答案】 B【考点】列表法与树状图法 【解析】【解答】 解:故概率为636=16故答案为:B.【分析】考查概率的计算,可以用列表法将所有可能出现的点数情况列出来,然后计算和为7的情况占总情况的几分之几即为所求概率。

4.(2021·广东)已知9m=3,27n=4,则32m+3n=()A. 1B. 6C. 7D. 12【答案】 D【考点】同底数幂的乘法,幂的乘方【解析】【解答】解:9m=(32)m=32m=327n=(33)n=33n=432m+3n=32m×33n=3×4=12故答案为:D.【分析】考查幂的运算公式的逆运用,先将条件和结论的底数统一为3,然后观察结论的式子需要将同底数幂的乘法公式反向运用,即a m+n=a m×a n,最后将条件变形整体代入运算即可。

5.(2021·广东)若|a−√3|+√9a2−12ab+4b2=0,则ab=()A. √3B. 92C. 4√3D. 9【答案】B【考点】非负数之和为0【解析】【解答】解:∵|a−√3|+√9a2−12ab+4b2=0∴|a−√3|+√(3a−2b)2=0∴a−√3=0,且(3a−2b)2=0∴a=√3,b=3√32∴ab=92故答案为:B.【分析】考查绝对值与二次根式的非负性问题,当几个非负数相加为0时,这几个非负数只能都为0,所以令各部分等于0,计算出a与b的值即可。

6.(2021·广东)下列图形是正方体展开图的个数为()A. 1个B. 2个C. 3个D. 4个【答案】C【考点】几何体的展开图【解析】【解答】解:根据正方体展开图的四种情况,一四一”、“二三一”、“二二二”、“三三”,第一个图属于“二三一”;第二个图是“三二一”排列顺序不对;第三个图属于“二二二”;第四个图属于“三三”;所以正确的只有3个。

故答案为:C.【分析】考查正方体展开图的情况,正方体展开图有“一四一”、“二三一”、“二二二”、“三三”几种情况,而且要注意排列的顺序,本题中第二个图是“三二一”的排列,顺序出错,故正确的只有三个。

7.(2021·广东)如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD=1,则⊙O的直径为()A. √3B. 2√3C. 1D. 2【答案】B【考点】圆的综合题【解析】【解答】解:作DE⊥AB于点E∵AB是⊙O的直径∴AC⊥BC,∠ACB=90°∵BD为∠ABC的角平分线,DE⊥AB,CD=1∴DE=CD=1∵AC=3∴AD=AC-CD=2在Rt△ADE中,AD=2,DE=1,∴AE=√3,sin∠CAB=12∴∠CAB=30°,∴∠ABC=60°,∠ABD=∠CBD=30°∴△ABD为等腰三角形又∵DE⊥AB∴E点为AB 中点,即E点与O点重合,AO=AE=√3∴AB=2AO=2√3所以⊙O的直径为2√3故答案为:B.【分析】本题考查圆周角定理、锐角三角函数值、勾股定理、角平分线的性质的结合运用,先作DE垂直AB,根据角平分线上的点到角两边的距离相等,确定出点D到AB的距离DE,再在△ADE中通过边的关系计算出∠CAB的度数,从而确定△ABD为等腰三角形,E点与O点重合,计算出AE的长度的2倍即为直径AB的长度。

8.(2021·广东)设6−√10的整数部分为a,小数部分为b,则(2a+√10)b的值是()A. 6B. 2√10C. 12D. 9√10【答案】A【考点】估算无理数的大小,代数式求值【解析】【解答】解:∵√9<√10<√16∴3<√10<4∴−4<−√10<−3∴6−4<6−√10<6−3∴2<6−√10<3∴6−√10的整数部分a=2,小数部分b=6−√10−2=4−√10∴(2a+√10)b=(2×2+√10)(4−√10)=(4+√10)(4−√10)=16−10=6故答案为:A.【分析】考查无理数的估算、整数部分与小数部分,先估算出无理数的范围,确定整数部分,再用无理数减去整数部分,得到小数部分,最后再计算表达式的数值。

9.(2021·广东)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记p=a+b+c,则其面积2S=√p(p−a)(p−b)(p−c).这个公式也被称为海伦-秦九韶公式.若p=5,c=4,则此三角形面积的最大值为()A. √5B. 4C. 2√5D. 5 【答案】 C【考点】二次函数的最值 【解析】【解答】 解:将p =5,c =4代入p =a+b+c 2得,a+b=6代入面积公式S =√p(p −a)(p −b)(p −c)得S =√5(5−a)(5−b)(5−4)=√125−25(a +b )+5ab =√−5a 2+30a −25 当a=3时,S 取得最大值√20=2√5 故答案为:C .【分析】考查二次函数最值的计算,讲已知条件p 与c 的值分别代入两个公式,并将面积公式整理可以得到被开方数为关于a 的二次函数,然后求最大值即可。

10.(2021·广东)设O 为坐标原点,点A 、B 为抛物线 y =x 2 上的两个动点,且 OA ⊥OB .连接点A 、B , 过O 作 OC ⊥AB 于点C , 则点C 到y 轴距离的最大值( ) A. 12 B. √22C. √32D. 1【答案】 A【考点】圆-动点问题【解析】【解答】解:如下图所示:过C 点作y 轴垂线,垂足为H , AB 与x 轴的交点为D ,故答案为:A .【分析】本题属于隐形圆,先证出点C 在以点E 为圆心,OD 长为半径的圆上,再结合图象可知,当点H 和点E 重合时,CH 最大,也就是半径。

二、填空题11.(2021·广东)二元一次方程组 {x +2y =−22x +y =2 的解为________. 【答案】 {x =2y =−2【考点】解二元一次方程组【解析】【解答】解:方法一:加减消元法,{x+2y=−2 ①2x+y=2 ②①×2-②得,3y=-6,解得y=-2将y=-2代入②得,x=2所以原方程组的解为{x=2y=−2方法二:代入消元法,{x+2y=−2 ①2x+y=2 ②由①得,x=-2-2y ③,将③代入②得,2(-2-2y)+y=2 解得,y=-2将y=-2代入③得,x=2所以原方程组的解为{x=2y=−2【分析】考查二元一次方程组的解法,本题用代入消元法和加减消元法都可以,按照正确的步骤解出来即可,最后不要忘记写结论。

12.(2021·广东)把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为________.【答案】y=2x2+4x【考点】二次函数图象的几何变换【解析】【解答】解:抛物线y=2x2+1向左平移1个单位长度变为y=2(x+1)2+1再向下平移3个单位长度变为y=2(x+1)2+1−3整理得y=2x2+4x故平移后抛物线的解析式为y=2x2+4x【分析】考查二次函数图象抛物线的平移规律“上加下减,左加右减”,左右移动x变化,左加右减,上下移动y变化,上加下减,左右移动时x要单独加减,根据题目要求平移并整理成一般式即可。

13.(2021·广东)如图,等腰直角三角形ABC中,∠A=90°,BC=4.分别以点B、点C为圆心,线段BC长的一半为半径作圆弧,交AB、BC、AC于点D、E、F,则图中阴影部分的面积为________.【答案】 4−π【考点】扇形面积的计算,几何图形的面积计算-割补法 【解析】【解答】解:∵△ABC 为等腰直角三角形,∠A=90°,BC=4 ∴∠B=∠C=45°,BE=CE=2,AB=AC=2√2∴S 阴影=S △ABC −S 扇形BDE −S 扇形CFE =2√2×2√2×12−45π×22360−45π×22360=4−π【分析】考查与圆有关的不规则图形面积的计算、扇形面积计算问题,先计算出等腰直角三角形ABC 的面积减去左右两边两个扇形的面积,即可得到阴影部分的面积。

14.(2021·广东)若一元二次方程 x 2+bx +c =0 (b , c 为常数)的两根 x 1,x 2 满足 −3<x 1<−1,1<x 2<3 ,则符合条件的一个方程为________. 【答案】 x 2−4=0 (答案不唯一) 【考点】一元二次方程的根 【解析】【解答】解:∵方程的 两根 x 1,x 2 满足 −3<x 1<−1,1<x 2<3 , ∴在范围内任选两个值,比如x 1=-2,x 2=2, 然后代入方程x 2+bx +c =0得 {4−2b +c =04+2b +c =0)解得{b =0c =−4) 所以方程可以写为x²-4=0【分析】考查一元二次方程的根,根据题目两个根的范围,任意选择合适的两个根,代入原方程求出系数的值,即可写出方程。

相关文档
最新文档