(完整版)经典高考概率分布类型题归纳【精选】

合集下载

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

2012-2021十年全国高考数学真题分类汇编 概率(精解精析)一,选择题1.(2021年高考全国甲卷理科)将4个1和2个0随机排成一行,则2个0不相邻地概率为( )A .13B .25C .23D .45【结果】C思路:将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻地概率为1025103=+.故选:C .2.(2021年高考全国乙卷理科)在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74地概率为( )A .79B .2332C .932D .29【结果】B思路:如图所示:设从区间()()0,1,1,2中随机取出地数分别为,x y ,则实验地所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成地区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中地阴影部分,其面积为13323124432A S =-⨯⨯=,所以()2332A S P A S Ω==.故选:B .【点睛】本题主要考查利用线性规划解决几何概型中地面积问题,解题关键是准确求出事件,A Ω对应地区域面积,即可顺利解出.3.(2020年高考数学课标Ⅲ卷理科)在一组样本数据中,1,2,3,4出现地频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本地标准差最大地一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【结果】B思路:对于A 选项,该组数据地平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=。

经典高考概率分布类型题归纳

经典高考概率分布类型题归纳

经典高考概率分布类型题归纳高考真题一、超几何分布类型二、二项分布类型三、超几何分布与二项分布比照四、古典概型算法五、独立事件概率分布之非二项分布〔主要在于如何分类〕六、综合算法高考真题2021年22、〔本小题总分值10分〕〔相互独立事件〕某工厂生产甲、乙两种产品,甲产品一等品率为80%,二等品率为20%;乙产品一等品率为90%,二等品率为10%。

生产1件甲产品,假设是一等品那么获得利润4万元,假设是二等品那么亏损1万元;生产1件乙产品,假设是一等品那么获得利润6万元,假设是二等品那么亏损2万元。

设生产各种产品相互独立。

(1)记X〔单位:万元〕为生产1件甲产品与1件乙产品可获得总利润,求X 分布列;(2)求生产4件甲产品所获得利润不少于10万元概率。

【解析】此题主要考察概率有关知识,考察运算求解能力。

总分值10分。

〔1〕由题设知,X可能取值为10,5,2,-3,且××0.9=0.18,××0.1=0.02。

由此得X分布列为:X1052-3P〔2〕设生产4件甲产品中一等品有件,那么二等品有件。

由题设知,解得,又,得,或。

所求概率为答:生产4件甲产品所获得利润不少于10万元概率为0.8192。

〔2021年〕22.〔本小题总分值10分〕〔古典概型〕设为随机变量,从棱长为1正方体12条棱中任取两条,当两条棱相交时,;当两条棱平行时,值为两条棱之间距离;当两条棱异面时,.〔1〕求概率;〔2〕求分布列,并求其数学期望.【命题意图】此题主要考察概率分布列、数学期望等根底知识,考察运算求解能力.【解析】〔1〕假设两条棱相交,那么交点必为正方形8个顶点中一个,过任意一个顶点恰有3条棱,∴共有对相交棱,∴==.(2)假设两条棱平行,那么它们距离为1或,其中距离为共有6对,故==,∴随机变量分布列是01P〔2021•江苏〕〔古典概型〕盒中共有9个球,其中有4个红球,3个黄球与2个绿球,这些球除颜色外完全一样.〔1〕从盒中一次随机取出2个球,求取出2个球颜色一样概率P;〔2〕从盒中一次随机取出4个球,其中红球、黄球、绿球个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中最大数,求X概率分布与数学期望E〔X〕.〔2021年〕23.〔本小题总分值10分〕一个口袋中有个白球,个黑球(),这些球除颜色外全部一样.现将口袋中球随机地逐个取出,并放入如下图编号为抽屉内,其中第次取出球放入编号为抽屉.123〔1〕试求编号为2抽屉内放是黑球概率;〔2〕随机变量表示最后一个取出黑球所在抽屉编号倒数,是数学期望,证明:.试题解析:〔1〕编号为2抽屉内放是黑球概率为:.〔2〕随机变量X概率分布为X……P……随机变量X期望为.所以即.【考点】古典概型概率、排列组合、随机变量及其分布、数学期望【名师点睛】求解离散型随机变量数学期望一般步骤为:〔1〕“判断取值〞,即判断随机变量所有可能取值,以及取每个值所表示意义;〔2〕“探求概率〞,即利用排列组合、枚举法、概率公式(常见有古典概型公式、几何概型公式、互斥事件概率与公式、独立事件概率积公式,以及对立事件概率公式等),求出随机变量取每个值时概率;〔3〕“写分布列〞,即按标准形式写出分布列,并注意用分布列性质检验所求分布列或某事件概率是否正确;〔4〕“求期望值〞,一般利用离散型随机变量数学期望定义求期望值,对于有些实际问题中随机变量,如果能够断定它服从某常见典型分布(如二项分布),那么此随机变量期望可直接利用这种典型分布期望公式()求得.因此,应熟记常见典型分布期望公式,可加快解题速度.一、超几何分布1.袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球.试求得分X 分布列.【提示】 从袋中随机摸4个球情况为1红3黑,2红2黑,3红1黑,4红四种情况,分别得分为5分,6分,7分,8分,故X 可能取值为5,6,7,8.P(X =5)=C14C33C47=435,P(X =6)=C24C23C47=1835,P(X =7)=C34C13C47=1235,P(X =8)=C44C03C47=135.故所求分布列为X 5 6 7 8 P435183512351352.PM2.5 2.5微米颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2021,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2021年全年每天PM2.5监测数据中随机地抽取10天数据作为样本,监测值频数如下表所示:PM2.5日均值(微克/立[25,35](35,45](45,55](55,65](65,75](75,85]方米) 频数311113〔1〕从这10天PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量到达一级概率;〔2〕从这10天数据中任取3天数据.记X 表示抽到PM2.5监测数据超标天数,求X 分布列.【解析】〔1〕记“从10天PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量到达一级〞为事件A ,那么P (A )=C13·C27C310=2140.〔2〕依据条件,X 服从超几何分布,其中N =10,M =3,n =3,且随机变量X 可能取值为0,1,2,3.P (X =k )=Ck 3·C3-k7C310(k =0,1,2,3),所以P (X =0)=C03C37C310=724,P (X =1)=C13C27C310=2140,P (X =2)=C23C17C310=740,P (X =3)=C33C07C310=1120,因此X 分布列为X123P72421407401120点评:超几何分布上述模型中,“任取 件〞应理解为“不放回地一次取一件,连续取 件〞. 如果是有放回地抽取,就变成了 重伯努利试验,这时概率分布就是二项分布. 所以两个分布区别就在于是不放回地抽样,还是有放回地抽样. 假设产品总数很大时,那么不放回抽样可以近似地看成有放回抽样.3.盒内有大小一样9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.(1)求取出3个球中至少有一个红球概率; (2)求取出3个球得分之与恰为1分概率;(3)设ξ为取出3个球中白色球个数,求ξ分布列. 【解】 (1)P =1-C37C39=712.(2)记“取出1个红色球,2个白色球〞为事件B ,“取出2个红色球,1个黑色球〞为事件C ,那么P(B +C)=P(B)+P(C)=C12C23C39+C22C14C39=542.(3)ξ可能取值为0,1,2,3,ξ服从超几何分布, 且P(ξ=k)=Ck 3C3-k6C39,k =0,1,2,3.故P(ξ=0)=C36C39=521,P(ξ=1)=C13C26C39=1528,P(ξ=2)=C23C16C39=314,P(ξ=3)=C33C39=184,ξ分布列为ξ 0 1 2 3 P5211528314184二、二项分布1.某市医疗保险实行定点医疗制度,按照“就近就医、方便管理〞原那么,参加保险人员可自主选择四家医疗保险定点医院与一家社区医院作为本人就诊医疗机构.假设甲、乙、丙、丁4名参加保险人员所在地区附近有A ,B ,C 三家社区医院,并且他们对社区医院选择是相互独立. 〔1〕求甲、乙两人都选择A 社区医院概率;〔2〕求甲、乙两人不选择同一家社区医院概率;〔3〕设4名参加保险人员中选择A 社区医院人数为X ,求X 概率分布与数学期望.2.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯概率都是23,出现绿灯概率都是13.记这4盏灯中出现红灯数量为X ,当这排装饰灯闪烁一次时: (1)求X =2时概率; (2)求X 数学期望.解 (1)依题意知:X =2表示4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯,而每盏灯出现红灯概率都是23,故X =2时概率P =C24⎝ ⎛⎭⎪⎪⎫232⎝ ⎛⎭⎪⎪⎫132=827.(2)法一 X 所有可能取值为0,1,2,3,4,依题意知P(X =k)=Ck 4⎝ ⎛⎭⎪⎪⎫23k ⎝ ⎛⎭⎪⎪⎫134-k(k =0,1,2,3,4).∴X 概率分布列为X 0 1 2 3 4 P18188188132811681∴数学期望E(X)=0×18+1×881+2×881+3×3281+4×1681=83.3.羽毛球 A 队与B 队进展对抗比赛,在每局比赛中A 队获胜概率都是P.〔1〕假设比赛6局,且P =, 求A队至多获胜4局概率是多少?〔2〕假设比赛6局,求A队恰好获胜 3局概率最大值是多少?(3) 假设采用“五局三胜〞制,求A队获胜时比赛局数分布列与数学期望.解析:〔1〕设“比赛6局,A队至多获胜4局〞为事件A那么==[来源:学。

(完整版)经典高考概率分布类型题归纳【精选】

(完整版)经典高考概率分布类型题归纳【精选】

经典高考概率类型题总结一、超几何分布类型二、二项分布类型三、超几何分布与二项分布的对比四、古典概型算法五、独立事件概率分布之非二项分布(主要在于如何分类)六、综合算法一、超几何分布1.甲、乙两人参加普法知识竞赛,共设有10个不同的题目,其中选择题6个,判断题4个.(1)若甲、乙二人依次各抽一题,计算:①甲抽到判断题,乙抽到选择题的概率是多少?②甲、乙二人中至少有一人抽到选择题的概率是多少?(2)若甲从中随机抽取5个题目,其中判断题的个数为X,求X的概率分布和数学期望.二、二项分布1.某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在的地区附近有A,B,C三家社区医院,并且他们对社区医院的选择是相互独立的.(1)求甲、乙两人都选择A社区医院的概率;(2)求甲、乙两人不选择同一家社区医院的概率;(3)设4名参加保险人员中选择A社区医院的人数为X,求X的概率分布和数学期望.2.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是13.记这4盏灯中出现红灯的数量为X ,当这排装饰灯闪烁一次时: (1)求X =2时的概率; (2)求X 的数学期望.解 (1)依题意知:X =2表示4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯,而每盏灯出现红灯的概率都是23, 故X =2时的概率P =C 24⎝⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=827. (2)法一 X 的所有可能取值为0,1,2,3,4,依题意知 P(X =k )=C k 4⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫134-k(k =0,1,2,3,4). ∴X 的概率分布列为∴数学期望E(X)=0×8+1×81+2×81+3×81+4×81=3.三、超几何分布与二项分布的对比有一批产品,其中有12件正品和4件次品,从中有放回地依 次任取3件,若X 表示取到次品的次数,则P (X )= . 辨析:1.有一批产品,其中有12件正品和4件次品,从中不放回地依 次任取3件,若X 表示取到次品的件数,则P (X )=2. 有一批产品,其中有12件正品和4件次品,从中有放回地依 次任取件,第k 次取到次品的概率,则P (X )=3.有一批产品,其中有12件正品和4件次品,从中不放回地依 次任取件,第k 次取到次品的概率,则P (X )=四、古典概型算法1.一个均匀的正四面体的四个面分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体底面上的数字分别为x 1,x 2,记X=(x 1-2)2+(x 2-2)2. (1)分别求出X 取得最大值和最小值的概率; (2)求X 的概率分布及方差.2.(2012·江苏高考)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时ξ=1. (1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ).3.某市公租房的房源位于A ,B ,C 三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中: (1)恰有2人申请A 片区房源的概率;(2)申请的房源所在片区的个数X 的概率分布与期望.4.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S.(1)记“使得m +n =0成立的有序数组(m ,n)”为事件A ,试列举A 包含的基本事件; (2)设ξ=m 2,求ξ的概率分布表及其数学期望E(ξ).解 (1)由x 2-x -6≤0,得-2≤x ≤3, 即S ={x|-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0,所以A 包含的基本事件为(-2,2),(2,-2), (-1,1),(1,-1),(0,0).(2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有P(ξ=0)=16,P(ξ=1)=26=13,P(ξ=4)=26=13,P(ξ=9)=16.故ξ的概率分布表为所以E(ξ)=0×16+1×13+4×13+9×16=196.5.在高中“自选模块”考试中,某考场的每位同学都选了一道数学题,第一小组选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况 .(1)求选出的4人均为选《矩阵变换和坐标系与参数方程》的概率;(2)设X为选出的4个人中选《数学史与不等式选讲》的人数,求X的分布列和数学期望.解(1)设“从第一小组选出的2人均选《矩阵变换和坐标系与参数方程》”为事件A,“从第二小组选出的2人均选《矩阵变换和坐标系与参数方程》”为事件B.由于事件A、B相互独立,所以P(A)=C25C26=23,P(B)=C24C26=25,所以选出的4人均选《矩阵变换和坐标系与参数方程》的概率为P(A·B)=P(A)·P(B)=23×25=415.(2)X可能的取值为0,1,2,3,则P(X=0)=415,P(X=1)=C25C26·C12·C14C26+C15C26·C24C26=2245,P(X=3)=C15C26·1C26=145.P(X=2)=1-P(X=0)-P(X=1)-P(X=3)=2 9.故X的分布列为所以X的数学期望E(X)=0×15+1×45+2×9+3×45=1 (人).6.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.(I)求取出的4个球均为黑色球的概率;(II)求取出的4个球中恰有1个红球的概率;(III)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.解:(I)设“从甲盒内取出的2个球均黑球”为事件A,“从乙盒内取出的2个球为黑球”为事件B.∵事件A,B相互独立,且.∴取出的4个球均为黑球的概率为P(AB)=P(A)P(B)=.(II)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红红,1个是黑球”为事件C,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D.∵事件C,D互斥,且.∴取出的4个球中恰有1个红球的概率为P(C+D)=P(C)+P(D)=.(III)解:ξ可能的取值为0,1,2,3.由(I),(II)得,又,从而P (ξ=2)=1﹣P (ξ=0)﹣P (ξ=1)﹣P (ξ=3)=.ξ的分布列为ξ的数学期望.五、独立事件概率分布之非二项分布(主要在于如何分类)1.开锁次数的数学期望和方差有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数的数学期望和方差.分析:求时,由题知前次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如,发现规律后,推广到一般.解:的可能取值为1,2,3,…,n .;所以的分布列为:ξ)(k P =ξ1-k 3,2,1=ξξ;12112121)111()11()3(;111111)11()2(,1)1(nn n n n n n n n P n n n n n n P nP =-⋅--⋅-=-⋅--⋅-===-⋅-=-⋅-====ξξξnk n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-⋅+-+---⋅--⋅-=+-⋅+----⋅--⋅-== ξξ;2. 射击练习中耗用子弹数的分布列、期望及方差某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹后才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数的分布列,并求出的期望与方差(保留两位小数).分析:根据随机变量不同的取值确定对应的概率,在利用期望和方差的定义求解. 解: 该组练习耗用的子弹数为随机变量,可以取值为1,2,3,4,5.=1,表示一发即中,故概率为=2,表示第一发未中,第二发命中,故=3,表示第一、二发未中,第三发命中,故=4,表示第一、二、三发未中,第四发命中,故=5,表示第五发命中,故211131211+=⋅++⋅+⋅+⋅=n n n n n n E ξnn n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222⋅+-++⋅+-++⋅+-+⋅+-+⋅+-= ξ⎥⎦⎤⎢⎣⎡⋅+++++++-++++=n n n n n n 22222)21()321)(1()321(1 1214)1(2)1()12)(1(611222-=⎥⎦⎤⎢⎣⎡+++-++=n n n n n n n n n ξ ξ ξ E ξ D ξ ξ ξ ;8.0)1(==ξ P ξ ;16.08.02.08.0)8.01()2(=⨯=⨯-==ξ P ξ ;032.08.02.08.0)8.01()3(22=⨯=⨯-==ξ P ξ 0064.08.02.08.0)8.01()4(33=⨯=⨯-==ξ P ξ因此,的分布列为3. 在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A 处的命中率q 为0.25,在B 处的命中率为q ,该同学选择先在A 处投一球,以后都在B 处投,用表示该同学投篮训练结束后所得的总分,其分布列为(1)求q 的值;(2)求随机变量的数学期望E ;(3)试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.解:(1)设该同学在A 处投中为事件A ,在B 处投中为事件B ,则事件A ,B 相互独立,且P (A )=0.25,,P (B )= q ,.根据分布列知:=0时=0.03,所以,q =0.8.(2)当=2时,P 1==0.75q ()×2=1.5q ()=0.24.当=3时,P 2 ==0.01,.0016.02.01)8.01()5(44==⋅-==ξ P ξ 0016.050064.04032.0316.028.01⨯+⨯+⨯+⨯+⨯=ξ E ,25.1008.00256.0096.032.08.0 =++++=0016.0)25.15(0064.0)25.14(032.0)25.13(16.0)25.12(8.0)25.11(22222⨯-+⨯-+⨯-+⨯-+⨯-=ξ D .31.00225.00484.0098.009.005.0 =++++=12ξ2ξξ()0.75P A =22()1P B q =-ξ22()()()()0.75(1)P ABB P A P B P B q ==-210.2q -=2ξ)()()(B B A P B B A P B B A B B A P +=+)()()()()()(B P B P A P B P B P A P +=221q -221q -ξ22()()()()0.25(1)P ABB P A P B P B q ==-当=4时,P 3==0.48, 当=5时,P 4==0.24.所以随机变量的分布列为:随机变量的数学期望. (3)该同学选择都在B 处投篮得分超过3分的概率为;该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72. 由此看来该同学选择都在B 处投篮得分超过3分的概率大.4. 某科技公司遇到一个技术难题,紧急成立甲、乙两个攻关小组,按要求各自单独进行为期一个月的技术攻关, 同时决定对攻关期满就攻克技术难题的小组给予奖励.已知这 些技术难题在攻关期满时被甲小组攻克的概率为32被乙小组攻 克的概率为43. (1)设X 为攻关期满时获奖的攻关小组数,求X 的概率分布及 V(X);(2)设Y 为攻关期满时获奖的攻关小组数的2倍与没有获奖的 攻关小组数之差,求V(Y).5. 某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值. (Ⅰ)求的分布列及数学期望;(Ⅱ)记“函数在区间上单调递增”为事件,求事件ξ22()()()()0.75P ABB P A P B P B q ==ξ()()()P ABB AB P ABB P AB +=+222()()()()()0.25(1)0.25P A P B P B P A P B q q q =+=-+ξξ00.0320.2430.0140.4850.24 3.63E ξ=⨯+⨯+⨯+⨯+⨯=()P BBB BBB BB ++()()()P BBB P BBB P BB =++222222(1)0.896q q q =-+=0.4,0.5,0.6ξξ2()31f x x x ξ=-+[2,)+∞A A的概率. 分析:(2)这是二次函数在闭区间上的单调性问题,需考查对称轴相对闭区间的关系,就本题而言,只需即可.解:(1)分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点”为事件. 由已知相互独立,.客人游览的景点数的可能取值为0,1,2,3. 相应的,客人没有游览的景点数的可能取值为3,2,1,0,所以的可能取值为1,3.所以的分布列为(Ⅱ)解法一:因为所以函数 上单调递增,要使上单调递增,当且仅当从而 解法二:的可能取值为1,3.当时,函数上单调递增,当时,函数上不单调递增.所以6.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.322ξ≤123,,A A A 123,,A A A 123()0.4,()0.5,()0.6P A P A P A ===ξ123123(3)()()P P A A A P A A A ξ==+123123()()()()()()20.40.50.60.24P A P A P A P A P A P A =+=⨯⨯⨯=(1)10.240.76P ξ==-=ξ()10.7630.24 1.48E ξ=⨯+⨯=2239()()1,24f x x ξξ=-+-23()31[,)2f x x x ξξ=-++∞在区间()[2,)f x +∞在342,.23ξξ≤≤即4()()(1)0.76.3P A P P ξξ=≤===ξ1ξ=2()31[2,)f x x x =-++∞在区间3ξ=2()91[2,)f x x x =-++∞在区间()(1)0.76.P A P ξ===0.76(1)求乙至多击中目标2次的概率;(2)记甲击中目标的次数为Z ,求Z 的分布列、数学期望和标准差. 解 (1)甲、乙两人射击命中的次数服从二项分布,故乙至多击中目标2次的概率为1-C 33⎝ ⎛⎭⎪⎫233=1927. (2)P(Z =0)=C 03⎝ ⎛⎭⎪⎫123=18; P(Z =1)=C 13⎝ ⎛⎭⎪⎫123=38; P(Z =2)=C 23⎝⎛⎭⎪⎫123=38; P(Z =3)=C 33⎝ ⎛⎭⎪⎫123=18. Z 的分布列如下表:E(Z)=0×18+1×8+2×8+3×8=2,D(Z)=⎝ ⎛⎭⎪⎫0-322×18+⎝ ⎛⎭⎪⎫1-322×38+⎝ ⎛⎭⎪⎫2-322×38+⎝ ⎛⎭⎪⎫3-322×18=34,∴D (Z )=32.7.某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4.经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75. (1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望与方差. 解 分别记甲、乙、丙经第一次烧制后合格为事件A 1、A 2、A 3.(1)设E 表示第一次烧制后恰好有一件合格,则 P(E)=P(A 1A2A 3)+P(A 1A 2A 3)+P(A1A 2A 3)=0.5×0.4×0.6+0.5×0.6×0.6+0.5×0.4×0.4=0.38.(2)因为每件工艺品经过两次烧制后合格的概率均为p =0.3,所以ξ~B(3,0.3). 故E(ξ)=np =3×0.3=0.9, V(ξ)=np(1-p)=3×0.3×0.7=0.63.8.某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。

高考概率10大题目囊括所有考点

高考概率10大题目囊括所有考点

可以囊括高考所有考点的几个概率题目制作人:王霖普题型一直方图.1.〔 2021 广东卷理〕根据空气质量指数 API〔为整数〕的不同,可将空气质量分级如下表:对某城市一年〔 365 天〕的空气质量进行监测,获得的API 数据按照区间[ 0,50] , (50,100] , (100,150] , (150,200] , ( 200,250] , ( 250,300] 进行分组,得到频率分布直方图如图 5.〔1〕求直方图中 x 的值;〔2〕计算一年中空气质量分别为良和轻微污染的天数;〔3〕求该城市某一周至少有 2 天的空气质量为良或轻微污染的概率 .〔 结 果 用 分 数 表 示 . 已 知 5778125 , 27128 ,3 27 3 8 123, 3651825 365 182573 5 〕1825 91259125 3 2 7 3 8 123解:〔1 〕由图可知 50x 1 ( 50 150 , 365 1825 1825 ) 9125 1191825 9125 解得 x ;18250 〔 2〕 365 (11950 2 50) 219 ;18250 365〔 3〕该城市一年中每天空气质量为良或轻微污染的概率为11950250 219 3,那么空气质量不为良且不为轻微污染的概率为18250365365 513 2,一周至少有两天空气质量为良或轻微污染的概率为5 57 2 7 3 06263 1766531 C 7 ( ) ( )C 7 ( ) ( ).5 55 5 78125题型二 抽样问题2.〔 2021 全国卷Ⅱ文〕〔本小题总分值 12 分〕某车间甲组有 10 名工人,其中有 4 名女工人;乙组有 10 名工人,其中有6 名女工人。

现采用分层抽样〔层内采用不放回简单随即抽样〕从甲、乙两组中共抽取 4 名工人进行技术考核。

〔Ⅰ〕求从甲、乙两组各抽取的人数;〔Ⅱ〕求从甲组抽取的工人中恰有1 名女工人的概率;〔Ⅲ〕求抽取的 4 名工人中恰有 2 名男工人的概率。

(打印1份)数学概率分布列常见重要高考题

(打印1份)数学概率分布列常见重要高考题

离散型随机变量解答题精选(选修2--3)1. 人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话; (2)拨号不超过3次而接通电话. 解:设i A ={第i 次拨号接通电话},1,2,3i =(1)第3次才接通电话可表示为321A A A 于是所求概率为;1018198109)(321=⨯⨯=A A A P(2)拨号不超过3次而接通电话可表示为:112123A A A A A A ++于是所求概率为 112123()P A A A A A A ++=112123()()()P A P A A P A A A ++=1919813.10109109810+⨯+⨯⨯=2. 出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率; (2)求这位司机在途中遇到红灯数ξ的期望和方差。

解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以 .27431)311)(311(=⨯--=P(2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD3. 奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望解:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,6ξ=;当摇出的3个小球中有2个标有数字2,1个标有数字5时,9ξ=;当摇出的3个小球有1个标有数字2,2个标有数字5时,12ξ=。

所以,157)6(31038===C C P ξ 157)9(3101228===C C C P ξ 151)12(3102218===C C C P ξ 771396(912)1515155E ξ=⨯+⨯+⨯= 答:此次摇奖获得奖金数额的数字期望是539元4.某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中(Ⅰ)三科成绩均未获得第一名的概率是多少?(Ⅱ)恰有一科成绩未获得第一名的概率是多少解:分别记该生语、数、英考试成绩排名全班第一的事件为,,A B C , 则()0.9,()0.8,()0.85P A P B P C ===(Ⅰ))()()()(C P B P A P C B A P ⋅⋅=⋅⋅[1()][1()][1()](10.9)(10.8)(10.85)0.003P A P B P C =---=---= 答:三科成绩均未获得第一名的概率是0.003 (Ⅱ)(()P A B C A B C A B C ⋅⋅+⋅⋅+⋅⋅) ()()()P A B C P A B C P A B C =⋅⋅+⋅⋅+⋅⋅ ()()()()()()()()()P A P B P C P A P B P C P A P B P C =⋅⋅+⋅⋅+⋅⋅ [1()]()()()[1()]()()()[(10.9)0.80.850.9(10.8)0.850.90.8(10.85)0.329P A P B P C P A P B P C P A P B P C=-+-+-=-⨯⨯+⨯-⨯+⨯⨯-= 答:恰有一科成绩未获得第一名的概率是0.3295.如图,,A B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量.(I )设选取的三条网线由A 到B 可通过的信息总量为x ,当6x ≥时,则保证信息畅通.求线路信息畅通的概率;(II )求选取的三条网线可通过信息总量的数学期望.解:(I )411)6(,6321411361212=⋅+==∴=++=++C C C x P 431012034141)6(101202)9(,9432203)8(,842243141205)7(,7322421=+++=≥∴===∴=++==∴=++=++===∴=++=++x P x P x P x P(II )203)5(,5221311,101)4(,4211===++=++===++x P x P ∴线路通过信息量的数学期望5.61019203841741620351014=⨯+⨯+⨯+⨯+⨯+⨯= 答:(I )线路信息畅通的概率是43. (II )线路通过信息量的数学期望是6.56.三个元件123,,T T T 正常工作的概率分别为,43,43,21将它们中某两个元件并联后再和第三元件串联接入电路.(Ⅰ)在如图的电路中,电路不发生故障的概率是多少? (Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.解:记“三个元件123,,T T T 正常工作”分别为事件123,,A A A ,则.43)(,43)(,21)(321===A P A P A P (Ⅰ)不发生故障的事件为231()A A A +. ∴不发生故障的概率为321521]41411[)()]()(1[)()(])[(1321311321=⨯⨯-=⋅⋅-=⋅+=+=A P A P A P A P A A P A A A P P(Ⅱ)如图,此时不发生故障的概率最大.证明如下: 图1中发生故障事件为123()A A A + ∴不发生故障概率为3221)()]()(1[)()(])[(3213213212=⋅-=⋅+=+=A P A P A P A P A A P A A A P P 21P P ∴>图2不发生故障事件为132()A A A +,同理不发生故障概率为321P P P =>7.要制造一种机器零件,甲机床废品率为0.05,而乙机床废品率为0.1,而它们 的生产是独立的,从它们制造的产品中,分别任意抽取一件,求: (1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率. 解:设事件A =“从甲机床抽得的一件是废品”;B =“从乙机床抽得的一件是废品”. 则()0.05,()0.1P A P B == (1)至少有一件废品的概率145.090.095.01)()(1)(1)(=⨯-=⋅-=+-=+B P A P B A P B A P(2)至多有一件废品的概率995.09.095.01.095.09.005.0)(=⨯+⨯+⨯=⋅+⋅+⋅=B A B A B A P P8.甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92,(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差解:(1)记甲、乙分别解出此题的事件记为,A B .设甲独立解出此题的概率为1P ,乙为2P . 则12()0.6,()P A P P B P ===1212122222()1()1(1)(1)0.920.60.60.920.40.320.8(2)(0)()()0.40.20.08(1)()()()()0.60.20.40.80.44(2)()()0.60.80.48:P A B P A B P P P P PP P P P P P P A P B P P A P B P A P B P P A P B ξξξξ+=-⋅=---=+-=∴+-=====⋅=⨯===+=⨯+⨯===⋅=⨯=则即的概率分布为4.096.136.2)()(4.01728.00704.01568.048.0)4.12(44.0)4.11(08.0)4.10(4.196.044.048.0244.0108.0022222=-=-==++=⋅-+⋅-+⋅-==+=⨯+⨯+⨯=ξξξξE E D D E 或利用9.某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元.设在一年内E 发生的概率为p ,为使公司收益的期望值等于a 的百分之十,公司应要求顾客交多少保险金? 解:设保险公司要求顾客交x 元保险金,若以ξ 表示公司每年的收益额,则ξ是一个随机变量,其分布列为:因此,公司每年收益的期望值为(1)()E x p x a p x ap ξ=-+-=-,为使公司收益的期望值等于a 的百分之十,只需0.1E a ξ=,即0.1x ap a -=, 故可得(0.1)x a p =+.即顾客交的保险金为(0.1)a p +时,可使公司期望获益0.1a .10.有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2. (1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).解:(1)这批食品不能出厂的概率是: 514510.80.80.20.263P C =--⨯⨯≈.(2)五项指标全部检验完毕,这批食品可以出厂的概率是13140.20.80.8P C =⨯⨯⨯ 五项指标全部检验完毕,这批食品不能出厂的概率是:13240.20.80.2P C =⨯⨯⨯由互斥事件有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:131240.20.80.4096P P P C =+=⨯⨯=.11.高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛. 比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛; ②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛. 已知每盘比赛双方胜出的概率均为.21(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?(Ⅱ)高三(1)班代表队连胜两盘的概率是多少?解:(I )参加单打的队员有23A 种方法. 参加双打的队员有12C 种方法.所以,高三(1)班出场阵容共有121223=⋅C A (种)(II )高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜, 所以,连胜两盘的概率为.832121212121=⨯⨯+⨯ 12.袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(1)摸出2个或3个白球 (2)至少摸出一个黑球.解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件,A B ,则73)(,73)(481325482325=⋅==⋅=C C C B P C C C A P ∵,A B 为两个互斥事件 ∴6()()()7P A B P A P B +=+= 即摸出的4个球中有2个或3个白球的概率为76(Ⅱ)设摸出的4个球中全是白球为事件C ,则45481()14C P C C ==至少摸出一个黑球为事件C 的对立事件其概率为14131411=-。

高考理科数学概率题型归纳与练习(含答案)

高考理科数学概率题型归纳与练习(含答案)

专题三:高考理科数学概率与数学期望一.离散型随机变量的期望(均值)和方差若离散型随机变量的分布列或概率分布如下:XX1x 2x …n xP1p2p…np 1. 其中,,则称为随机变120,1,2,...,,...1i n p i n p p p ≥=+++=1122...n n x p x p x p +++量的均值或的数学期望,记为或.X X ()E X μ数学期望 =()E X 1122...n nx p x p x p +++性质 (1);(2).(为常数)()E c c =()()E aX b aE X b +=+,,a b c 2. ,(其中)刻画了随机变2221122()()...()n n x p x p x p μμμ-+-++-120,1,2,...,,...1i n p i n p p p ≥=+++=量与其均值的平均偏离程度,我们将其称为离散型随机变量的方差,记为或X μX ()D X .2σ 方差2221122()()...()n nDX x p x p x p μμμ=-+-++-2.方差公式也可用公式计算.22221()()ni i i D X x p EX EX μ==-=-∑3.随机变量的方差也称为的概率分布的方差,的方差的算术平方根称为X X X ()D X的标准差,即X σ=1.设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX 。

X -101P95二.超几何分布对一般情形,一批产品共N 件,其中有M 件不合格品,随机取出的n 件产品中,不合格品数X 的分布如下表所示:X 012…lP0n M N Mn NC C C -11n M N Mn NC C C --22n M N Mn NC C C --…l n l M N Mn NC C C --其中min(,)l n M =一般地,若一个随机变量X 的分布列为()r n r M N MnNC C P X r C --==,其中0r =,1,2,3,…,l ,min(,)l n M =,则称X 服从超几何分布,记为(,,)X H n M N :,并将()r n r M N MnNC C P X r C --==记为(;,,)H r n M N .1.高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同.现一次从中摸出5个球,(1)若摸到4个红球1个白球的就中一等奖,求中一等奖的概率. (2)若至少摸到3个红球就中奖,求中奖的概率.解:由2.2节例1可知,随机变量的概率分布如表所示:X X 012345P258423751807523751855023751380023751700237514223751从而2584807585503800700425()012345 1.66672375123751237512375123751237513E X =⨯+⨯+⨯+⨯+⨯+⨯=≈ 答:的数学期望约为.X 1.6667说明:一般地,根据超几何分布的定义,可以得到.0()r n r nM N Mnr Nr C C M E X n C N --===∑g g 2.在10件产品中,有3件一等品,4件二等品,3件三等品。

(完整版)概率经典例题及解析、近年高考题50道带答案.doc

(完整版)概率经典例题及解析、近年高考题50道带答案.doc

【经典例题】【例 1】( 2012 湖北) 如图,在圆心角为直角的扇形 OAB 中,分别以 OA , OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是21 121 A .1- πB . 2 - πC . πD . π【答案】 A【解析】 令 OA=1,扇形 OAB 为对称图形, ACBD 围成面积为 S 1,围成 OC 为 S 2,作对称轴 OD ,则过 C 点. S 2 即为以 OA2 π 1 2 111 π -2 S2(2)-2×2×2=1为直径的半圆面积减去三角形OAC 的面积, S =8 .在扇形 OAD 中 2 为扇形面积减去三角S 2 S 1 1 21 S 2π -2 π -2π形 OAC 面积和 2 , 2 = 8 π×1 - 8 - 2 =16 , S 1+S 2= 4 ,扇形 OAB 面积 S= 4 ,选 A .【例 2】( 2013 湖北) 如图所示,将一个各面都涂了油漆的正方体,切割为 125 个同样大小的小正方体,经过搅拌后, 从中随机取一个小正方体,记它的涂漆面数为X ,则 X 的均值 E(X) = ( )1266 1687 A. 125B. 5C.125D. 5【答案】 B27 54 36 8 27【解析】 X 的取值为 0,1, 2,3 且 P(X = 0) =125,P(X = 1) =125,P(X = 2) = 125,P(X = 3) = 125,故 E(X) =0× 125+1× 54 36 8 6+2× +3× =,选B.125 125 125 5【例 3】( 2012 四川) 节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通 电后的 4 秒内任一时刻等可能发生,然后每串彩灯以 4 秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过 2 秒的概率是 ()1 1 3 7 A. 4B. 2C. 4D. 8【答案】 C【解析】 设第一串彩灯在通电后第 x 秒闪亮, 第二串彩灯在通电后第 y 秒闪亮,由题意 0≤ x ≤ 4,满足条件的关系式0≤y ≤4,根据几何概型可知, 事件全体的测度 ( 面积 ) 为 16 平方单位,而满足条件的事件测度( 阴影部分面积 ) 为 12 平方单位,123故概率为 16= 4.【例 4】( 2009 江苏) 现有 5 根竹竿,它们的长度(单位: m )分别为 2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2 根竹竿,则它们的长度恰好相差 0.3m 的概率为 .【答案】 0.2 【解析】 从 5 根竹竿中一次随机抽取 2 根的可能的事件总数为 10,它们的长度恰好相差 0.3m 的事件数为 2,分别是:2.5 和 2.8 , 2.6 和 2.9 ,所求概率为 0.2【例 5】( 2013 江苏) 现有某类病毒记作 X m Y n ,其中正整数 m , n(m ≤7, n ≤ 9)可以任意选取,则 m , n 都取到奇数的概率为 ________.20【答案】【解析】 基本事件共有 7×9= 63 种, m 可以取 1, 3, 5,7, n 可以取 1, 3,5, 7, 9. 所以 m ,n 都取到奇数共有 2020种,故所求概率为63.【例 6】( 2013 山东) 在区间 [- 3,3] 上随机取一个数 x ,使得 |x + 1|- |x - 2| ≥1成立的概率为 ________.【答案】13【解析】 当 x<- 1 时,不等式化为- x - 1+ x -2≥1,此时无解;当- 1≤x ≤2 时,不等式化为 x +1+ x -2≥1,解之得 x ≥1;当 x>2 时,不等式化为 x + 1- x +2≥1,此时恒成立, ∴|x + 1| - |x -2| ≥1的解集为 [ 1,+∞ ) . 在 [ -3, 3]上使不等式有解的区间为 [ 1,3] ,由几何概型的概率公式得 P = 3- 1 1 .3-(- 3) =3【例 7】( 2013 北京)下图是某市 3 月 1 日至 14 日的空气质量指数趋势图, 空气质量指数小于 100 表示空气质量优良, 空气质量指数大于 200 表示空气重度污染. 某人随机选择 3 月 1 日至 3 月 13 日中的某一天到达该市, 并停留 2 天.( 1)求此人到达当日空气重度污染的概率;( 2)设 X 是此人停留 期间空气质量优良的天数,求 X 的分布列与数学期望;( 3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明 )【答案】 132; 1213; 3 月 5 日【解析】 设 Ai 表示事件“此人于3 月 i 日到达该市” (i = 1, 2, , 13) .1(i ≠j) .根据题意, P(Ai) = ,且 Ai ∩Aj =13( 1)设 B 为事件“此人到达当日空气重度污染”,则B =A5∪A8.2所以 P(B) =P(A5∪A8)= P(A5) + P(A8) = .13( 2)由题意可知, X 的所有可能取值为 0,1, 2,且P(X= 1) =P(A3∪A6∪A7 ∪A11)4=P(A3) + P(A6) + P(A7) + P(A11) =13,P(X= 2) =P(A1∪A2∪A12∪A13)4=P(A1) + P(A2) + P(A12) + P(A13) =13,5P(X= 0) = 1- P(X= 1) - P(X= 2) =13.所以 X 的分布列为X 0 1 2P 5 4 4 13 13 135 4 4 12故 X 的期望 E(X) =0×+1×+2×= .13 13 13 13( 3)从 3 月 5 日开始连续三天的空气质量指数方差最大.【例 8】(2013 福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为2,中奖可以3 获得 2 分;方案乙的中奖率为2,中奖可以获得 3 分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中5奖与否互不影响,晚会结束后凭分数兑换奖品.( 1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求 X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.2 2【解析】方法一:( 1)由已知得,小明中奖的概率为3,小红中奖的概率为5,且两人中奖与否互不影响.记“这2 人的累计得分X≤3”的事件为A,则事件 A 的对立事件为“ X=5”,2 2 411因为 P(X=5) =×=,所以P(A)=1-P(X=5)=,3 5 151511即这两人的累计得分X≤3的概率为15.( 2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1) ,选择方案乙抽奖累计得分的数学期望为E(3X2) .2 2由已知可得,X1~ B 2,3, X2~ B 2,5,2 42 4所以 E(X1) =2×3=3, E(X2) =2×5=5,812从而 E(2X1) = 2E(X1) =, E(3X2) = 3E(X2) =.3 5因为 E(2X1)>E(3X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:( 1)由已知得,小明中奖的概率为2,小红中奖的概率为2,且两人中奖与否互不影响.35记“这两人的累计得分 X ≤3”的事件为 A ,则事件 A 包含有“ X =0”“ X =2”“ X =3”三个两两互斥的事件,2 2 1 2 2 22 22, 因为 P(X = 0) = 1-× 1- = ,P(X = 2) = × 1-= ,P(X =3) = 1- × = 15 355355 3 511所以 P(A) = P(X = 0) + P(X = 2) + P(X = 3) =15,11即这两人的累计得分 X ≤3的概率为 15.( 2)设小明、小红都选择方案甲所获得的累计得分为 X1,都选择方案乙所获得的累计得分为X2,则 X1, X2 的分布列如下:X1 0 2 4 X2 0 3 6 P14 4 P912 4 9 9 9 2525251448所以 E(X1) =0× 9+2× 9+4× 9= 3,E(X2) =0× 9 +3× 12+6× 4 = 12.25 25 25 5因为 E(X1)>E(X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例 9】( 2013 浙江) 设袋子中装有 a 个红球, b 个黄球, c 个蓝球,且规定:取出一个红球得1 分,取出一个黄球得2 分,取出一个蓝球得3 分.( 1)当 a = 3, b = 2,c = 1 时,从该袋子中任取 (有放回,且每球取到的机会均等 )2 个球,记随机变量 ξ为取出此 2球所得分数之和,求 ξ的分布列;( 2)从该袋子中任取 (每球取到的机会均等 )1 个球,记随机变量 η为取出此球所得分数. 若 E η= 5,D η=5,求 a ∶ b ∶ c.3 9【答案】 3∶ 2∶ 1【解析】( 1)由题意得,ξ= 2, 3, 4, 5, 6.P(ξ= 2) = 3×3 1= ,6×6 4 P(ξ= 3) =2×3×2= 1,6×6 32×3×1+2×2 5 P(ξ= 4) = 6×6 = 18. P(ξ= 5) = 2×2×1 16×6= 9,P(ξ= 6) = 1×1 1,= 366×6 所以 ξ 的分布列为ξ 2 3 4 5 6 P1 1 5 1 1 4318936( 2)由题意知 η 的分布列为η 1 2 3Pa b ca +b +c a + b + ca +b +ca 2b3c5所以 E η= a + b + c + a +b + c + a +b + c = 3,5 a 5 b 5c5D η= 1- 32· a + b + c +2- 32· a + b + c +3- 32· a + b + c = 9, 2a - b - 4c = 0,解得 a = 3c , b = 2c , 化简得a + 4b -11c = 0,故 a ∶b ∶c =3∶2∶1.【例 10】( 2009 北京理) 某学生在上学路上要经过 4 个路口, 假设在各路口是否遇到红灯是相互独立的,遇到红灯的 概率都是 1,遇到红灯时停留的时间都是2min.3( 1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; ( 2)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望 .【答案】4;327 8【解析】 本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础 知识,考查运用概率与统计知识解决实际问题的能力.( 1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件 A ,因为事件 A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为PA11111 4 .333 27( 2)由题意,可得可能取的值为 0,2, 4, 6,8(单位: min ) .事件“2k ”等价于事件“该学生在路上遇到k 次红灯”( k 0, 1, 2,3, 4),k 4 k∴ P2kC k412k 0,1,2,3,4,33∴即 的分布列是0 246 8P16 32 8818181278181∴ 的期望是 E16 32 88 1 82468.818127 81813【课堂练习】1.( 2013 广东) 已知离散型随机变量X 的分布列为X 1 2 3P3 3 151010则 X 的数学期望 E(X) = () 35A. 2B . 2 C. 2 D . 32.( 2013 陕西) 如图,在矩形区域 ABCD 的 A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区 域 ADE 和扇形区域 CBF( 该矩形区域内无其他信号来源,基站工作正常 ).若在该矩形区域内随机地选一地点,则该地点无 信号的概率是 ( ).A .1- π π π D . π4 B . -1 B .2- 42 23.在棱长分别为 1, 2, 3 的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离 大于 3的概率为 ()4 3 2 3A .7B . 7C . 7D . 144.( 2009 安徽理) 考察正方体 6 个面的中心,甲从这 6 个点中任意选两个点连成直线,乙也从这6 个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于12 34?BA .B .C .D .75757575?F?C?D? E? A5.( 2009 江西理) 为了庆祝六一儿童节,某食品厂制作了3 种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5 袋,能获奖的概率为()3133 C .4850A .B .81D ..8181816.( 2009 辽宁文) ABCD 为长方形, AB = 2, BC =1,O 为 AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于 1 的概率为A .B . 1C .8D . 18447.( 2009 上海理) 若事件 E 与 F 相互独立,且 P EP F1 的值等于,则P EI F4A . 01 C .11B .4D .1628.( 2013 广州) 在区间 [1,5] 和[2, 4]上分别取一个数,记为a ,b ,则方程 x 2 y 22+b 2= 1 表示焦点在 x 轴上且离心率小a于 3的椭圆的概率为 ()2C .1711531A .2B . 3232D . 321, 2,3,9.已知数列 {a } 满足 a = a+ n - 1(n ≥2,n ∈ N),一颗质地均匀的正方体骰子,其六个面上的点数分别为nnn -14, 5, 6,将这颗骰子连续抛掷三次,得到的点数分别记为 a , b , c ,则满足集合 {a ,b , c} = {a 1, a 2, a 3}(1 ≤a i ≤6,i = 1, 2, 3)的概率是 ()1B . 1C . 1D . 1A .72 36 24 1210.( 2009 湖北文) 甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、 0.6、 0.5,则三人都达标的概率是,三人中至少有一人达标的概率是 。

(完整版)概率专题历年高考真题汇总(小题)(解析版)

(完整版)概率专题历年高考真题汇总(小题)(解析版)

概率专题历年高考真题汇总(小题)1.(2013 ·新课标Ⅰ, 3)为认识某地区的中小学生的视力状况,拟从该地区的中小学生中抽取部分学生进行检查,早先已认识到该地区小学、初中、高中三个学段学生的视力状况有较大差异,而男女生视力状况差异不大.在下面的抽样方法中,最合理的抽样方法是().A .简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样剖析:因为学段层次差异较大,所以在不相同学段中抽取宜用分层抽样.应选 C.2. ( 2017 ·新课标Ⅱ, 6)安排 3 名志愿者完成 4 项工作,每人最少完成 1 项,每项工作由 1 人完成,则不同的安排方式共有()A. 12 种B. 18 种C. 24 种D. 36 种【答案】 D 剖析:解法一:将三人分成两组,一组为三个人,有3种可能,别的一组从三人在选调一人,A3 6有 C31 3 种可能;两组前后在排序,在对位找工作即可,有A22 2 种可能;共计有 36 种可能 .解法二:工作分成三份有 C42 6 种可能,在把三组工作分给 3 个人有 A33 6 可能,共计有 36 种可能 .3.( 2018 ·新课标Ⅱ,理 8)我国数学家陈景润在哥德巴赫猜想的研究中获取了世界当先的成就.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如 30 723 .在不高出30 的素数中,随机采用两个不相同的数,其和等于30 的概率是()A.1B.1C.1D.1 12141518【答案】 C 剖析: 30 以内的素数有 10 个,满足和为30 的素数对有 3 对,概率为331245,选 C. C10154.( 2017·新课标Ⅰ, 2)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.1B.πC.1D.π4824【答案】 B 剖析:设正方形边长为 2 ,则圆半径为 1 ,则正方形的面积为 2 2 4 ,圆的面积为π12π,图πππ,应选 B ;中黑色部分的概率为,则此点取自黑色部分的概率为2248【解题技巧】解几何概型的试题,一般先求出实验的基本事件组成的地区长度(面积或体积),再求出事件组成的地区长度(面积或体积),最后代入几何概型的概率公式即可.几何概型计算公式:P(A)=组成事件 A的地区长度面积或体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典高考概率类型题总结一、超几何分布类型二、二项分布类型三、超几何分布与二项分布的对比四、古典概型算法五、独立事件概率分布之非二项分布(主要在于如何分类)六、综合算法一、超几何分布1.甲、乙两人参加普法知识竞赛,共设有10个不同的题目,其中选择题6个,判断题4个.(1)若甲、乙二人依次各抽一题,计算:①甲抽到判断题,乙抽到选择题的概率是多少?②甲、乙二人中至少有一人抽到选择题的概率是多少?(2)若甲从中随机抽取5个题目,其中判断题的个数为X,求X的概率分布和数学期望.二、二项分布1.某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在的地区附近有A,B,C三家社区医院,并且他们对社区医院的选择是相互独立的.(1)求甲、乙两人都选择A社区医院的概率;(2)求甲、乙两人不选择同一家社区医院的概率;(3)设4名参加保险人员中选择A社区医院的人数为X,求X的概率分布和数学期望.2.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是13.记这4盏灯中出现红灯的数量为X ,当这排装饰灯闪烁一次时: (1)求X =2时的概率; (2)求X 的数学期望.解 (1)依题意知:X =2表示4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯,而每盏灯出现红灯的概率都是23, 故X =2时的概率P =C 24⎝⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=827. (2)法一 X 的所有可能取值为0,1,2,3,4,依题意知 P(X =k )=C k 4⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫134-k(k =0,1,2,3,4). ∴X 的概率分布列为∴数学期望E(X)=0×8+1×81+2×81+3×81+4×81=3.三、超几何分布与二项分布的对比有一批产品,其中有12件正品和4件次品,从中有放回地依 次任取3件,若X 表示取到次品的次数,则P (X )= . 辨析:1.有一批产品,其中有12件正品和4件次品,从中不放回地依 次任取3件,若X 表示取到次品的件数,则P (X )=2. 有一批产品,其中有12件正品和4件次品,从中有放回地依 次任取件,第k 次取到次品的概率,则P (X )=3.有一批产品,其中有12件正品和4件次品,从中不放回地依 次任取件,第k 次取到次品的概率,则P (X )=四、古典概型算法1.一个均匀的正四面体的四个面分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体底面上的数字分别为x 1,x 2,记X=(x 1-2)2+(x 2-2)2. (1)分别求出X 取得最大值和最小值的概率; (2)求X 的概率分布及方差.2.(2012·江苏高考)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时ξ=1. (1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ).3.某市公租房的房源位于A ,B ,C 三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中: (1)恰有2人申请A 片区房源的概率;(2)申请的房源所在片区的个数X 的概率分布与期望.4.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S.(1)记“使得m +n =0成立的有序数组(m ,n)”为事件A ,试列举A 包含的基本事件; (2)设ξ=m 2,求ξ的概率分布表及其数学期望E(ξ).解 (1)由x 2-x -6≤0,得-2≤x ≤3, 即S ={x|-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0,所以A 包含的基本事件为(-2,2),(2,-2), (-1,1),(1,-1),(0,0).(2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有P(ξ=0)=16,P(ξ=1)=26=13,P(ξ=4)=26=13,P(ξ=9)=16.故ξ的概率分布表为所以E(ξ)=0×16+1×13+4×13+9×16=196.5.在高中“自选模块”考试中,某考场的每位同学都选了一道数学题,第一小组选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况 .(1)求选出的4人均为选《矩阵变换和坐标系与参数方程》的概率;(2)设X为选出的4个人中选《数学史与不等式选讲》的人数,求X的分布列和数学期望.解(1)设“从第一小组选出的2人均选《矩阵变换和坐标系与参数方程》”为事件A,“从第二小组选出的2人均选《矩阵变换和坐标系与参数方程》”为事件B.由于事件A、B相互独立,所以P(A)=C25C26=23,P(B)=C24C26=25,所以选出的4人均选《矩阵变换和坐标系与参数方程》的概率为P(A·B)=P(A)·P(B)=23×25=415.(2)X可能的取值为0,1,2,3,则P(X=0)=415,P(X=1)=C25C26·C12·C14C26+C15C26·C24C26=2245,P(X=3)=C15C26·1C26=145.P(X=2)=1-P(X=0)-P(X=1)-P(X=3)=2 9.故X的分布列为所以X的数学期望E(X)=0×15+1×45+2×9+3×45=1 (人).6.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.(I)求取出的4个球均为黑色球的概率;(II)求取出的4个球中恰有1个红球的概率;(III)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.解:(I)设“从甲盒内取出的2个球均黑球”为事件A,“从乙盒内取出的2个球为黑球”为事件B.∵事件A,B相互独立,且.∴取出的4个球均为黑球的概率为P(AB)=P(A)P(B)=.(II)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红红,1个是黑球”为事件C,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D.∵事件C,D互斥,且.∴取出的4个球中恰有1个红球的概率为P(C+D)=P(C)+P(D)=.(III)解:ξ可能的取值为0,1,2,3.由(I),(II)得,又,从而P (ξ=2)=1﹣P (ξ=0)﹣P (ξ=1)﹣P (ξ=3)=.ξ的分布列为ξ的数学期望.五、独立事件概率分布之非二项分布(主要在于如何分类)1.开锁次数的数学期望和方差有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数的数学期望和方差.分析:求时,由题知前次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如,发现规律后,推广到一般.解:的可能取值为1,2,3,…,n .;所以的分布列为:ξ)(k P =ξ1-k 3,2,1=ξξ;12112121)111()11()3(;111111)11()2(,1)1(nn n n n n n n n P n n n n n n P nP =-⋅--⋅-=-⋅--⋅-===-⋅-=-⋅-====ξξξnk n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-⋅+-+---⋅--⋅-=+-⋅+----⋅--⋅-== ξξ;2. 射击练习中耗用子弹数的分布列、期望及方差某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹后才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数的分布列,并求出的期望与方差(保留两位小数).分析:根据随机变量不同的取值确定对应的概率,在利用期望和方差的定义求解. 解: 该组练习耗用的子弹数为随机变量,可以取值为1,2,3,4,5.=1,表示一发即中,故概率为=2,表示第一发未中,第二发命中,故=3,表示第一、二发未中,第三发命中,故=4,表示第一、二、三发未中,第四发命中,故=5,表示第五发命中,故211131211+=⋅++⋅+⋅+⋅=n n n n n n E ξnn n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222⋅+-++⋅+-++⋅+-+⋅+-+⋅+-= ξ⎥⎦⎤⎢⎣⎡⋅+++++++-++++=n n n n n n 22222)21()321)(1()321(1 1214)1(2)1()12)(1(611222-=⎥⎦⎤⎢⎣⎡+++-++=n n n n n n n n n ξ ξ ξ E ξ D ξ ξ ξ ;8.0)1(==ξ P ξ ;16.08.02.08.0)8.01()2(=⨯=⨯-==ξ P ξ ;032.08.02.08.0)8.01()3(22=⨯=⨯-==ξ P ξ 0064.08.02.08.0)8.01()4(33=⨯=⨯-==ξ P ξ因此,的分布列为3. 在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A 处的命中率q 为0.25,在B 处的命中率为q ,该同学选择先在A 处投一球,以后都在B 处投,用表示该同学投篮训练结束后所得的总分,其分布列为(1)求q 的值;(2)求随机变量的数学期望E ;(3)试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.解:(1)设该同学在A 处投中为事件A ,在B 处投中为事件B ,则事件A ,B 相互独立,且P (A )=0.25,,P (B )= q ,.根据分布列知:=0时=0.03,所以,q =0.8.(2)当=2时,P 1==0.75q ()×2=1.5q ()=0.24.当=3时,P 2 ==0.01,.0016.02.01)8.01()5(44==⋅-==ξ P ξ 0016.050064.04032.0316.028.01⨯+⨯+⨯+⨯+⨯=ξ E ,25.1008.00256.0096.032.08.0 =++++=0016.0)25.15(0064.0)25.14(032.0)25.13(16.0)25.12(8.0)25.11(22222⨯-+⨯-+⨯-+⨯-+⨯-=ξ D .31.00225.00484.0098.009.005.0 =++++=12ξ2ξξ()0.75P A =22()1P B q =-ξ22()()()()0.75(1)P ABB P A P B P B q ==-210.2q -=2ξ)()()(B B A P B B A P B B A B B A P +=+)()()()()()(B P B P A P B P B P A P +=221q -221q -ξ22()()()()0.25(1)P ABB P A P B P B q ==-当=4时,P 3==0.48, 当=5时,P 4==0.24.所以随机变量的分布列为:随机变量的数学期望. (3)该同学选择都在B 处投篮得分超过3分的概率为;该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72. 由此看来该同学选择都在B 处投篮得分超过3分的概率大.4. 某科技公司遇到一个技术难题,紧急成立甲、乙两个攻关小组,按要求各自单独进行为期一个月的技术攻关, 同时决定对攻关期满就攻克技术难题的小组给予奖励.已知这 些技术难题在攻关期满时被甲小组攻克的概率为32被乙小组攻 克的概率为43. (1)设X 为攻关期满时获奖的攻关小组数,求X 的概率分布及 V(X);(2)设Y 为攻关期满时获奖的攻关小组数的2倍与没有获奖的 攻关小组数之差,求V(Y).5. 某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值. (Ⅰ)求的分布列及数学期望;(Ⅱ)记“函数在区间上单调递增”为事件,求事件ξ22()()()()0.75P ABB P A P B P B q ==ξ()()()P ABB AB P ABB P AB +=+222()()()()()0.25(1)0.25P A P B P B P A P B q q q =+=-+ξξ00.0320.2430.0140.4850.24 3.63E ξ=⨯+⨯+⨯+⨯+⨯=()P BBB BBB BB ++()()()P BBB P BBB P BB =++222222(1)0.896q q q =-+=0.4,0.5,0.6ξξ2()31f x x x ξ=-+[2,)+∞A A的概率. 分析:(2)这是二次函数在闭区间上的单调性问题,需考查对称轴相对闭区间的关系,就本题而言,只需即可.解:(1)分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点”为事件. 由已知相互独立,.客人游览的景点数的可能取值为0,1,2,3. 相应的,客人没有游览的景点数的可能取值为3,2,1,0,所以的可能取值为1,3.所以的分布列为(Ⅱ)解法一:因为所以函数 上单调递增,要使上单调递增,当且仅当从而 解法二:的可能取值为1,3.当时,函数上单调递增,当时,函数上不单调递增.所以6.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.322ξ≤123,,A A A 123,,A A A 123()0.4,()0.5,()0.6P A P A P A ===ξ123123(3)()()P P A A A P A A A ξ==+123123()()()()()()20.40.50.60.24P A P A P A P A P A P A =+=⨯⨯⨯=(1)10.240.76P ξ==-=ξ()10.7630.24 1.48E ξ=⨯+⨯=2239()()1,24f x x ξξ=-+-23()31[,)2f x x x ξξ=-++∞在区间()[2,)f x +∞在342,.23ξξ≤≤即4()()(1)0.76.3P A P P ξξ=≤===ξ1ξ=2()31[2,)f x x x =-++∞在区间3ξ=2()91[2,)f x x x =-++∞在区间()(1)0.76.P A P ξ===0.76(1)求乙至多击中目标2次的概率;(2)记甲击中目标的次数为Z ,求Z 的分布列、数学期望和标准差. 解 (1)甲、乙两人射击命中的次数服从二项分布,故乙至多击中目标2次的概率为1-C 33⎝ ⎛⎭⎪⎫233=1927. (2)P(Z =0)=C 03⎝ ⎛⎭⎪⎫123=18; P(Z =1)=C 13⎝ ⎛⎭⎪⎫123=38; P(Z =2)=C 23⎝⎛⎭⎪⎫123=38; P(Z =3)=C 33⎝ ⎛⎭⎪⎫123=18. Z 的分布列如下表:E(Z)=0×18+1×8+2×8+3×8=2,D(Z)=⎝ ⎛⎭⎪⎫0-322×18+⎝ ⎛⎭⎪⎫1-322×38+⎝ ⎛⎭⎪⎫2-322×38+⎝ ⎛⎭⎪⎫3-322×18=34,∴D (Z )=32.7.某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4.经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75. (1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望与方差. 解 分别记甲、乙、丙经第一次烧制后合格为事件A 1、A 2、A 3.(1)设E 表示第一次烧制后恰好有一件合格,则 P(E)=P(A 1A2A 3)+P(A 1A 2A 3)+P(A1A 2A 3)=0.5×0.4×0.6+0.5×0.6×0.6+0.5×0.4×0.4=0.38.(2)因为每件工艺品经过两次烧制后合格的概率均为p =0.3,所以ξ~B(3,0.3). 故E(ξ)=np =3×0.3=0.9, V(ξ)=np(1-p)=3×0.3×0.7=0.63.8.某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。

相关文档
最新文档