九年级数学旋转经典题含答案

合集下载

九年级数学旋转经典题含答案

九年级数学旋转经典题含答案

一、在△ABC中,∠CAB=700,在同一平面内,△将ABC试点A旋试到△AB′C′的位置,使得CC′∥AB,试∠BAB′=()A. 300 B. 350 C. 400 D. 500二、△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP'重合,若是AP=3,那么线段PP'的长等于_________________________.3、在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,连接BB′,那么BB′的长度为___4、已知∠AOB=90°,点A绕点0顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,…,连接AA1,AA2,AA3…,依此作法,那么∠AA n A n+1等于_____度.(用含n的代数式表示,n为正整数)五、已知△ABC是正三角形,OC⊥OB,OC=OB,将△ABC绕点O按逆时针方向旋转,使得OA与OC重合,取得△OCD,那么旋转的角度是_____________________.六、如图,P点是正方形ABCD内一点,△ABP经旋转后与△CBP'重合,旋转中心是点_____________,旋转了____________度,假设PB=3,那么△PBP/ 面积是_______________.7、如图,在平面内将Rt△ABC绕着直角极点C逆时针旋转90°取得Rt△EFC,假设AB=√5,BC=1,那么线段BE的长为_____________.八、在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转必然角度后取得△EDC,现在点D在AB边上,斜边DE交AC边于点F.那么DC的长____________;旋转的角度_______________;图中阴影部份的面积________________..九、将边长为√3的正方形ABCD绕点A逆时针方向旋转30°后取得正方形A′B′C′D′,那么图中阴影部份面积为______10、如图是由三个叶片组成的,绕点O旋转120°后能够和自身重合,假设每一个叶片的面积为4cm2,∠AOB 为120°,那么图中阴影部份的面积之和为 cm2.如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP沿顺时针方向旋转,使点A与点C重合,这时P点旋转到G点.(1)请画出旋转后的图形,并说明此时△ABP以点B为旋转中心旋转了多少度?(2)求出PG的长度;(3)请你猜想△PGC的形状,并说明理由.答案解:(1)旋转后的△BCG如图所示,旋转角为∠ABC=90°;(2)连接PG,由旋转的性质可知BP=BG,∠PBG=∠ABC=90°,∴△BPG为等腰直角三角形,又BP=BG=2,∴PG==2;(3)由旋转的性质可知CG=AP=1,已知PC=3,由(2)可知PG=2,∵PG2+CG2=(2)2+12=9,PC2=9,∴PG2+CG2=PC2,∴△PGC为直角三角形.马上分享给同窗C 2、3倍根号2 3、根号3 4 180度减去2的n次幂分之90 五、150度六、B,90 45 7、3 八、2分之根号3 九、根号3 10、5。

(必考题)初中九年级数学上册第二十三章《旋转》经典测试题(含答案解析)

(必考题)初中九年级数学上册第二十三章《旋转》经典测试题(含答案解析)

一、选择题1.下面四个图案是常用的交通标志,其中为中心对称图形的是( )A .B .C .D .C 解析:C【分析】根据中心对称图形的概念进行判断即可;【详解】A 、图形旋转180度之后不能与原图形重合,故不是中心对称图形;B 、图形旋转180度之后不能与原图形重合,故不是中心对称图形;C 、图形旋转180度之后能与原图形重合,故是中心对称图形;D 、图形旋转180度之后不能与原图形重合,故不是中心对称图形;故选:C .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合;2.如图,在ABC 中,75CAB ∠=︒,在同一平面内,将ABC 绕点A 旋转到AB C ''△的位置,使得CC //AB ',则BAB '∠=( )A .30B .35︒C .40︒D .50︒A解析:A【分析】 旋转中心为点A ,B 与B′,C 与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB ,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′,即可求出∠BAB′的度数.【详解】解:∵CC′∥AB ,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C 、C′为对应点,点A 为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°-2∠C′CA=30°.故选:A .【点睛】本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.3.道路千万条,安全第一条,下列交通标志是中心对称图形的为( )A .B .C .D .D解析:D【分析】根据中心对称图形定义可得答案.【详解】解:A 、不是中心对称图形,故此选项不合题意;B 、不是中心对称图形,故此选项不合题意;C 、不是中心对称图形,故此选项不合题意;D 、是中心对称图形,故此选项符合题意;故选:D .【点睛】本题考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.4.如图,在平面直角坐标系中,点A 的坐标为(3,1)-,将OA 绕原点O 按顺时针方向旋转90︒得到OA ',则点A '的坐标为( )A .(3,1)B .(3,1)-C .(1,3)--D .(1,3)D解析:D【分析】 根据绕原点顺时针旋转90︒的点坐标变换规律即可得.【详解】绕原点顺时针旋转90︒的点坐标变换规律:先将横、纵坐标互换位置,再将纵坐标变为相反数,A-,(3,1)A,(1,3)故选:D.【点睛】本题考查了绕原点顺时针旋转90︒的点坐标变换规律,熟练掌握绕原点顺时针旋转90︒的点坐标变换规律是解题关键.5.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.D解析:D【分析】根据轴对称图形的定义和中心对称图形的定义逐一判断即可.【详解】解:A选项是轴对称图形,不是中心对称图形,故本选项不符合题意;B选项不是轴对称图形,是中心对称图形,故本选项不符合题意;C选项不是轴对称图形,是中心对称图形,故本选项不符合题意;D选项既是轴对称图形,也是中心对称图形,故本选项符合题意.故选D.【点睛】此题考查的是轴对称图形的识别和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.6.下列图形:线段、等边三角形、平行四边形、矩形、菱形、正方形、直角梯形,既是轴对称图形又是中心对称图形的个数是()A.6 B.5 C.4 D.3C解析:C【分析】根据轴对称图形与中心对称图形的定义解答即可.【详解】解:线段,既是中心对称图形,又是轴对称图形;等边三角形,不是中心对称图形,是轴对称图形;平行四边形,是中心对称图形,不是轴对称图形;矩形,既是中心对称图形,又是轴对称图形;菱形,既是中心对称图形,又是轴对称图形;正方形,既是中心对称图形,又是轴对称图形;直角梯形,既不是中心对称图形,又不是轴对称图形;所以,既是中心对称图形,又是轴对称图形的有:线段,矩形,菱形,正方形共4个.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 7.如图,将△ABC 绕点C (0,-1)旋转180°得到△A′B′C ,设点A 的坐标为(-3,-4)则点A′的坐标为A .(3,2)B .(3,3)C .(3,4)D .(3,1)A解析:A【解析】 试题分析:根据A 与A′关于C 点对称,设A′的坐标为(a ,b ),可知302a -+=,412b -+=-,解得a=3,b=2,因此可知A′点的坐标为(3,2). 故选A考点:中心对称8.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后再向下平移2个单位,则A 点的对应点A′的坐标为( )A .(﹣4,﹣23B .(﹣4,﹣3C .(﹣2,﹣3)D .(﹣2,﹣23)D解析:D【解析】 解:作AD ⊥BC ,并作出把Rt △ABC 先绕B 点顺时针旋转180°后所得△A 1BC 1,如图所示.∵AC =2,∠ABC =30°,∴BC =4,∴AB 3∴AD =AB AC BC ⋅=3243∴BD =2AB BC 223().∵点B 坐标为(1,0),∴A 点的坐标为(4,3).∵BD =3,∴BD 1=3,∴D 1坐标为(﹣2,0),∴A 1坐标为(﹣2,﹣3).∵再向下平移2个单位,∴A ′的坐标为(﹣2,﹣3﹣2).故选D .点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.9.如图,Rt OCB ∆的斜边在y 轴上,3OC =,含30︒角的顶点与原点重合,直角顶点C 在第二象限,将Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',则B 点的对应点B ′的坐标是( )A .(3,1)-B .(1,3)-C .(2,0)D .(3,0)A解析:A【分析】 如图,利用含30度的直角三角形三边的关系得到1BC =,再利用旋转的性质得到3,1,90OC OC B C BC B C O BCO ====∠''''=='∠︒,然后利用第四象限点的坐标特征写出点B ′的坐标.【详解】如图,在Rt OCB ∆中,30BOC ∠=︒,333133BC OC ∴===, Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',3,1,90OC OC B C BC B C O BCO ∴====''''∠'=∠=︒,∴点B ′的坐标为(3,1)-.故选A .本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30456090180︒︒︒︒︒,,,,. 10.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .D解析:D【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、是轴对称图形,但不是中心对称图形,故本选项错误;C 、是轴对称图形,但不是中心对称图形,故本选项错误;D 、既是轴对称图形,又是中心对称图形,故本选项正确.故选D .二、填空题11.如图,在平面直角坐标系xOy 中,若点A 的坐标为(3,33),经过点A ,作AB x ⊥轴于点B ,将ABO 绕点B 逆时针旋转60︒得到CBD ,则点C 的坐标为______,D 点坐标为______.()【分析】如图作CE ⊥x 轴于E 点过点D 作DF ⊥x 轴于F 根据A 点坐标可得OBAB 的长利用旋转的性质得到BC =BABD=OB ∠ABC =60°∠OBD=60°则∠CBE =30°然后根据含30°角的直角三解析:33,322⎛⎫-⎪⎝⎭(32,332-) 【分析】 如图,作CE ⊥x 轴于E 点,过点D 作DF ⊥x 轴于F ,根据A 点坐标可得OB 、AB 的长,利用旋转的性质得到BC =BA ,BD=OB ,∠ABC =60°,∠OBD=60°,则∠CBE =30°,然后根据含30°角的直角三角形三边的关系,在Rt △CBE 中计算出CE 和BE 的长,进而求出OE 的长,从而可得到C 点坐标;根据等边三角形的性质可得∠ODF=30°,根据含30°角的直角三角形的性质求出DF 、OF 的长即可得得D 坐标. 【详解】如图,作CE x ⊥于点E ,∵(3,33)A ,AB x ⊥轴,∴33AB =OB=3,由旋转性质得:33BC AB ==60ABC ∠=︒,BD=OB=3,∠OBD=60°,∴30CBE ∠=︒,∴CE=123322BC CE -92=, ∴32OE BE OB =-=, ∴33322C ⎛- ⎝. ∵∠OBD=60°,OB=BD ,∴△OBD 是等边三角形,∵DF ⊥x 轴,∴∠ODF=12∠ODB=30°, ∴OF=12OB=32,22OD OF -33 ∵将ABO 绕点B 逆时针旋转60︒得到CBD ,∴点D 在第四象限,∴点D 坐标为(32,332-), 故答案为:33,322⎛⎫- ⎪⎝⎭,(32,332-) 【点睛】本题考查了坐标与图形变换−旋转、等边三角形的判定与旋转及含30°角的直角三角形的旋转;图形或点旋转之后对应边相等、对应角相等;30°角所对的直角边等于斜边的一半;熟练掌握旋转的旋转是解题关键.12.有两个直角三角板,其中45E ∠=︒,30C ∠=︒,按图①的方式叠放,先将ABC 固定,再将AED 绕顶点A 顺时针旋转,使//BC DE (如图②所示),则旋转角BAD ∠的度数为______.【分析】先根据直角三角形的性质可得再根据平行线的性质可得然后根据直角三角形的性质即可得【详解】由题意得:和都是直角三角形故答案为:【点睛】本题考查了直角三角形的两锐角互余平行线的性质图形的旋转熟练掌解析:30【分析】先根据直角三角形的性质可得60B ∠=︒,再根据平行线的性质可得AD BC ⊥,然后根据直角三角形的性质即可得.【详解】由题意得:ABC 和ADE 都是直角三角形,30C ∠=︒,9060B C ∴∠=︒-∠=︒,//,BC DE AD DE ⊥,AD BC ∴⊥,9030BAD B ∴∠=︒-∠=︒,故答案为:30.【点睛】本题考查了直角三角形的两锐角互余、平行线的性质、图形的旋转,熟练掌握平行线的性质是解题关键.13.如图,在平面直角坐标系中,若△ABC ≌△DEF 关于点H 成中心对称,则对称中心H 点的坐标是_________.(2-1)【分析】连接对应点ADCF 根据对应点的连线经过对称中心则交点就是对称中心H 点在坐标系内确定出其坐标【详解】解:如图连接ADCF 则交点就是对称中心H 点观察图形可知H (2-1)故答案为:(2- 解析:(2,-1)【分析】连接对应点AD 、CF ,根据对应点的连线经过对称中心,则交点就是对称中心H 点,在坐标系内确定出其坐标.【详解】解:如图,连接AD 、CF ,则交点就是对称中心H 点.观察图形可知,H (2,-1).故答案为:(2,-1).【点睛】本题考查了中心对称的性质:对应点的连线经过对称中心,且被对称中心平分.确定H 点位置是解决问题的关键.14.如图,在边长为1的正方形网格中,()1,7A ,()5,5B ,()7,5C ,()5,1D .线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为______.或【分析】连接两对对应点分别作出连线的垂直平分线其交点即为所求【详解】解:如图所示旋转中心P 的坐标为(33)或(66)故答案为(33)或(66)【点睛】本题主要考查了利用旋转变换进行作图根据旋转的性解析:()3,3或()6,6【分析】连接两对对应点,分别作出连线的垂直平分线,其交点即为所求.【详解】解:如图所示,旋转中心P 的坐标为(3,3)或(6,6).故答案为(3,3)或(6,6).【点睛】本题主要考查了利用旋转变换进行作图,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.15.在平面直角坐标系中,△OAB 的位置如图所示,将△OAB 绕点O 顺时针旋转90°得△OA 1B 1;再将△OA 1B 1绕点O 顺时针旋转90°得△OA 2B 2;再将△OA 2B 2绕点O 顺时针旋转90°得△OA 3B 3;……依此类推,第2020次旋转得到△OA 2020B 2020,则项点A 的对应点A 2020的坐标是_______.(12)【分析】根据旋转的概率即可得出每旋转4次一个循环进而得到第2020次旋转得到△OA2020B2020则顶点A 的对应点A2020的坐标与点A4的坐标相同【详解】解:将△OAB 绕点O 顺时针旋转9 解析:(1,2)【分析】根据旋转的概率,即可得出每旋转4次一个循环,进而得到第2020次旋转得到△OA 2020B 2020,则顶点A 的对应点A 2020的坐标与点A 4的坐标相同.【详解】解:将△OAB 绕点O 顺时针旋转90°得△OA 1B 1;此时,点A 1的坐标为(2,-1); 再将△OA 1B 1绕点O 顺时针旋转90°得△OA 2B 2;此时,点A 2的坐标为(-1,2); 再将△OA 2B 2绕点O 顺时针旋转90°得△OA 3B 3;此时,点A 3的坐标为(-2,1); 再将△OA 3B 3绕点O 顺时针旋转90°得△OA 4B 4;此时,点A 4的坐标为(1,2); ∴每旋转4次一个循环,…依此类推,第2020次旋转得到△OA 2020B 2020,则顶点A 的对应点A 2020的坐标与点A 4的坐标相同,为(1,2);故答案为:(1,2).【点睛】本题考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.16.如图,小正方形方格的边长都是1,点A 、B 、C 、D 、O 都是小正方形的顶点.若COD 是由AOB 绕点O 按顺时针方向旋转一次得到的,则至少需要旋转______°.90【分析】由△COD 是由△AOB 绕点O 按顺时针方向旋转而得到再结合已知图形可知旋转的角度是∠BOD 的大小然后由图形即可求得答案【详解】解:∵△COD 是由△AOB 绕点O 按顺时针方向旋转而得∴OB=O 解析:90【分析】由△COD 是由△AOB 绕点O 按顺时针方向旋转而得到,再结合已知图形可知旋转的角度是∠BOD 的大小,然后由图形即可求得答案【详解】解:∵△COD 是由△AOB 绕点O 按顺时针方向旋转而得,∴OB=OD ,∴旋转的角度是∠BOD 的大小,∵∠BOD=90°,∴旋转的角度为90°,故答案为: 90.【点睛】本题考查了旋转的性质.解题的关键是理解△COD 是由△AOB 绕点O 按顺时针方向旋转而得的含义,找到旋转角.17.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________.-12【分析】两个点关于原点对称时它们的横坐标互为相反数纵坐标也互为相反数直接利用关于原点对称点的性质得出mn 的值进而得出答案【详解】∵点B(5)与点A (4)关于原点成中心对称∴∴∴故答案为:【点睛解析:-12【分析】两个点关于原点对称时,它们的横坐标互为相反数,纵坐标也互为相反数,直接利用关于原点对称点的性质得出m ,n 的值,进而得出答案.【详解】∵点B (3n +,5)与点A (4,m )关于原点成中心对称,∴34n +=-,5m =-,∴5m =-,7n =-,∴()5712m n +=-+-=-.故答案为:12-.【点睛】本题主要考查了关于原点对称点的坐标性质,正确记忆关于原点对称点的坐标性质是解题关键.18.如图,在△ABC 中,∠C =90°,BC =3,AC =5,点D 为线段AC 上一动点,将线段BD 绕点D 逆时针旋转90°,点B 的对应点为E ,连接AE ,则AE 长的最小值为_____.【分析】由旋转的性质可知BD =DE ∠C =90°则容易想到构造一个直角三角形与Rt △BCD 全等即过E 点作EH ⊥AD 于点H 设CD =x 则可用x 表示AE 的长从而判断什么时候AE 取得最小值【详解】设CD =x 则 解析:2【分析】由旋转的性质可知BD =DE ,∠C =90°,则容易想到构造一个直角三角形与Rt △BCD 全等,即过E 点作EH ⊥AD 于点H ,设CD =x ,则可用x 表示AE 的长,从而判断什么时候AE 取得最小值.【详解】设CD =x ,则AD =5﹣x ,过点E 作EH ⊥AD 于点H ,如图:由旋转的性质可知BD =DE ,∵∠ADE +∠BDC =90°,∠BDC +∠CBD =90°,∴∠ADE =∠CBD ,又∵∠EHD =∠C ,∴△BCD ≌△DHE ,∴EH =CD =x ,DH =BC =3.∵AD =5﹣x ,∴AH =AD ﹣DH =5﹣x ﹣3=2﹣x ,∵在Rt △AEH 中,AE 2=AH 2+EH 2=(2﹣x )2+x 2=2x 2+4x +4=2(x ﹣1)2+2,所以当x =1时,AE 2取得最小值2,即AE 取得最小值2.故答案是:2.【点睛】考查了全等三角形的性质和判定,解此题的关键灵活其相关的知识点进行推理证明. 19.如图,将矩形ABCD 绕点A 顺时针旋转90°后,得到矩形AB′C′D′,若CD =2,DA=2,那么CC′=____________.4【分析】根据矩形的性质可以得到再由旋转的性质可得最后根据勾股定理即可求得的长度【详解】解:∵CD=2DA=2∴根据矩形的性质可得由旋转的性质可得:∴故答案为4【点睛】本题考查旋转性质及勾股定理的综解析:4【分析】根据矩形的性质可以得到22AC =290AC CAC ︒'=∠=',,最后根据勾股定理即可求得 CC '的长度. 【详解】解:∵CD=2,DA=2,∴根据矩形的性质可得222222AC =+=由旋转的性质可得:290AC AC CAC ==∠'=︒',, ∴()()222222224CC AC AC '+=+'==,故答案为4.【点睛】本题考查旋转性质及勾股定理的综合应用,根据旋转性质得到直角三角形的基础上应用勾股定理求出边的长度是解题关键.20.点)1,5A a -与点()2,5B b +-关于原点对称,则(a +b )2 020=____ .【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出ab 的值然后相加计算即可得解【详解】∵点与点关于原点对称∴∴∴故答案为1【点睛】本题考查了关于原点对称的点的坐标关于原点的对称点横纵坐标都解析:1【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出a 、b 的值,然后相加计算即可得解.【详解】∵点()1,5A a -与点()2,5B b +-关于原点对称 ∴1+2=0a b -+ ∴1,2a b ==- ∴()()2 020 2 020211a b =++=- 故答案为1.【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数. 三、解答题21.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (1,0),B (4,0),C (5,2).将△ABC 绕着点A 按逆时针方向旋转90︒后得到△AB 1C 1. (1)请画出△AB 1C 1;(2)写出点B 1,C 1的坐标;(3)求出线段1BB 的长.解析:(1)见解析;(2)11(13)(14)B C -,,,;(3)1BB =32【分析】 (1)根据旋转的性质确定点B 1、C 1的位置,顺次连线即可得到图形;(2)依据(1)即可得到答案;(3)根据勾股定理计算得出答案.【详解】解:(1)如图(2)由(1)可知:11(13)(14)B C -,,,; (3)由勾股定理可得:22133BB=+=32. 【点睛】此题考查旋转画图,旋转的性质,根据点在直角坐标系中的位置确定坐标,勾股定理,正确画出旋转图形是解题的关键.22.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为(5,1)A -,(2,2)B -,(1,4)C -,请按下列要求画图:(1)画出ABC 关于x 轴对称得到的111A B C △,并写出1B 的坐标;(2)画出与ABC 关于原点O 成中心对称的222A B C △,并写出点2A 的坐标; (3)若x 轴上有一点P ,到1B 、2A 的距离和最短,在平面直角坐标系内确定点P 的位置,并求点P 的坐标.解析:(1)见解析,1B 的坐标为(-2,-2);(1)见解析,点2A 的坐标为(5,-1);(3)见解析.点P 的坐标为(223,0). 【分析】(1)分别作出A ,B ,C 三点关于x 轴对称的点A 1,B 1,C 1,顺次连接即可,从而可写出1B 的坐标;(2)分别作出A ,B ,C 三点原点O 对称的点A 2,B 2,C 2,顺次连接即可,写出点2A 的坐标;(3)作A 2点关于x 轴对称的点A 3,连接A 3B 1交x 轴于一点,这点即为所求.【详解】解:(1)如图所示,1B 的坐标为(-2,-2);(2)如图所示,点2A 的坐标为(5,-1);(3)如图所示,点P 即为所求作.设B 1A 3的解析式为y=kx+b ,由对称性知A 3的坐标为(5,1),把A 3(5,1),B 1(-2,-2)代入B 1A 3的解析式,得5122k b k b +=⎧⎨-+=-⎩, 解得,3787k b ⎧=⎪⎪⎨⎪=-⎪⎩∴B 1A 3的解析式为3877y x =-, 令y=0,则x=223, ∴点P 的坐标为(223,0). 【点睛】此题主要考查了复杂作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.23.如图,在平面直角坐标系中有一个直角AOB ,已知90OAC ∠=︒,且点B 的坐为()3,2(1)画出OAB 绕原点O 逆时针旋转90︒后的11OA B ;(2)点1B 关于原点O 对称的点2B 的坐标为________.解析:(1)作图见解析;(2)()22,3.B -【分析】(1)利用网格特点和旋转的性质,画出点A 、B 的对称点11,A B ,即可得到11OA B ; (2)先写出1B 点的坐标,然后根据关于原点对称的点的坐标特征写出点2B 的坐标.【详解】解:(1)如图,11OA B 为所作;(2)1B 点的坐标为(-2,3),所以点1B 关于原点O 对称的点2B 的坐标为(2,-3).【点睛】本题考查了作图旋转变换,根据旋转的性质,可以作相等的角,在角的边上截取相等的线段,找到对应点,顺次连接得出旋转后的图形.24.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-1,1)、B (-3,1)、C (-1,4).(1)画出△ABC 绕点C 顺时针旋转90°后得到的△A 1B 1C ;(2)画出△ABC 关于点P (1,0)对称的△A 2B 2C 2.解析:(1)见解析;(2)见解析【分析】(1)分别作出点A、B绕点C顺时针旋转90°后得到的对应点,再顺次连接可得;(2)分别作出点A、B、C关于点P的对称点,再顺次连接可得.【详解】(1)如图,△A1B1C即为所求;(2)如图,△A2B2C2即为所求.【点睛】本题考查了作图-旋转变换,中心对称等知识,解题的关键是熟练掌握旋转变换的定义和性质.网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的25.如图,在97A B C E F均为格点,请按要求仅用一把无刻度的直尺作图.顶点称为格点,,,,,(1)将ABC ∆绕点O 旋转180︒得到BAD ∆,请画出点O 和BAD ∆;(2)将格点线段EF 平移至格点线段MN (点,E F 的对应点分别为,M N ),使得MN 平分四边形ABCD 的面积,请画出线段MN ;(3)在线段AD 上找一点P ,使得AOP BOD ∠=∠,请画出点P .解析:(1)如图所示,见解析;(2)如图所示,见解析;(3)如图所示,见解析.【分析】(1)依据旋转方向,旋转角度以及旋转中心,即可得到△BAD .(2)依据平移的方向和距离,即可得到MN ;(3)延长QO 与AD 的交点即为点P .【详解】解:(1)如图所示.(2)如图所示;(3)如图所示.【点睛】本题主要考查了利用平移变换以及旋转变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照几何变换确定对应点后,再顺次连接对应点即可得到几何变换后的图形.26.如图,等边△ABC 中,P 是BC 边上任意一点,将△ABP 绕点A 逆时针旋转60°.(1)请用圆规和无刻度的直尺作出旋转后的三角形(保留作图痕迹,不写作法和证明); (2)记点P 的对应点为P ʹ,试说明△APP ʹ的形状,并说明理由解析:(1)见解析;(2)△APP ʹ是等边三角形,理由见解析.【分析】(1)根据图形旋转的性质画出旋转后的图形即可;(2)根据“含有60°角的等腰三角形是等边三角形”进行判断△APP ʹ的形状.【详解】解:(1)如图所示,(2)△APP ʹ是等边三角形,如图,连接PP ʹ,根据作图得∠PAP ʹ=60°,AP =AP ʹ,∴△APP ʹ是等边三角形.【点睛】本题考查的是作图-旋转变换和等边三角形的判断,熟知图形旋转的性质及等边三角形的判定定理是解答此题的关键.27.已知:点D 是等腰直角三角形ABC 斜边BC 所在直线上一点(不与点B 重合),连接AD .(1)如图1,当点D 在线段BC 上时,将线段AD 绕点A 逆时针方向旋转90︒得到线段AE ,连接CE .求证:,BD CE BD CE =⊥;(2)如图2,当点D 在线段BC 延长线上时,将线段AD 绕点A 逆时针方向旋转90︒得到线段AE ,连接CE ,请画出图形.上述结论是否仍然成立,并说明理由;(3)根据图2,请直接写出,,AD BD CD 三条线段之间的数量关系.解析:(1)证明见解析;(2)图见解析,结论仍然成立,理由见解析;(3)2222AD BD CD =+.【分析】(1)先根据等腰直角三角形的定义可得,90,45AB AC BAC ABC ACB =∠=︒∠=∠=︒,再根据旋转的性质可得,90AD AE DAE =∠=︒,然后根据角的和差可得BAD CAE ∠=∠,最后根据三角形全等的判定定理与性质、垂直的定义即可得证;(2)先根据旋转的定义画出图形,再根据旋转的性质可得,90AD AE DAE =∠=︒,然后根据角的和差可得BAD CAE ∠=∠,最后根据三角形全等的判定定理与性质、垂直的定义即可得证;(3)如图(见解析),先在Rt ADE △中,根据勾股定理可得222DE AD =,再在Rt CDE △中,根据勾股定理可得22222DE CE CD BD CD =+=+,由此即可得出答案.【详解】(1)ABC 是等腰直角三角形,,90,45AB AC BAC ABC ACB ∴=∠=︒∠=∠=︒,由旋转的性质得:,90AD AE DAE =∠=︒,BAC CAD DAE CAD ∴∠-∠=∠-∠,即BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴≅,,45BD CE ACE ABD ∴=∠=∠=︒,90BCE ACB ACE ∴∠=∠+∠=︒,BD CE ∴⊥;(2)成立,理由如下:由题意,画出图形如下:由旋转的性质得:,90AD AE DAE =∠=︒,BAC CAD DAE CAD ∴∠+∠=∠+∠,即BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴≅,,45BD CE ACE ABD ∴=∠=∠=︒,90BCE ACB ACE ∴∠=∠+∠=︒,BD CE ∴⊥;(3)如图,连接DE ,,90AD AE DAE =∠=︒,∴在Rt ADE △中,22222=+=DE AD AE AD ,由(2)可知,,BD CE BD CE =⊥,∴在Rt CDE △中,22222DE CE CD BD CD =+=+,2222AD BD CD ∴=+,即,,AD BD CD 三条线段之间的数量关系为2222AD BD CD =+.【点睛】本题考查了等腰直角三角形的性质、旋转的性质、勾股定理、三角形全等的判定定理与性质等知识点,熟练掌握旋转的性质是解题关键.28.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,平行四边形ABCD的顶点在格点上.仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:(1)将线段AD绕点A逆时针旋转90°,画出对应线段AE;(2)过点E画一条直线把平行四边形ABCD分成面积相等的两部分;(3)过点D画格点线段DP,使得DP⊥BC于点M,垂足为M;(4)过点M画线段MN,使得MN//AB,MN=AB.解析:(1)见详解;(2)见详解;(3)见详解;(4)见详解【分析】(1)根据旋转的性质直接作图即可;(2)连接AC、BD,交于一点O,然后连接EO即可得出图形;(3)把线段AD绕点D顺时针旋转90°,即可得到线段DP⊥BC,与BC交于一点M,即可得出答案;(4)根据平行四边形是中心对称图形,点O是对称中心,设EO与D点所在网格线交于点Q,连接MQ并延长交于AD于点N,MN即为所求.【详解】解:(1)(2)(3)如图所示:(4)根据平行四边形是中心对称图形,点O是对称中心,设EO与D点所在网格线交于点Q,连接MQ并延长交于AD于点N,MN即为所求,如图所示:【点睛】本题主要考查旋转的性质、平行四边形的性质及中心对称图形,熟练掌握旋转的性质、平行四边形的性质及中心对称图形是解题的关键.。

九年级数学上册第二十三章旋转必须掌握的典型题(带答案)

九年级数学上册第二十三章旋转必须掌握的典型题(带答案)

九年级数学上册第二十三章旋转必须掌握的典型题单选题1、如图,将△ABC绕点A逆时针旋转40°得到△ADE,AD与BC相交于点F,若∠E=80°且△AFC是以线段FC 为底边的等腰三角形,则∠BAC的度数为()A.55°B.60°C.65°D.70°答案:B分析:由旋转的性质得出∠E=∠C=80°,∠BAD=40°,由等腰三角形的性质得出∠C=∠AFC=80°,求出∠CAF=20°,根据∠BAC=∠BAD+∠CAF即可得出答案.解:∵将△ABC绕点A逆时针旋转40°得到△ADE,且∠E=80°,∴∠E=∠C=80°,∠BAD=40°,又∵△AFC是以线段FC为底边的等腰三角形,∴AC=AF,∴∠C=∠AFC=80°,∴∠CAF=180°−∠C−∠AFC=180°−80°−80°=20°,∴∠BAC=∠BAD+∠CAF=40°+20°=60°,故选:B.小提示:本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理,熟练掌握旋转的性质是解题的关键.2、如图,△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△EDC,使点B的对应点D恰好落在AB边上,AC、ED交于点F.若∠BCD=α,则∠EFC的度数是(用含α的代数式表示)()A.90°+12αB.90°−12αC.180°−32αD.32α答案:C分析:根据旋转的性质可得,BC=DC,∠ACE=α,∠A=∠E,则∠B=∠BDC,利用三角形内角和可求得∠B,进而可求得∠E,则可求得答案.解:∵将△ABC绕点C顺时针旋转得到△EDC,且∠BCD=α∴BC=DC,∠ACE=α,∠A=∠E,∴∠B=∠BDC,∴∠B=∠BDC=180°−α2=90°−α2,∴∠A=∠E=90°−∠B=90°−90°+α2=α2,∴∠A=∠E=α2,∴∠EFC=180°−∠ACE−∠E=180°−α−α2=180°−32α,故选:C.小提示:本题考查了旋转变换、三角形内角和、等腰三角形的性质,解题的关键是掌握旋转的性质.3、如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=70°且AD⊥BC于点F,则∠BAC的度数为()A.65°B.70°C.75°D.80°答案:C分析:由旋转的性质可得∠BAD=55°,∠E=∠ACB=70°,由直角三角形的性质可得∠DAC=20°,即可求解.解:∵将△ABC绕点A逆时针旋转55°得△ADE,∴∠BAD=55°,∠E=∠ACB=70°,∵AD⊥BC,∴∠DAC=20°,∴∠BAC=∠BAD+∠DAC=75°.故选C.小提示:本题考查了旋转的性质,掌握旋转的性质是本题的关键.4、下列四个银行标志中,是中心对称图形的标志是()A.B.C.D.答案:A分析:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.据此即可判断.解:A.是中心对称图形,故此选项符合题意;B.不是中心对称图形,故此选项不合题意;C.不是中心对称图形,故此选项不合题意;D.不是中心对称图形,故此选项不合题意;故选:A.小提示:本题主要考查了中心对称图形定义,关键是找出对称中心.5、如图,在ΔABC中,AB=2,BC=3.6,∠B=60∘,将ΔABC绕点A顺时针旋转度得到ΔADE,当点B的对应点D 恰好落在BC边上时,则CD的长为()A.1.6B.1.8C.2D.2.6答案:A分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.由旋转的性质可知,AD=AB,∵∠B=60∘,AD=AB,∴ΔADB为等边三角形,∴BD=AB=2,∴CD=CB−BD=1.6,故选A.小提示:此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB6、如图,将ΔABC绕点C顺时针旋转得到ΔDEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC答案:D分析:利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出∠A=∠EBC,所以选项D正确;再根据∠EBC=∠EBC+∠ABC=∠A+∠ABC=1800-∠ACB判断选项B不一定正确即可.解:∵ΔABC 绕点C 顺时针旋转得到ΔDEC ,∴AC=CD ,BC=EC ,∠ACD=∠BCE ,∴∠A=∠CDA=180°−∠ACD 2;∠EBC=∠BEC=180°−∠BCE 2,∴选项A 、C 不一定正确,∴∠A =∠EBC ,∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=1800-∠ACB 不一定等于900,∴选项B 不一定正确;故选D .小提示:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.7、如图,四边形ABCD 与四边形FGHE 关于点O 成中心对称,下列说法中错误的是( )A .AD//EF,AB//GFB .BO =GOC .CD =HE,BC =GH D .DO =HO答案:D分析:中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.A .∵AD 与EF 关于点O 成中心对称,∴AD //EF ,同理可得AB //GF ,正确;B .∵点B 与点G 关于点O 成中心对称,∴BO =GO ,正确;C .∵CD 与HE 关于点O 成中心对称,∴CD=HE,同理可得BC=GH,正确;D.∵点D与点E关于点O成中心对称,∴DO=EO,∴DO=HO错误,故选:D.小提示:本题考查中心对称图形的性质,是基础考点,掌握相关知识是解题关键.8、某校举办了“送福迎新春,剪纸庆佳节”比赛.以下参赛作品中,是中心对称图形的是().A.B.C.D.答案:D解:选项A,B,C中的图形不是中心对称图形,选项D中的图形是中心对称图形,故选D小提示:本题考查的是中心对称图形的识别,中心对称图形的定义:把一个图形绕某点旋转180°后能够与自身重合,则这个图形是中心对称图形,掌握“中心对称图形的定义”是解本题的关键.9、下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.答案:C分析:根据轴对称图形和中心对称图形的概念逐项判断即可.A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.小提示:本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.10、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°答案:C分析:根据图形的对称性,用360°除以3计算即可得解.解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C.小提示:本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.填空题11、在平面直角坐标系中,点A(a,2)与点B(6,b)关于原点对称,则ab=________.答案:12分析:根据关于原点对称的两点坐标关系:横、纵坐标均互为相反数,即可求出a和b的值,从而求出结论.解:∵点A(a,2)与点B(6,b)关于原点对称,∴a=-6,b=-2∴ab=12所以答案是:12.小提示:此题考查的是根据两点关于原点对称,求参数的值,掌握关于原点对称的两点坐标关系是解题关键.12、镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示.A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12°,B灯每秒转动4°.B灯先转动12秒,A灯才开始转动.当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是.答案:6秒或19.5秒分析:设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),推出t≤45−12,即t≤33.利用平行线的性质,结合角度间关系,构建方程即可解答.解:设A灯旋转t秒,两灯的光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),∴t≤45﹣12,即t≤33.由题意,满足以下条件时,两灯的光束能互相平行:①如图,∠MAM'=∠PBP',12t=4(12+t),解得t=6;②如图,∠NAM'+∠PBP'=180°,12t﹣180+4(12+t)=180,解得t=19.5;综上所述,满足条件的t的值为6秒或19.5秒.所以答案是:6秒或19.5秒.小提示:本题主要考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.13、如图,在矩形ABCD中,对角线AC、BD的交点为O,矩形的长、宽分别为7cm、4cm,EF过点O分别交AB、CD于E、F,那么图中阴影部分面积为___cm2.答案:7分析:先根据矩形的性质可得OA=OC,AB∥CD,S▭ABCD=28cm2,再根据平行线的性质可得∠OAE=∠OCF,∠OEA=∠OFC,然后根据三角形全等的判定定理证出△AOE≅△COF,根据全等三角形的性质可得S△AOE=S△COF,由此即可得.解:∵四边形ABCD是矩形,且长、宽分别为7cm、4cm,∴OA=OC,AB∥CD,S▭ABCD=7×4=28(cm2),∴∠OAE=∠OCF,∠OEA=∠OFC,在△AOE和△COF中,{∠OAE=∠OCF∠OEA=∠OFCOA=OC,∴△AOE≅△COF(AAS),∴S△AOE=S△COF,则图中阴影部分面积为S△AOE+S△DOF=S△COF+S△DOF=S△COD=14S▭ABCD=7cm2,所以答案是:7.小提示:本题考查了矩形的性质、三角形全等的判定与性质等知识点,熟练掌握三角形全等的判定与性质是解题关键.14、如图,△ABC与△DEF关于O点成中心对称.则AB________DE,BC//________,AC=________.答案: = EF DF分析:利用关于某点对称的图形全等,这样可以得出对应边与对应角之间的关系,进而解决.∵△ABC与△DEF关于O点成中心对称,∴△ABC≌△DEF,∴AB=DE,AC=DF,∠ABC=∠DEF∴∠CBO=∠FEO,∴BC//EF.所以答案是:=,EF,DF.小提示:此题主要考查了关于某点对称的图形之间的关系,涉及全等三角形,难度不大,熟练掌握中心对称图形的定义是解题的关键.15、以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为_____.答案:(2,﹣1)分析:根据平行四边形是中心对称图形,再根据▱ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.解:∵▱ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∴点C的坐标为(2,﹣1),所以答案是:(2,﹣1).小提示:此题考查中心对称图形的顶点在坐标系中的表示.解答题16、如图1,在等腰Rt△ABC中,∠A=90°,点D、E分别在边AB、AC上,AD=AE,连接,点M、P、N分别为DE、DC、BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是______,位置关系是______;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,求△PMN面积的最大值.答案:(1)PM=PN,PM⊥PN(2)△PMN是等腰直角三角形,理由见解析(3)492分析:(1)利用三角形的中位线定理得出PM=12CE,PN=12BD,进而得出BD=CE,即可得出结论,再利用三角形的中位线定理得出PM∥CE,再得出∠DPM=∠DCA,最后利用互余得出结论;(2)先判断出△ABD≌△ACE(SAS),得出BD=CE,同(1)的方法得出PM=12CE,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)由等腰直角三角形可知,当PM最大时,△PMN面积最大,而BD的最大值是AB+AD=14,即可得出结论.(1)解:∵P、N分别为DC、BC的中点,∴PN∥BD,PN=12BD,∵点M、P分别为DE、DC的中点,∴PM∥CE,PM=12CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,PM∥CE,∴∠DPN=∠ADC,∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN.所以答案是:PM=PN,PM⊥PN.(2)解:△PMN是等腰直角三角形,理由如下.由旋转可知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,由三角形的中位线定理得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法可得,PM∥CE,PN∥BD,∠DPM=∠DCE,∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC,=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形.(3)解:由(2)可知,△PMN是等腰直角三角形,PM=PN=12BD,∴当PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=12PM2=12×72=492.小提示:本题综合考查了三角形全等的判定与性质、旋转的性质及三角形的中位线定理,熟练应用相关知识是解决本题的关键.17、如图,在等边△ABC中,D为BC边上一点,连接AD,将△ACD沿AD翻折得到△AED,连接BE并延长交AD的延长线于点F,连接CF.(1)若∠CAD=20°,求∠CBF的度数;(2)若∠CAD=a,求∠CBF的大小;(3)猜想CF,BF,AF之间的数量关系,并证明.答案:(1)20°;(2)∠CBF=α;(3)AF=CF+BF,理由见解析分析:(1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∠ABE=∠AEB=1(180°−∠BAE)=80°,∠CBF=∠ABE-2∠ABC=20°;(2)同(1)求解即可;(3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.解:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∴∠ABE=∠AEB=1(180°−∠BAE)=80°,2∴∠CBF=∠ABE-∠ABC=20°;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=α,AC=AE,∴∠BAE=∠BAC−∠EAD−∠CAD=60°−2α,AB=AE,∴∠ABE=∠AEB=12(180°−∠BAE)=60°+α,∴∠CBF=∠ABE−∠ABC=α;(3)AF=CF+BF,理由如下:如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG在△AEF和△ACF中,{AE=AC∠EAF=∠CAF AF=AF,∴△AEF≌△ACF(SAS),∴∠AFE=∠AFC,∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,∴∠BFD=∠ACD=60°,∴∠AFE=∠AFC=60°,∴∠BFC=120°,∴∠BAC+∠BFC=180°,∴∠ABF+∠ACF=180°,∴∠ACG+∠ACF=180°,∴F、C、G三点共线,∴△AFG是等边三角形,∴AF=GF=CF+CG=CF+BF.小提示:本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.18、马老师在带领学生学习《正方形的性质与判定》这一课时,给出如下问题:如图①,正方形ABCD的对角线AC、BD相交于点O,正方形A′B′C′O与正方形ABCD的边长相等.在正方形A′B′C′O绕点O旋转的过程中,OA′与AB相交于点M,OC′与BC相交于点N,探究两个正方形重叠部分的面积与正方形ABCD的面积有什么关系.(1)小亮第一个举手回答“两个正方形重叠部分的面积是正方形ABCD面积的______”;请说明理由.(2)马老师鼓励同学们编道拓展题,小颖编了这样一道题:如图②,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,求四边形ABCD的面积.请你帮小颖解答这道题.答案:(1)14,见解析(2)18,见解析分析:(1)只需要证明△MOB≌△NOC得到S△MOB=S△NOC,即可求解.(2)过A作AE⊥AC,交CD的延长线于E,证明△EAD≌△CAB得到S△ABC=S△ADE,AE=AC=6,则S△AEC=12×6×6=18S四边形ABCD =S△ACD+S△ABC=S△ACD+S△ADE=S△EAC=12AE⋅AC=18.(1)解:∵四边形ABCD是正方形,四边形OA′B′C′是正方形,∴AC⊥BD,OB=OC,∠OBM=∠OCN=45°,∠A′OC′=90°,∴∠BOC=∠A′OC′=90°,∴∠BOM=∠CON,∴△BOM≌△CON(ASA),∴S△BOM=S△CON,∴S四边形OMBN =S△OBC=14S正方形ABCD.答案为:14;(2)过A作AE⊥AC,交CD的延长线于E,∵AE⊥AC,∴∠EAC=90°,∵∠DAB=90°,∴∠DAE=∠BAC,∵∠BAD=∠BCD=90°,∴∠ADC+∠B=180°,∵∠EDA+∠ADC=180°,∴∠EDA=∠B,∵AD=AB,在△ABC与△ADE中,{∠EAD=∠CABAD=AB∠EDA=∠B,∴△ABC≌△ADE(ASA),∴AC=AE,∵AC=6,∴AE=6,∴S△AEC=12×6×6=18,∴S四边形ABCD=18.小提示:本题主要考查了正方形的性质,全等三角形的性质与判定,四边形内角和,熟知全等三角形的性质与判定是解题的关键.。

(人教版)北京九年级数学上册第二十三章《旋转》经典复习题(答案解析)

(人教版)北京九年级数学上册第二十三章《旋转》经典复习题(答案解析)

一、选择题1.道路千万条,安全第一条,下列交通标志是中心对称图形的为()A.B.C.D.D解析:D【分析】根据中心对称图形定义可得答案.【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.【点睛】本题考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.下列图形中,是中心对称但不是轴对称的图形是()A.平行四边形B.矩形C.菱形D.等边三角形A解析:A【分析】根据轴对称及中心对称的概念,结合选项进行判断.【详解】A、平行四边形是中心对称图形,不是轴对称图形,故本选项正确;B、矩形是中心对称图形,也是轴对称图形,故本选项错误;C、菱形是中心对称图形,也是轴对称图形,故本选项错误;D、等边三角形不是中心对称图形,但是轴对称图形,故本选项错误;故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.'',旋转角为3.如图,将等边ABC绕点C逆时针旋转得到A B C()060αα︒<<︒.若160BDA '∠=︒,则α的大小是( )A .20°B .40°C .60°D .80°A解析:A【分析】 利用旋转的性质结合等边三角形的性质和三角形外角的性质,可得出答案;【详解】解:如图,∵ABC 和A B C ''均为等边三角形,∴60A A '∠=∠=︒由旋转得,旋转角为ACA α'∠=,∵160BDA '∠=︒∴160DOA A ''∠+∠=︒∴100DOA '∠=︒∵DOA COA '∠=∠,180ACA CAA COA ''∠+∠+∠=︒ ∴20ACA '∠=︒∴α的大小是20°故选:A【点睛】本题主要考查旋转的性质以及等边三角形的性质和三角形外角的性质等知识,正确掌握旋转的性质是解题关键.4.如图所示,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到A B C ∆'',M 是BC 的中点,P 是A B ''的中点,连接PM .若2BC =,30A ∠=︒,则线段PM 长的最大值是( )A .4B .3C .2D .1B解析:B【分析】 连接PC ,根据直角三角形斜边上的中线等于斜边的一半求出PC ,利用中点求出CM ,再根据三角形两边之和大于第三边即可求得PM 的最大值.【详解】解:如图连接PC .在Rt △ABC 中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,''90A CB ACB ∠=∠=︒,∵P 是A B ''的中点,M 是BC 的中点,∴CM=BM=1,PC=12A′B′=2 又∵PM≤PC+CM ,即PM≤3,∴PM 的最大值为3(此时P 、C 、M 共线).故选:B .【点睛】本题考查旋转变换、直角三角形30度角的性质、直角三角形斜边中线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考常考题型.5.如图,在等边ABC 中,点О在AC 上,且3,6AO CO ==,点P 是AB 上一动点,连接,OP 将线段OP 绕点О逆时针旋转60︒得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( )A.4B.5C.6D.8C解析:C【分析】由于将线段OP绕点O逆时针旋转60°得到线段OD,当点D恰好落在BC上时,易得:△ODP是等边三角形,根据旋转的性质可以得到△AOP≌△CDO,由此可以求出AP的长.【详解】解:当点D恰好落在BC上时,OP=OD,∠A=∠C=60°,如图.∵∠POD=60°∴∠AOP+∠COD=∠COD+∠CDO=120°,∴∠AOP=∠CDO,∴△AOP≌△CDO,∴AP=CO=6.故选:C.【点睛】此题要把旋转的性质和等边三角形的性质结合求解.属探索性问题,难度较大,近年来,探索性问题倍受中考命题者青睐,因为它所强化的数学素养,对学生的后续学习意义深远.6.如图,等边△OAB的边OB在x轴上,点B坐标为(2,0),以点O为旋转中心,把△OAB逆时针转90︒,则旋转后点A的对应点A'的坐标是()A.(-13)B3-1)C.(31-,)D.(-2,1)C解析:C【分析】如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.利用全等三角形的性质解决问题即可.【详解】解:如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.∵B(2,0),△AOB是等边三角形,∴OA=OB=AB=2,∵AE⊥OB,∴OE=EB=1,∴AE=2222AO OE--,132==∵A′H⊥OH,∴∠A′HO=∠AEO=∠AOA′=90°,∴∠A′OH+∠AOE=90°,∠AOE+∠OAE=90°,∴∠A′OH=∠OAE,∴△A′OH≌△OAE(AAS),∴A′H=OE=1,OH=AE=3,∴A′(-3,1),故选:C.【点睛】本题考查坐标与图形变化-旋转,等边三角形的性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.已知等边△ABC的边长为8,点P是边BC上的动点,将△ABP绕A逆时针转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是 ( )A.2 B.3C.4 D.不能确定B解析:B【分析】B=°,当DQ⊥CQ时,DQ的长最小,再根据根据旋转的性质,即可得到∠ACQ=∠60勾股定理,即可得到DQ的最小值.【详解】解:由旋转可得∠ACQ=∠60B=°.因为点D是AC的中点,所以CD=4.当DQ⊥CQ时,DQ的长最小,此时∠CDQ=30︒.所以122CQ CD==,223422DQ=-=,所以DQ的最小值是23,故选B.【点睛】本题主要考查了旋转的性质,旋转前后的图形全等,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.8.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣23B.(﹣4,﹣3 C.(﹣2,﹣3)D.(﹣2,﹣23)D解析:D【解析】解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=30°,∴BC=4,∴AB3∴AD=AB ACBC⋅232⨯3∴BD=2ABBC223().∵点B坐标为(1,0),∴A点的坐标为(4,3).∵BD=3,∴BD1=3,∴D1坐标为(﹣2,0),∴A1坐标为(﹣23∵再向下平移2个单位,∴A′的坐标为(﹣232).故选D.点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.9.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.D解析:D【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,但不是中心对称图形,故本选项错误;C、是轴对称图形,但不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.10.如果齿轮A以逆时针方向旋转,齿轮E旋转的方向()A.顺时针B.逆时针C.顺时针或逆时针D.不能确定B解析:B【分析】根据图示进行分析解答即可.【详解】齿轮A以逆时针方向旋转,齿轮B以顺时针方向旋转,齿轮C以逆时针方向旋转,齿轮D 以顺时针方向旋转,齿轮E以逆时针方向旋转,故选B.【点睛】此题考查旋转问题,关键是根据图示进行解答.二、填空题11.如图,在平面直角坐标系xOy 中,若点A 的坐标为(3,33),经过点A ,作AB x ⊥轴于点B ,将ABO 绕点B 逆时针旋转60︒得到CBD ,则点C 的坐标为______,D 点坐标为______.()【分析】如图作CE ⊥x 轴于E 点过点D 作DF ⊥x 轴于F 根据A 点坐标可得OBAB 的长利用旋转的性质得到BC =BABD=OB ∠ABC =60°∠OBD=60°则∠CBE =30°然后根据含30°角的直角三解析:33,322⎛⎫- ⎪⎝⎭(32,332-) 【分析】如图,作CE ⊥x 轴于E 点,过点D 作DF ⊥x 轴于F ,根据A 点坐标可得OB 、AB 的长,利用旋转的性质得到BC =BA ,BD=OB ,∠ABC =60°,∠OBD=60°,则∠CBE =30°,然后根据含30°角的直角三角形三边的关系,在Rt △CBE 中计算出CE 和BE 的长,进而求出OE 的长,从而可得到C 点坐标;根据等边三角形的性质可得∠ODF=30°,根据含30°角的直角三角形的性质求出DF 、OF 的长即可得得D 坐标.【详解】如图,作CE x ⊥于点E ,∵(3,33)A ,AB x ⊥轴,∴33AB =OB=3,由旋转性质得:33BC AB ==,60ABC ∠=︒,BD=OB=3,∠OBD=60°, ∴30CBE ∠=︒,∴CE=12BC=332,BE=22BC CE -92=, ∴32OE BE OB =-=, ∴33,322C ⎛⎫- ⎪⎝⎭. ∵∠OBD=60°,OB=BD ,∴△OBD 是等边三角形,∵DF ⊥x 轴,∴∠ODF=12∠ODB=30°, ∴OF=12OB=32,DF=22OD OF -=332, ∵将ABO 绕点B 逆时针旋转60︒得到CBD ,∴点D 在第四象限,∴点D 坐标为(32,332-), 故答案为:33,322⎛⎫-⎪⎝⎭,(32,332-) 【点睛】本题考查了坐标与图形变换−旋转、等边三角形的判定与旋转及含30°角的直角三角形的旋转;图形或点旋转之后对应边相等、对应角相等;30°角所对的直角边等于斜边的一半;熟练掌握旋转的旋转是解题关键.12.如图所示,在直角坐标系中,点()0,6A ,点()3,4P 将AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,则PP '=_______________. 【分析】根据旋转的性质绕点顺时针方向旋转了90°则△POP´为等腰直角三角形且OP=OP´利用勾股定理求出OP 的长进而可求得PP´的长【详解】解:∵绕点顺时针方向旋转使边落在x 轴上∴∠POP´=∠A 解析:52【分析】根据旋转的性质,AOP 绕点O 顺时针方向旋转了90°,则△POP´为等腰直角三角形,且OP=OP´,利用勾股定理求出OP 的长,进而可求得PP´的长.【详解】解:∵AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,∴∠POP´=∠AOA´=90°,OP=OP´,∴△POP´为等腰直角三角形,∵点P 坐标为(3,4), ∴OP=22345+=,∴PP´=2252OP OP '+=,故答案为:52.【点睛】本题考查了坐标与图形变换-旋转变换、勾股定理、等腰三角形的判定与性质,掌握旋转的性质,结合旋转的角度得到△POP´为等腰直角三角形是解答的关键.13.如图,O 是正方形ABCD 的中心,M 是ABCD 内一点,90DMC ∠=︒,将DMC 绕O 点旋转180°后得到BNA .若3MD =,4CM =,则MN 的长为______.【分析】延长BN 交CM 与E 判定△NME 为等腰直角三角形求出NE 的长再据勾股定理可计算得MN 的长【详解】解:如下图在正方形ABCD 中延长BN 交CM 于E 由题意据中心对称的性质得∠ABE=∠CDM ∠MDC 解析:2【分析】延长BN 交CM 与E ,判定△NME 为等腰直角三角形,求出NE 的长,再据勾股定理可计算得MN 的长.【详解】解:如下图在正方形ABCD 中延长BN 交CM 于E ,由题意据中心对称的性质,得∠ABE=∠CDM ,∠MDC 与∠MCD 互余,∠ABE 与∠EBC 互余∴∠EBC=∠DCM ;同理可得∠MCB=∠ABN又∠ABN=∠CDM∴∠MCB=∠MDC又BC=CD∴△BEC ≌△CMD∴∠BEC=∠CMD=90° BE=CM=4 CE=DM=3∴ME=CM-CE=1,NE=BE-BN=1所以△MNE 为等腰直角三角形,且∠NEM 是直角,ME=NE=1,由勾股定理得22MN=2NE ME +=故答案为:2.【点睛】此题考查综合运用中心对称的性质解决问题.其关键是要运用中心对称的性质找全等条件,证明△BEC ≌△CMD .14.如图,在平面直角坐标系中,将ABC 绕点A 顺时针旋转到111A B C △的位置,点B ,O (分别落在点1B ,1C 处,点1B 在x 轴上,再将11AB C △绕点1B 顺时针旋转到112A B C 的位置,点2C 在x 轴上,再将112A B C 绕点2C 顺时针旋转到222A B C △的位置,点2A 在x 轴上,依次进行下去,…,若点(3,0),(0,4),5A B AB =,则点2021B 的坐标为________.【分析】先计算出的值再根据至的变化规律得到B 点的变化规律从而得到的坐标【详解】解:由题意可得:即由上可知从纵坐标为0不变横坐标变为:∵20=8+12×∴的横坐标为故答案为(121280)【点睛】本题解析:(12128,0)【分析】先计算出13B B ,的值,再根据1B 至 3B 的变化规律,得到B 点的变化规律,从而得到2021B 的坐标.【详解】解:由题意可得:()()()123,0,3503540A B C +++,,,, ()()2335430,354350A B +++++++,,,即()()()()()12233,0,80120150,200A B C A B ,,,,,,, 由上可知,从13B B →,纵坐标为0不变,横坐标变为:1222238843520B C C A A B +++=+++=,∵20=8+12×312-,∴2021B 的横坐标为 202118128101012121282-+⨯=+⨯=, 故答案为(12128,0).【点睛】本题考查旋转的应用,根据旋转的性质找出相等的线段是解题关键. 15.如图,在Rt ABC △中,C 为直角顶点,20ABC ∠=︒,O 为斜边AB 的中点,将OA 绕点O 逆时针旋转()0180θθ︒<<︒至OP ,当BCP 恰为以BC 为腰的等腰三角形时,θ的值为______.40°或100°【分析】由题意可以分为BC=BP 或BC=PC 两种情况说明讨论【详解】解:当时如图1∵为斜边的中点∴∴∴∴;当时如图2同理可证∴∴∴故答案为40°或100°【点睛】本题考查直角三角形和解析:40°或100°【分析】由题意可以分为BC=BP 或BC=PC 两种情况说明讨论.【详解】解:当BC BP =时,如图1.∵90ACB ∠=︒,O 为斜边AB 的中点,∴CO OA OP OB ===,∴COB POB ≌△△,∴20ABP ABC ∠=∠=︒,∴22040θ=⨯︒=︒;当BC PC =时,如图2,同理可证COB COP ≌△△,∴20P ABC OCB OCP ∠=∠=∠=∠=︒,∴140COP COB ∠=∠=︒,∴14040100θ=︒-︒=︒.故答案为40°或100°.【点睛】本题考查直角三角形和等腰三角形的综合运用,熟练掌握直角三角形斜边上中线的性质、三角形全等的判定和性质、等腰三角形等边对等角的性质是解题关键.16.如图,在平面直角坐标系中,等腰Rt △OA 1B 1的斜边OA 1=2,且OA 1在x 轴的正半轴上,点B 1落在第一象限内.将Rt △OA 1B 1绕原点O 逆时针旋转45°,得到Rt △OA 2B 2,再将Rt △OA 2B 2绕原点O 逆时针旋转45°,又得到Rt △OA 3B 3,……,依此规律继续旋转,得到Rt △OA 2019B 2019,则点B 2019的坐标为_____. (﹣11)【分析】观察图象可知点B1旋转8次为一个循环利用这个规律解决问题即可【详解】解:观察图象可知点B1旋转8次一个循环∵2018÷8=252余数为2∴点B2019的坐标与B3(﹣11)相同∴点 解析:(﹣1,1)【分析】观察图象可知,点B 1旋转8次为一个循环,利用这个规律解决问题即可.【详解】解:观察图象可知,点B 1旋转8次一个循环,∵2018÷8=252余数为2,∴点B 2019的坐标与B 3(﹣1,1)相同,∴点B 2019的坐标为(﹣1,1).故答案为(﹣1,1).【点睛】本题考查坐标与图形的变化−旋转,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.17.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1 cm,则BF=__________cm.2+【详解】过点E作EM⊥BD于点M如图所示:∵四边形ABCD为正方形∴∠BAC=45°∠BCD=90°∴△DEM为等腰直角三角形∵BE平分∠DBCEM⊥BD∴EM=EC=1cm∴DE=EM=cm由解析:2+2【详解】过点E作EM⊥BD于点M,如图所示:∵四边形ABCD为正方形,∴∠BAC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∵BE平分∠DBC,EM⊥BD,∴EM=EC=1cm,∴DE=2EM=2cm.由旋转的性质可知:CF=CE=1cm,∴BF=BC+CF=CE+DE+CF=1+2+1=2+2cm.故答案为2+2.18.如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为________.9【分析】根据旋转的性质得到△ABC≌△A1BC1A1B=AB=6所以△A1BA是等腰三角形依据∠A1BA=30°得到等腰三角形的面积由图形可以知道S阴影=S△A1BA+S△A1BC1﹣S△ABC=解析:9【分析】根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA 是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.【详解】解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA 是等腰三角形,∠A1BA=30°,∴S△A1BA= 12×6×3=9,又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=9.故答案为9.【点睛】本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.19.如图,在Rt△ABC中,∠ABC=90°,∠BAC=32°,斜边AC=6,将斜边AC绕点A逆时针方向旋转26°到达AD的位置,连接CD,取线段CD的中点N,连接BN,则BN的长为_________.【分析】设M为AC中点连接ANBMMN根据直角三角形斜边中点定理得出MB=MN=同时算出∠BMN=90°最后利用勾股定理算出BN的长【详解】解:设M为AC中点连接ANBMMN由旋转可知:AC=AD=解析:32【分析】设M为AC中点,连接AN,BM,MN,根据直角三角形斜边中点定理得出MB=MN=132AC ,同时算出∠BMN=90°,最后利用勾股定理算出BN的长.【详解】解:设M为AC中点,连接AN,BM,MN,由旋转可知:AC=AD=6,∠CAD=26°,∵∠BAC=32°,∠ABC=90°,∴∠ACB=58°,∵AC=AD ,N 为CD 中点,M 为AC 中点,∴MB=MC=MN=3,∴∠MBC=∠MCB=58°,∠MCN=∠MNC=(180-26)÷2=77°,∴∠BMC=64°,∠CMN=26°,∴∠BMN=90°,即△BMN 为等腰直角三角形,∴BN=223332+=.故答案为:32.【点睛】本题考查了直角三角形的性质,等腰三角形的判定和性质,旋转的性质,三角形内角和,解题的关键是找出AC 中点M ,构造等腰直角三角形.20.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________.-12【分析】两个点关于原点对称时它们的横坐标互为相反数纵坐标也互为相反数直接利用关于原点对称点的性质得出mn 的值进而得出答案【详解】∵点B (5)与点A (4)关于原点成中心对称∴∴∴故答案为:【点睛解析:-12【分析】两个点关于原点对称时,它们的横坐标互为相反数,纵坐标也互为相反数,直接利用关于原点对称点的性质得出m ,n 的值,进而得出答案.【详解】∵点B (3n +,5)与点A (4,m )关于原点成中心对称,∴34n +=-,5m =-,∴5m =-,7n =-,∴()5712m n +=-+-=-.故答案为:12-.【点睛】本题主要考查了关于原点对称点的坐标性质,正确记忆关于原点对称点的坐标性质是解题关键.三、解答题21.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出平面直角坐标系,并标出A,C两点的坐标.解析:(1)见解析;(2)见解析;A(0,1),C(-3,1)【分析】(1)根据图形旋转的性质画出△AB1C1即可;(2)根据B点坐标,作出平面直角坐标系,即可写出各点坐标.【详解】(1)解:旋转后图形如图所示(2)解:由B点坐标,建立坐标系如图所示,则A(0,1),C(-3,1).【点睛】本题考查的是作图-旋转变换,熟知图形旋转的性质是解答此题的关键.22.已知ABC 是边长为4的等边三角形,边AB 在射线OM 上,且6OA =,点D 是射线OM 上的动点,当点D 不与点A 重合时,将ACD △绕点C 逆时针方向旋转60°得到BCE ,连接DE .(1)如图1,求证:CDE △是等边三角形.(2)设OD t =,①如图2,当610t <<时,CDE △的周长存在最小值,请求出此最小值;②如图1,若06t <<,直接写出以D 、E 、B 为顶点的三角形是直角三角形时t 的值.解析:(1)见解析;(2)①3②2【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC ,即可得到结论;(2)①存在,由等边三角形的性质可得△CDE 的周长=3CD ,当CD ⊥AB 时,CD 有最小值,即可求解;②由题意可得∠BED=90°,由直角三角形的性质可求解.【详解】解:(1)∵证明:将ACD △绕点C 逆时针方向旋转60°得到BCE ,∴60DCE ∠=︒,DC EC =,∴CDE △是等边三角形:(2)①∵CDE △是等边三角形,∴CDE △的周长3CD =,当610t <<时,由垂线段最短可知,当CD AB ⊥时,CDE △的周长最小,此时,CD =∴CDE △的最小周长3CD ==②存在,当0<t <6时,由旋转可知,∠ABE=60°,∠BDE <60°,∴∠BED=90°,由(1)可知,△CDE 是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA ,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA-DA=6-4=2,∴t=2.【点睛】本题是几何变换综合题,考查了旋转的性质,等边三角形的性质,直角三角形的性质,垂线段最短等知识,灵活运用这些性质解决问题是本题的关键.23.把两个全等的等腰直角三角板ABC 和EFG 叠放在一起(如图①),两直角三角板的直角边长均为4,且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合.现将三角板EFG 绕O 点按顺时针方向旋转(旋转角α满足条件:090α︒<<︒),四边形CHGK 是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH 与CK 有怎样的数量关系:________.(2)四边形CHGK 的面积有何变化?证明你发现的结论.(3)连接HK ,在上述旋转过程中,设BH x =,GKH △的面积为y ,求y 与x 之间的关系,并通过“配方法”求出GKH △面积的最小值.解析:(1)BH CK =;(2)不变,证明见解析;(3)2482x x y -+=;2 【分析】(1)连接CG ,可通过证明KCG HBG ≅△△则可证得BH=CK ;(2)由KCG HBG ≅△△可得它们的面积相等,进而得出四边形CHGK 的面积不变; (3)过点G 作GQ BC ⊥于点Q ,利用等腰三角形的性质和勾股定理可求得222248GH GQ QH x x =+=-+,再利用KCG HBG ≅△△证得KGH 为等腰直角三角形,再根据三角形的面积公式可得到y 与x 之间的关系式,然后利用二次函数的最值求法即可解答.【详解】(1)连接CG ,如图:∵ABC 为等腰直角三角形,G 为AB 中点,∴CG BG =,45ACG CBG ∠=∠=︒,90CGB ∠=︒,∵90KGC CGF ∠+∠=︒, 90CGF FGB ∠+∠=︒,∴KGC FGB ∠=∠,∴在KCG △与HBG 中,KCG HBG CG BGCGK BGH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()KCG HBG ASA ≅△△,∴BH CK =,故答案为:BH=CK .(2)∵KCG HBG ≅△△,∴CGK S △=GHB S∴CHGK CGK CGH S S S =+△△四边形CGH GHB S S =+△△CGB S =△12ABC S =△ 4=.故四边形CHGK 面积不变,为4.(3)过点G 作GQ BC ⊥于点Q , ∵ABC 为等腰直角三角形,G 为AB 中点,∴2GQ =,2BQ =, ∴2QH x =-.故222248GH GQ QH x x =+=-+.由(1)可知GH KG =,又∵90KGH ∠=︒,∴GKH △为等腰直角三角形, ∴212GKH S GH =⨯△, ∴2482x x y -+=. ∵旋转角度为090α<<︒,∴x 的取值范围为02x <≤.又GKH △的面积:2482x x y -+= 2(2)42x -+= 2(2)2(02)2x x -=+<≤∵()220x -≥, ∴022y ≥+=(当x=2时取等号).故GKH △面积最小值为2.【点睛】本题考查了旋转的性质、等腰三角形的性质、同角的余角相等、全等三角形的判定与性质、勾股定理、二次函数的性质,通过全等三角形将面积进行转换是解答的关键,综合性很强,平时应加强对各知识的综合运用.24.如图,将矩形ABCD 绕点C 旋转得到矩形EFGC ,点E 在AD 上.延长AD 交FG 于点H .求证:EDC HFE ≅.解析:证明见解析.【分析】先根据矩形的性质可得,90AB CD A B ADC =∠=∠=∠=︒,再根据旋转的性质可得,90,90EF AB F A CEF B =∠=∠=︒∠=∠=︒,从而可得,90CD EF EDC F =∠=∠=︒,然后根据直角三角形的性质、角的和差可得DCE FEH ∠=∠,最后根据三角形全等的判定定理即可得证.【详解】四边形ABCD 是矩形,,90AB CD A B ADC ∴=∠=∠=∠=︒,由旋转的性质得:,90,90EF AB F A CEF B =∠=∠=︒∠=∠=︒,,90CD EF EDC F ∴=∠=∠=︒,又90,90EDC CEF ∠=︒∠=︒,90CED DCE CED FEH ∴∠+∠=∠+∠=︒,DCE FEH ∴∠=∠,在EDC △和HFE 中,EDC F CD EF DCE FEH ∠=∠⎧⎪=⎨⎪∠=∠⎩,()HFE E AS DC A ∴≅.【点睛】本题考查了矩形的性质、旋转的性质、三角形全等的判定定理等知识点,熟练掌握矩形和旋转的性质是解题关键.25.在ABC ∆中,AB AC =,BAC α∠=.(1)直接写出ABC ∠的大小为______.(用含α的式子表示)(2)当060α︒<<︒时,将线段BC 绕点B 逆时针旋转60︒得到线段BD ,连接AD 、CD .①求证:ABD ACD ∆≅∆;②当40α=︒,求ACD ∠的度数.解析:(1)90°-12α;(2)①见解析;②∠ACD=10°. 【分析】(1)由等腰三角形的性质与三角形内角和定理可得∠ABC 的大小;(2)①由旋转的性质可得BC=BD ,∠DBC=60°,所以△BCD 为等边三角形,于是BD=CD ,再根据SSS 可得△ABD ≌△ACD ;②先由(1)求得∠ABC=70°,再由△BCD 为等边三角形可得∠BDC=60°,于是可得∠ABD 的度数.【详解】解:(1)90°-12α ∵ AB=AC ,∴∠ABC=12(180°-∠BAC ) =12(180°-α) =90°-12α(2)①线段BC 绕点B 逆时针旋转60°得到线段BD 则BC=BD , ∠DBC =60°∴△BCD 为等边三角形∴ BD=CD在△ABD 和△ACD 中,∵AB =ACBD= CD ,AD=AD∴△ABD ≌△ ACD (SSS )②当α=40°时,∵ AB=AC ,∠ACB =∠ABC =90°-12α=70° ∵△BCD 为等边三角形∴∠BCD =60°∴∠ACD = ∠ACB -∠BCD = 10°【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质以及旋转的性质,综合性较强,熟练掌握定理及性质是解题的关键.26.在平面直角坐标系中,矩形OABC 如图所示放置,点A 在x 轴上,点B 的坐标为(2,1).将此矩形绕点O 逆时针旋转90°,得到矩形OA B C '''.(1)求过点A 、A '、C '的抛物线的解析式;(2)将矩形OABC 沿x 轴正方向平移,使点C 落在抛物线上,求平移的距离. 解析:(1)A (2,0)、A '(0,2)、C '(-1,0); 22y x x =-++;(2)152 【分析】(1)先根据图象和题意求得点A 、A '、C '的坐标,再利用待定系数法代入抛物线一般式()20y ax bx c a =++≠求得解析式;(2)设线段BC 与抛物线的交点为P (m ,1),将点P (m ,1)代入抛物线解析式可得关于m 的一元二次方程,解方程即可求解.【详解】解:(1)∵四边形OABC 和四边形OA B C '''都是矩形,∴OA =OB ,A B OC '''=,∵B (2,1)∴A (2,0)∵矩形OA B C '''是矩形OABC 旋转90°得到的∴矩形OA B C '''≌矩形OABC∴1A B OC AB '=''==,=2OA OA '=故()1,0C '-,()0,2A '设抛物线解析式为()20y ax bx c a =++≠,将点A 、A '、C '的坐标代入得:04220a b c ca b c =++⎧⎪=⎨⎪=-+⎩解得:121a c b =-⎧⎪=⎨⎪=⎩故抛物线解析式为:22y x x =-++(2)设线段BC 与抛物线的交点为P (m ,1)将点P (m ,1)代入抛物线解析式可得:212m m =-++即210m m --=解得12m +=(负数舍去) 故矩形OABC 沿x轴正方向平移12+个单位使点C 落在抛物线上. 【点睛】本题主要考查图形的旋转、二次函数图象及其性质、二次函数解析式、矩形的性质,解题的关键是熟练掌握所学知识.27.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (1,1)、B (5,1)、C (4,4).(1)按下列要求作图:①将△ABC 向左平移5个单位得到△A 1B 1C 1,并写出点A 1的坐标;②将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,并写出点B 2的坐标;(2)△A 1B 1C 1与△A 2B 2C 2重合部分的面积为 (直接写出答案).解析:(1)①点A1(﹣4,1);②B2(﹣1,5);(2)9 4【分析】(1)①直接利用平移的性质得出对应点位置进而得出答案;②直接利用旋转的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出重合部分边长关系进而得出答案.【详解】解:(1)①如图所示:△A1B1C1,即为所求,点A1(﹣4,1);②如图所示:△A2B2C2,点B2(﹣1,5);(2)∵A2C2⊥A1C1且交点到A1,C1的距离相等,∴设△A1B1C1与△A2B2C2重合部分的边长为x,则x2+x2=9,解得:x=322,故△A1B1C1与△A2B2C2重合部分的面积为:12×322×322=94.故答案为:94.【点睛】本题考查了旋转变换以及勾股定理,正确得出对应点位置是解题的关键.28.如图,等边△ABC中,P是BC边上任意一点,将△ABP绕点A逆时针旋转60°.(1)请用圆规和无刻度的直尺作出旋转后的三角形(保留作图痕迹,不写作法和证明);(2)记点P的对应点为Pʹ,试说明△APPʹ的形状,并说明理由解析:(1)见解析;(2)△APPʹ是等边三角形,理由见解析.【分析】(1)根据图形旋转的性质画出旋转后的图形即可;(2)根据“含有60°角的等腰三角形是等边三角形”进行判断△APPʹ的形状.【详解】解:(1)如图所示,(2)△APPʹ是等边三角形,如图,连接PPʹ,根据作图得∠PAPʹ=60°,AP=APʹ,∴△APPʹ是等边三角形.【点睛】本题考查的是作图-旋转变换和等边三角形的判断,熟知图形旋转的性质及等边三角形的判定定理是解答此题的关键.。

九年级数学: 旋转基础知识及专题练习(含答案)

九年级数学: 旋转基础知识及专题练习(含答案)

旋转及综合专题一、旋转相关定义1、定义:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转,点 O 叫做旋转中心,转动的角叫做旋转角。

2、如果图形上的点 P 经过旋转变为 P 1 ,那么这两个点叫做这个旋转的对应点。

3、(1)对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上;(2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后图形全等。

4、把一个图形绕着某一点旋转180︒ ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

这两个图形的对称点叫做关于中心的对称点。

5、(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分;(2)关于中心对称的两个图形是全等图形。

6、把一个图形绕着某一点旋转180︒ ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

二、旋转相关结论如 图 , 将 ∆ABC 绕 点 A 逆 时 针 旋 转 α 角 到∆AB 1C 1 。

点 B 和点 B 1 为对应点,点 C 和C 1 为对 应点。

结论 1:旋转中心为对应点所连线段垂直平分 线的交点,也即对应点所连线段的垂直平分线 均经过旋转中心。

如图,线段 BB 1 的垂直平分 线l 1 、线段CC 1 的垂直平分线l 2 都经过旋转中心点 A 。

利用这个结论我们可以利用对应点坐标 求出旋转中心的坐标。

由于对应点所连线段的 垂直平分线均经过旋转中心,因此只需求出两 组对应点所连线段的垂直平分线解析式,然后 联立即可求出旋转中心坐标。

结论 2:对应点与旋转中心所构成的三角形均为等腰三角线,且等腰三角形顶角均等于旋转角α。

如图, ∆ABB 1 和 ∆ACC 1 均为等腰三角形, ∠BAB 1 = ∠CAC 1 = α。

结论 3:对应点与旋转中心所构成的三角形均相似。

如图, ∆BAB 1 ∽ ∆CAC 1 。

九年级数学旋转经典题含答案

九年级数学旋转经典题含答案

1、在厶ABC 中,/ CAB=70°,在同一平面内,△将ABC 试点A 旋试到△ AB C 的位置,使得CC // AB,试/ BAB =()A. 300 B. 35 0 C. 40 0 D. 50 °2、A ABC 是等腰直角三角形,BC 是斜边,将△ ABP 绕点A 逆时针旋转后,能与厶ACP'重合,如果AP=3,那么线段 PP'的长等于 _______________________________________ .3、在 Rt △ ABC 中,/ ACB=9 0°,/ ABC=3 0 °, AC=1,将△ ABC 绕点 C 逆时针旋转至△ A ' B ' C ,使得点 A '恰 好落在AB 上,连接BB ',贝U BB '的长度为 —14、已知/ AOB=90,点A 绕点0顺时针旋转后的对应点A i 落在射线OB 上,点A 绕点A i 顺时针旋转后的对应点 A 落在射线OB 上,点A 绕点A 顺时针旋转后的对应点 A 落在射线OB 上,…,连接AA ,AA 2,AA 3…,依此作法,则/ AAA n+i等于 _____ 度.(用含n 的代数式表示,n 为正整数)9、将边长为"3的正方形ABCD 绕点A 逆时针方向旋转30°后得到正方形 A'B'C'D ',则图中阴影部分面积为 _______________ 5、已知△ ABC 是正三角形,OCLOB OC=OB 将厶ABC 绕点O 按逆时针方向旋转,使得 OA 与 OC 重合,得到△ OCD 则 旋转的角度是 _________________________ .,旋转了7、如图,在平面内将长为 ______________ . 8 在 Rt △ ABC 中,/ 边上,斜边DE 交AC 边于点F . ACB=9C °, 绕着直角顶点 C 逆时针旋转90°得到Rt △ EFC ,若AB =V 5,BC=1,则线段BE 的/ A=30°,BC=2将厶ABC 绕点C 顺时针旋转一定角度后得到△ EDC 此时点D 在AB则DC 的长 ____________ ;旋转的角度 _______________ ;图中阴影部分的面积 Rt △ ABC则图中阴影部分的面积之和为cm 2.如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ ABP沿顺时针方向旋转,使点A与点C重合,这时P点旋转到G点.(1 )请画出旋转后的图形,并说明此时△ ABP以点B为旋转中心旋转了多少度?(2)求出PG的长度;(3)请你猜想厶PGC的形状,并说明理由.答案(找作业答案--->> 上魔方格)解:(1 )旋转后的厶BCG如图所示,旋转角为/ ABC=90 ° ;(2)连接PG,由旋转的性质可知BP=BG,Z PBG= Z ABC=90•;ZBPG为等腰直角三角形,又BP=BG=2 ,.•.PG八/阴5坯I ;(3)由旋转的性质可知CG=AP=1 ,已知PC=3,由(2)可知PG=2 亘IT PG2+CG 2(2進)2+1 2=9,PC2=9,Z.PG2+CG 2=PC2,.ZPGC为直角三角形.马上分享给同学1C 2、3倍根号2 3、根号3 4 180 度减去2的n次幕分之90 5、150度6、B,90 45 7、3 8、2分之根号 3 9、根号3 10、5。

初三数学旋转练习题含答案

初三数学旋转练习题含答案

初三数学旋转练习题含答案题目一:已知图中的矩形ABCD,其中AB=6cm,BC=5cm。

点E是边AB 的中点,连接AE。

点F在矩形ABCD的外面,且DF垂直于DE,交DC于点H。

若EF=3cm,求证:△EFA≌△HDA。

解答一:首先,连接AC。

因为ABCD是一个矩形,所以∠ABC=90°。

又因为AE是AB的中线,所以AE垂直于BC,所以∠BAE=90°。

所以∠FAD=∠ABC+∠BAE=180°。

又因为EF=3cm,所以AE=EF=3cm。

所以△EFA≌△HDA(边角边定理)。

题目二:图中是一个三角形ABC,其中AB=4cm,BC=6cm,AC=5cm。

点D是边BC的中点,连接AD。

将△ABC绕点D逆时针旋转90°,得到三角形A'D'C'。

连接A'E'。

若A'D'=3cm,求证:A'C'=7cm。

解答二:首先,连接AC和A'C'。

在△ABC中,因为AB=4cm,BC=6cm,AC=5cm,所以此为一个直角三角形,∠ACB=90°。

因为D是BC的中点,所以BD=DC=BC/2=3cm。

通过旋转得到△A'D'C'。

根据旋转定理,旋转中心在点D,所以∠A'D'B=90°。

又因为A'D'=3cm,所以A'D'B是一个直角三角形,∠A'D'B=90°。

所以∠A'D'C'=∠A'D'B+∠BCA=90°+90°=180°。

因此,A'C'并没有旋转,所以A'C'=AC=5cm。

所以A'C'=7cm(根据题目中的条件A'D'=3cm)。

题目三:已知图中的正方形ABCD,边长为4cm。

部编数学九年级下册专项16巧用旋转进行计算(解析版)含答案

部编数学九年级下册专项16巧用旋转进行计算(解析版)含答案

专项16 巧用旋转进行计算将一个图形绕着某一点旋转一个角度的图形变换叫做旋转,由旋转的性质可知旋转前后的图形全等,对应点到旋转中心的连线所组成的夹角等于旋转角。

旋转法是在图形具有公共端点的相等的线段特征时,可以把图形的某部分绕相等的线段的公共端点,旋转另一位置的引辅助线的方法,主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条件。

旋转方法常用于等腰三角形、等边三角形及正方形等图形中。

【考点1 利用旋转结合等腰(边)三角形、垂直、平行的性质求角度】【典例1】(2021九上·番禺期末)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=20°,则∠B的大小是( )A.70°B.65°C.60°D.55°【答案】B【解答】解:∵将ΔABC绕点A顺时针旋转90°后得到的△A B′C′,∴AC=AC,∠CAC=90°,∠B=∠ABC,∴∠ACC=45°,∴∠ABC=∠ACC+∠CCB=45°+20°=65°,∴∠B=∠ABC=65°,故答案为:B.【变式1-1】(2021九上·上高月考)如图,将△AOB绕着点O顺时针旋转70°,得到△COD,若∠COD=40°,则∠BOC的度数为( )A.10°B.20°C.30°D.40°【答案】C【解答】解:∵将△AOB绕着点O顺时针旋转70°,得到△COD,∴∠BOD=70°,∵∠COD=40°,∴∠BOC=∠BOD-∠COD=70°-40°=30°.故答案为:C【变式1-2】(2021九上·南充期末)如图,在△ABC中,∠ACB=90°,∠A=30°,将△ABC绕点C逆时针旋转90°得到△DEC,则∠AED的度数为( )A.105°B.120°C.135°D.150°【答案】B【解答】解:由旋转的性质可得:∠A=∠D=30°,∠ACB=∠DCE=90°,∴∠AED=∠D+∠DCE=120°;故答案为:B.【变式1-3】(2021九上·澄海期末)如图,将△ABC绕点A按逆时针方向旋转得到△ABC.若点B刚好落在BC边上,且AB=C B′,若∠C=20°,则△ABC旋转的角度为( )A.60°B.80°C.100°D.120°【答案】C【解答】解:∵AB=C B′,∴∠B'AC=∠C,由旋转前后对应线段相等可知:AB’=AB,∴∠B=∠AB’B,由三角形外角定理可知:∠AB’B=∠B’AC+∠C=2∠C=40°,∴∠B=∠AB’B=40°,∴△ABC旋转的角度为∠BAB’=180°-∠B-∠AB’B=180°-40°-40°=100°,故答案为:C.【变式1-4】(2021九上·庐江期末)如图,在△ABC中,∠BAC=65°,∠C=20°,将△ABC 绕点A逆时针旋转n度(0<n<180)得到△ADE,若DE∥AB,则n的值为( )A.65B.75C.85D.130【答案】C【解答】∵DE∥AB,∴∠DAB=180°-∠D,∵∠D=∠B=180°-20°-65°=95°,∴∠DAB=180°-95°=85°,∴n=85°,故答案为:C.【典例2】(2021九上·道里期末)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=Rt△ABC绕点A逆时针旋转得到Rt△AB'C',连接BB',则BB'的长度是( )D.A.1B.3C【解答】解:∵在Rt△ABC中,∠C=90°,∠ABC=30°,AC∴∠BAC=90°-∠ABC=60°,∵将Rt△ABC绕点A逆时针旋转得到Rt△AB'C',∴∠BAB'=∠BAC=60°,AB=AB',∴△ABB'是等边三角形,∴故答案为:D.【变式2-1】(2021九上·香坊期末)如图,将RtΔABC绕点A按顺时针旋转一定角度得到RtΔADE,点B的对应点点D恰好落在边BC上,若AC=∠ABC=60°,则CD的长为( )A.3B.2CD.1【答案】B∠ABC=60°,∠BAC=90°【解答】解:∵AC=∴∠C=90°-∠ABC=30°∵BC2=AC2+AB2∴AB=2,BC=2AB=4,∵Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,∴AD=AB,且∠B=60°∴△ADB是等边三角形∴BD=AB=2,∴CD=BC−BD=4−2=2故答案为:B.【变式2-2】(2021秋•韶关期末)如图,将△ABC绕点A顺时针旋转60°得到△AED,若AB=3cm,则BE等于( )A.2cm B.3cm C.4cm D.5cm【答案】B【解答】解:∵将△ABC绕点A顺时针旋转60°得到△AED,∴AB=AE=3cm,∠BAE=60°,∴△ABE是等边三角形,∴AB=AE=BE=3cm,故选:B【变式2-3】(2021秋•邓州市期末)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC =1,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,连结BB',则△A'BB'的周长为( )A.B.1+C.2+D.3+【解答】解:∵∠ACB=90°,∠A=60°,AC=1,∴BC=AC=,AB=2AC=2,∵△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,∴CA=CA′,CB=CB′,∠ACA′=∠BAB′,∵CA=CA′,∠A=60°,∴△CAA′为等边三角形,∴∠ACA′=60°,AA′=AC=1,∴A′B=1,∴∠BCB′=60°,∴△CBB′为等边三角形,∴BB′=CB=,∴△A'BB'的周长为A′B+AB′+BB′=2+1+=3+,故选:D.【典例3】(2021秋•岳池县期末)如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)试判断AD与OD的位置关系,并说明理由;(3)若OB=2,OC=3,求AO的长(直接写出结果).【答案】(1)∠ODC=60°(2)AD⊥OD (3)【解答】解:(1)由旋转的性质得,CD=CO,∠ACD=∠BCO,∴∠ACD+∠ACO=∠BCO+∠ACO,即∠DCO=∠ACB,∵三角形ABC是等边三角形,∴∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;(2)AD与OD的位置关系是:AD⊥OD,理由如下:由(1)知∠ODC=60°,∵将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC﹣∠ODC=90°,∴AD⊥OD;(3)由旋转的性质得,AD=OB=2,∵△OCD为等边三角形,∴OD=OC=3,在Rt△AOD中,由勾股定理得:AO===.【变式3-1】(2021九上·中山期末)如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B 逆时针旋转得到△FBE,点C,A的对应点分别为E,F.点E落在BA上,连接AF.(1)若∠BAC=40°,求∠BAF的度数;(2)若AC=8,BC=6,求AF的长.【答案】(1)解:在Rt△ABC中,∠C=90°,∠BAC=40°,∴∠ABC=50°,∵将△ABC绕着点B逆时针旋转得到△FBE,∴∠EBF=∠ABC=50°,AB=BF,∴∠BAF=∠BFA=1(180°-50°)=65°2(2)解:∵∠C=90°,AC=8,BC=6,∴AB=10,∵将△ABC绕着点B逆时针旋转得到△FBE,∴BE=BC=6,EF=AC=8,∴AE=AB-BE=10-6=4,∴【变式3-2】(2021九上·谷城期中)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.【答案】解:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵△PAC绕点A逆时针旋转后,得到△P′AB,∴AP′=AP,∠P′AP=∠BAC=60°,BP′=CP=10,∴△AP′P为等边三角形,∴P′P=AP=6,∠APP′=60°,在△PBP′中,PP′=6,BP′=10,PB=8,∵62+82=102,∴P′P2+PB2=P′B2,∴∠BPP′=90°,∴∠APB=∠APP′+∠BPP′=60°+90°=150°.故答案为6,150.【考点2 利用旋转计算面积】【典例4】(2021九上·鄞州月考)如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为 .【答案】4【解答】解:∵在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=4,∴△A1BA是等腰三角形,∠A1BA=30°,∴SΔA1BA= 12×4×2=4.又∵S阴影= SΔA1BA+ SΔA1BC1﹣S△ABC,SΔA1BC1=S△ABC,∴S阴影= SΔA1BA=4.故答案为:4.【变式4-1】(2022•瑞金市模拟)如图,将边长为的正方形绕点B逆时针旋转30°,那么图中阴影部分的面积为( )A.3B.C.D.【解答】解:设C'D'与AD交于M,连接BM,如图:∵边长为的正方形绕点B逆时针旋转30°,∴AB=BC',∠A=∠C'=90°,∠CBC'=30°,∵BM=BM,∴△ABM≌△C'BM(HL),∴∠ABM=∠C'BM=30°,在Rt△ABM中,AM ==1,∴S △ABM =AB •AM ==S △BC 'M ,∴S 阴影=()2﹣S △ABM ﹣S △BC 'M =3﹣,故选:C .【变式4-2】(2021秋•丰泽区校级期末)如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2.将△ABC 绕点C 按顺时针方向旋转到点D 落在AB 边上,此时得到△EDC ,斜边DE 交AC 边于点F ,则图中阴影部分的面积为( )A .3B .1C .D .【解答】解:∵△ABC 是直角三角形,∠ACB =90°,∠A =30°,BC =2,∴∠B =60°,AC =BC =2×=2,AB =2BC =4,∵△EDC 是△ABC 旋转而成,∴BC =CD =AB =2,∵∠B =60°,∴△BCD 是等边三角形,∴∠BCD =60°,∴∠DCF =30°,∠DFC =90°,即DE ⊥AC ,∴DE ∥BC ,∵BD =AB =2,∴DF 是△ABC 的中位线,∴DF =BC =×2=1,CF =AC =×2=,∴S 阴影=DF ×CF =×1×=,故选:D .【变式4-3】(2021秋•南丹县期末)如图,边长相等的两个正方形ABCD和OEFG,若将正方形OEFG绕点O按逆时针方向旋转120°,两个正方形的重叠部分四边形OMCN的面积( )A.不变B.先增大再减小C.先减小再增大D.不断增大【解答】解:∵四边形ABCD和四边形OEFG是正方形,∴OB=OC,∠BOC=∠MON=90°,∠OBC=∠OCD=45°,∴∠BOM=∠CON,在△BOM和△CON中,,∴△BOM≌△CON(ASA),∴S△BOM =S△CON,∴两个正方形的重叠部分四边形OMCN的面积为S△BOC =S正方形ABCD,故选:A【考点3 坐标系中图形旋转的规律】【典例5】(2021秋•阳东区期末)如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2020次得到正方形OA2020B2020C2020,如果点A的坐标为(1,0),那么点B2020的坐标为( )A.(﹣1,1)B.C.(﹣1,﹣1)D.【答案】C【解答】解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),B4(﹣1,﹣1),…,发现是8次一循环,所以2020÷8=252…4,∴点B2020的坐标为(﹣1,﹣1)故选:C.【变式5-1】(2021九上·惠来月考)如图,在正方形ABCD中,顶点A,B,C,D在坐标轴上,且B(2,0),以AB为边构造菱形ABEF.将菱形ABEF与正方形ABCD组成的图形绕点O逆时针旋转,每次旋转45°,则第2020次旋转结束时,点F2020的坐标为( )A.(−2,B.(−2,C.−2)D.−2)【答案】D【解答】∵点B的坐标为(2,0),∴OB=2,由正方形的性质,得OA=2,=∴AB=∵四边形ABEF为菱形,∴AF=AB=2),∴由题,可知旋转为每8次一个循环,2020÷8=252⋯4,∴第2020次旋转结束时,点F2020与点F关于原点对称,−2),∴F故答案为:D.【变式5-2】(2021•张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是( )A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)【答案】A【解答】解:∵四边形OABC是正方形,且OA=1,∴A(0,1),∵将正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,∴A1(,),A2(1,0),A3(,﹣),…,发现是8次一循环,所以2019÷8=252 (3)∴点A2019的坐标为(,﹣)故选:A.【变式5-3】(2021秋•郧阳区期末)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(3,0),B(0,4),则点B2021的横坐标为( )A.12120B.12128C.12123D.12125【答案】B【解答】解:∵点A(3,0),B(0,4),∴OA=3,OB=4,∴AB==5,∴OA+AB1+B1C2=3+5+4=12,观察图象可知,点B2020的纵坐标为4,∵2020÷2=1010,∴点B2020的横坐标为1010×12=12120,12120+3+5=12128∴点B2021的坐标为(12128,0).故选:B.1.(2021九上·海曙期末)如图,在△ABC中,∠BAC=75∘,以点A为旋转中心,将△ABC绕点A逆时针旋转得到△ADE,点B、C的对应点分别为D、E,连接CE,若CE//AB,则∠CAE的值是( )A.25∘B.30∘C.35∘D.45∘【答案】B【解答】解:∵CE∥AB,∴∠BAC=∠ACE=75°;∵以点A为旋转中心,将△ABC绕点A逆时针旋转得到△ADE,∴AE=AC,∴∠AEC=∠ECA=75°;∴∠CAE=180°-2×75°=30°.故答案为:B.2.(2021九上·虎林期末)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,将Rt△ABC绕点A逆时针旋转得到Rt△ABC,使点C落在AB边上,连接BB,则BB的长度是( )A.1cm B.2cm CD.【解答】解:∵∠C=90°,∠ABC=30°,AC=1cm,由直角三角形中,30°角所对的直角边等于斜边的一半可知,∴AB=2AC=2cm,又∠CAB=90°-∠ABC=90°-30°=60°,由旋转的性质可知:∠CAB=∠BA B′=60∘,且AB=A B′,∴ΔBA B′为等边三角形,∴B B′=AB=2.故答案为:B.3.(2022春•泗县期中)如图所示,△ABC为直角三角形,BC为斜边,将△ABP绕点A逆时针旋转后,能与△ACP'重合.如果AP=3,那么PP'的长等于( )A.B.C.3D.4【答案】A【解答】解:∵△ABC是直角三角形,∴∠BAC=90°,∵△ABP绕点A逆时针旋转后,能与△ACP′重合,∴AP=AP′,AB=AC,∠PAP′=∠BAC=90°,∴△APP′为等腰直角三角形,∴PP′=AP=3,故选:A.4.(2021秋•甘井子区期末)如图,Rt△ABC中,∠ABC=90°,∠BAC=60°,AB=1,将△ABC绕点B顺时针旋转得到△A'BC',若直线A'C'经过点A,则CC'的长为( )A.1B.2C.D.4【答案】C【解答】解:∵将△ABC 绕点B 顺时针旋转得到△A 'BC ',∴BA =BA ',BC =BC ',∠BAC =∠BA 'C ',∵∠BAC =60°,∴∠A '=60°,∴△ABA '是等边三角形,∴∠ABA '=60°,∴∠CBC '=∠ABA '=60°,∴△BCC '是等边三角形,∴CC '=BC ,∵∠ABC =90°,∠BAC =60°,∴∠ACB =30°,∴AC =2AB =2,∴BC =,∴CC '=BC =,故选:C5(2022·呼和浩特)如图,△ABC 中,∠ACB =90°,将△ABC 绕点C 顺时针旋转得到△EDC ,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F .若∠BCD =α,则∠EFC 的度数是(用含α的代数式表示)( )A .90°+12αB .90°−12αC .180°−32αD .32α【答案】C 【解答】解:∵将△ABC 绕点C 顺时针旋转得到△EDC ,且∠BCD =α∴BC=DC ,∠ACE=α,∠A=∠E ,∴∠B=∠BDC ,∴∠B=∠BDC=180°−α2=90°−α2,∴∠A=∠E=90°−∠B=90°−90°+α2=α2,∴∠A=∠E=α2,∴∠EFC=180°−∠ACE−∠E=180°−α−α2=180°−32α,故答案为:C.6.(2021九上·富裕期末)如图,点D是等边△ABC内一点,AD=3,BD=3,CD=3△ACE是由△ABD绕点A逆时针旋转得到的,则∠ADC的度数是( )A.40°B.45°C.105°D.55°【答案】C【解答】解:连接DE,如图:∵ΔABC是等边三角形,∴AB=AC,∠BAC=60°∴∠BAD+∠CAD=60°由旋转可得,ΔBAD≅ΔCAE∴∠CAE=∠BAD,AD=AE=3,CE=BD=3∴∠CAE+∠CAD=60°,即∠DAE=60°∴ΔDAE是等边三角形,∴DE=AD=3,∠ADE=60°∵DE=3,CE=3,CD=∴D E2=9,C E2=9,C D2=18∴D E2+C E2=C D2∴△CDE是等腰直角三角形,∴∠CDE=45°∴∠ADC=∠ADE+∠CDE=60°+45°=105°故答案为:C7.(2022·益阳)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC∥C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有( )A.①②③B.①②④C.①③④D.②③④【答案】B【解答】解:∵△ABC绕A点逆时针旋转50°得到△AB′C′,∴BC=B′C′.故①正确;∵△ABC绕A点逆时针旋转50°,∴∠BAB′=50°,∴∠B′AC=∠BAB′−∠CAB=50°-20°=30°,∵∠AB′C′=∠ABC=30°,∴∠AB′C′=∠B′AC,∴AC∥C′B′.故②正确;在△BAB′中,∵AB=AB′,∠BAB′=50°,(180°−50°)=65°,∴∠AB′B=∠ABB′=12∴∠BB′C′=∠AB′B+∠AB′C′=65°+30°=95°,∴C′B′与BB′不垂直.故③错误;在△ACC′中,AC=AC′,∠CAC′=50°,∴∠ACC′=1(180°−50°)=65°,2∴∠ABB′=∠ACC′,故④正确.∴正确结论的序号为:①②④.故答案为:B.8.(2021九上·集贤期末)如图,在△ABC中,∠C=36°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB′=CB′,则旋转角为 度.【答案】36【解答】解:根据题意,可得∠BAB为旋转角,∵AB′=CB′∴∠C=∠CAB=36°∴∠ABB=2∠C=72°由旋转的性质可得:AB=AB∴∠B=∠ABB=72°∴∠BAB=36°故答案为:369.(2022春•通道县期末)已知,正方形ABCD的边长是4,正方形OMNE(OM>AC)绕着正方形ABCD的对称中心O旋转,那么两正方形重叠部分的面积是 .【答案】4【解答】解:如图:∵四边形ABCD和四边形OENM都是正方形,∴OD=OC,∠ODP=∠OCF=45°,∠DOC=∠EOM=90°,∴∠DOP=∠COF.在△PDO和△FCO中,,∴△PDO≌△FCO(ASA),∴两正方形重叠部分的面积是等于△DOC的面积,即重叠部分面积不变,总是等于正方形面积的,∵正方形的边长为4,∴正方形的面积为16,∴重叠部分面积不变为.故答案为:4.10.(2022•新城区校级一模)如图,D是等边三角形ABC外一点,AD=6,CD=4,当BD 长最大时,△ABC的面积为 .【答案】19【解答】解:如图1,以CD为边作等边△DCE,连接AE.∵BC=AC,CD=CE,∠BCA=∠DCE=60°,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE,∵AE≤AD+DE,当A、D、E三点共线时,AE=AD+DE=10,其值最大,∴AE的最大值为10,∴BD的最大值为10,过点A作AF⊥BD于F,如下图,∵△BCD≌△ACE,∴∠BDC=∠E=60°,∴∠ADF=60°,∵AF⊥BD,∴∠DAF=30°,∴DF=AD=3,AF=DF=3,∴BF=10﹣3=7,∴AB2=AF2+BF2=76,∴△ABC的面积=AB2=19,故答案为:1911.(2022春•高州市期末)如图,在△ABC中,AB=8,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分面积为 .【答案】16【解答】解:过A作AD⊥A1B于D,如图:在△ABC中,AB=8,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=8,∴△A1BA是等腰三角形,∠A1BA=30°,∵AD⊥A1B,∴AD=AB=4,∴S△A1BA=×8×4=16,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,且S△A1BC1=S△ABC,∴S阴影=S△A1BA=16,故答案为:16.12.(2021九上·龙江期末)如图,在平面直角坐标系中,四边形ABOC是正方形,点A 的坐标为(1,1),AA1⌢是以点B为圆心,BA为半径的圆弧;A1A2⌢是以点O为圆心,OA1为半径的圆弧,A2A3⌢是以点C为圆心,CA2为半径的圆弧,A3A4⌢是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A2021的坐标是 .【答案】(2021,0)【解答】解:∵A点坐标为(1,1),且A1为A点绕B点顺时针旋转90°所得∴A1点坐标为(2,0)又∵A2为A1点绕O点顺时针旋转90°所得∴A2点坐标为(0,-2)又∵A3为A2点绕C点顺时针旋转90°所得∴A3点坐标为(-3,1)又∵A4为A3点绕A点顺时针旋转90°所得∴A4点坐标为(1,5)由此可得出规律:A n为绕B、O、C、A四点作为圆心依次循环顺时针旋转90°,且半径为1、2、3、、n,每次增加1.∵2021÷4=505 (1)故A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90°所得故A2021点坐标为(2021,0).故答案为:(2021,0).13.(2021九上·黔西南期末)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y上,再将△A1BO1绕点A1顺时针旋转到△A1B1Q2的位置,使点O1的对应点O2落在直线y上,依次进行下去…,1),则点A12的横坐标是 .若点A的坐标是(0,1),点B的坐标是【答案】9)【解答】解:根据将△A 1BO 1绕点A 1顺时针旋转到△A 1B 1O 2的位置可知:∠BA 1O 1=90°,∴∠OAB =90°,当y =1时,xAB ∴∠AOB =60°,如图,延长A 2O 2交x 轴于E ,则∠OEO 2=90°,∴OO2==∴O 2∴=32(),∴点A 2的横坐标为32(),同理可得:点A4的横坐标3),点A 6的横坐标92(),点A8的横坐标6),∴点A12的横坐标是32×6),即9).故答案为:9).14.(2021九上·新乡期末)如图,△ABC的顶点A,B分别在x轴,y轴上,∠ABC=90°,OA=OB=1,BC=△ABC绕点O顺时针旋转,每次旋转90°,则第2021次旋转结束时,点C的坐标为 .【答案】(3,-2)【解答】解:如图,过点C作CD⊥y轴于点D,∵OA=OB=1,∠AOB=90°,∴∠ABO=45°,∵∠ABC=90°,∴∠CBD=45°,∴∠BCD=45°,∴BD=CD,∵BC=2,∴B D2+C D2=B C2=∴BD=CD=2,∴OD=OB+BD=3,∴点C(2,3),将△ABC绕点O顺时针旋转,第一次旋转90°后,点C(3,-2),将△ABC绕点O顺时针旋转,第二次旋转90°后,点C(-2,-3),将△ABC绕点O顺时针旋转,第三次旋转90°后,点C(-3,2),将△ABC绕点O顺时针旋转,第四次旋转90°后,点C(2,3),⋯⋯由此发现,△ABC绕点O顺时针旋转四次一个循环,∵2021÷4=55⋯⋯1,∴第2021次旋转结束时,点C的坐标为(3,-2).故答案为:(3,-2)15.(2021九上·互助期中)如图将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,求BD的长.【答案】解:由旋转的性质得:AB=AD=1,∠BAD=∠CAE=90°,=.∴BD=16.如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.【答案】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵DB=CB∠DBE=∠CBEBE=BE,∴△BDE≌△BCE;(2)解:四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴四边形ABED为菱形17.(2016九上·涪陵期中)如图,P是正三角形ABC内的一点,且PA=5,PB=12,PC=13,若将△PAC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB 的度数.【答案】解:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵△PAC绕点A逆时针旋转后,得到△P′AB,∴∠P′AP=∠BAC=60°,AP′=AP,BP′=CP=13,∴△AP′P为等边三角形,∴PP′=AP=5,∠APP′=60°,在△BPP′中,∵PP′=5,BP=12,BP′=13,∴PP′2+BP2=BP′2,∴△BPP′为直角三角形,∠BPP′=90°,∴∠APB=∠APP′+∠BPP′=60°+90°=150°.答:点P与点P′之间的距离为5,∠APB的度数为150°.18.(2022春•渭滨区期末)如图,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.(1)求线段OD的长;(2)求∠BDC的度数.【解答】解:(1)∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=∠ABC=60°,∴△OBD为等边三角形,∴OD=BO=4;(2)∵△BOD为等边三角形,∴∠BDO=60°,OD=4,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵CD2+OD2=32+42=52=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°.19.(2022春•永丰县期中)如图,在△ABC中,BA=BC,∠ABC=40°,将△ABC绕点B按逆时针方向旋转110°,得到△DBE,连接AD,CE.(1)求证:△ABD≌△CBE.(2)求∠ACE的度数.【解答】(1)证明:∵△ABC绕点B按逆时针方向旋转110°,∴∠ABC=∠DBE,∠ABD=∠CBE,AB=BC=BD=BE,在△ABD与△CBE中,,∴△ABD≌△CBE(SAS);(2)解:∵∠ABD=∠CBE=110°,BA=BC=BD=BE,∴∠BAD=∠ADB=∠BCE=∠BEC=35°.∵AB=BC,∠ABC=40°,∴∠ACB=70°,∴∠ACE=∠ACB+∠BCE=105°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、在△ABC中,∠CAB=700,在同一平面内,△将ABC试点A旋试到△AB′C′的位置,使得CC′∥AB,试∠BAB′=()
A. 300
B. 350
C. 400
D. 500
2、△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP'重合,如果AP=3,那么线段PP'的长等于_________________________.
3、在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,连接BB′,则BB′的长度为___
4、已知∠AOB=90°,点A绕点0顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,…,连接AA1,AA2,AA3…,依此作法,则∠AA n A n+1等于_____度.(用含n的代数式表示,n为正整数)
5、已知△ABC是正三角形,OC⊥OB,OC=OB,将△ABC绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是_____________________.
6、如图,P点是正方形ABCD内一点,△ABP经旋转后与△CBP'重合,旋转中心是点_____________,旋转了
____________度,若PB=3,则△PBP/ 面积是_______________.
7、如图,在平面内将Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC,若AB=√5,BC=1,则线段BE的长为_____________.
8、在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转一定角度后得到△EDC,此时点D在AB 边上,斜边DE交AC边于点F.则DC的长____________;旋转的角度_______________;图中阴影部分的面积
________________..
9、将边长为√3的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为______
10、如图是由三个叶片组成的,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为 cm2.
如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP沿顺时针方向旋转,使点A与点C重合,这时P点旋转到G点.
(1)请画出旋转后的图形,并说明此时△ABP以点B为旋转中心旋转了多少度?
(2)求出PG的长度;
(3)请你猜想△PGC的形状,并说明理由.
答案(找作业答案--->>上魔方格)
解:(1)旋转后的△BCG如图所示,旋转角为∠ABC=90°;
(2)连接PG,由旋转的性质可知BP=BG,∠PBG=∠ABC=90°,
∴△BPG为等腰直角三角形,
又BP=BG=2,
∴PG==2;
(3)由旋转的性质可知CG=AP=1,已知PC=3,
由(2)可知PG=2,
∵PG2+CG2=(2)2+12=9,PC2=9,
∴PG2+CG2=PC2,
∴△PGC为直角三角形.
马上分享给同学
1C 2、3倍根号2 3、根号3 4 180度减去2的n次幂分之90 5、150度6、B,90 45 7、3 8、2分之根号3 9、根号3 10、5。

相关文档
最新文档