塔吊稳定性验算稳定安全系数计算公式
塔吊的稳定性验算

塔吊的稳定性验算塔吊的稳定性验算塔吊抗倾覆稳定性校核应遵照GB3811—83“起重机设计规范”中的有关规定进行。
1.无风、静载稳定性校核验算工况是:起重臂处于最大幅度位置(对于小车变幅起重臂小车位于最大幅度),起重臂指向下坡方向,无风,起重机静置并负有额定载荷,塔式起重机无风静载工况下抗倾覆稳定性按下式验算:0.95M K——K L M L——M D≥0式中M K——由塔吊自重及压重产生的稳定力矩;M L——塔吊负载对倾覆边的力矩;K L——载荷系数,查GB3811—83,取为1.4;M D——由坡度因素而产生的倾覆力矩。
2.有风、动载稳定性校核验算工况是,起重臂处于最大幅度位置(对于小车变幅臂架,小车位于最大幅度),风从平衡臂吹向起重臂,塔式起重机负有额定荷载并正在工作中。
塔吊有风动载工况下的抗倾覆稳定性按下式验算:0.95M K——K L M L——M W——M D≥0式中M K——由塔吊重及压重产生的稳定力矩;K L——载荷系数,查GB3811—83,取为1.15;M L——由起重机额定载荷产生的倾覆力矩;M W——由作用于塔吊各部的风荷及作用于荷载迎风面的风荷所产生的倾覆力矩;M D——由工作机构工作、起、制动以及风荷动力作用、坡度因素而产生的倾覆力矩。
3.突然卸载(或吊具脱落)稳定性校核验算工况是,起重臂仰起处于最小幅度(对于小车变幅起重臂,小车位于臂根处),风从起重臂吹向平衡臂,塔式起重机突然卸载或吊具突然脱落。
在此工况下,塔吊抗倾覆稳定性按下式验算0.95M K——M O——M W——M D≥0式中M K——由塔吊自重及压重产生的稳定力矩;M O——由于突然卸载而造成的倾覆力矩,查GB3811-83,可大致取为0.2Q H L(Q H为额定载荷,L为幅度);M W——由作用于塔吊各部的风荷所产生的倾覆力矩;M D——由于坡度等因素而造成的倾覆力矩。
4.安装状态时稳定性校核上回转塔吊在塔身立起后的稳定性按下式验算P w1h≤0.95CP G式中P w1——工作状态最大风力(N);h——风载荷合力作用点距地高度(m);P G——塔吊已架立部分的重量(t);C——塔吊已架立部分重心至倾翻边的水平距离(m)。
塔吊计算书

附塔机基础及平衡重和塔吊计算书○1基础计算书一、参数信息塔吊型号:QTZ80,塔吊起升高度H:50.00m,塔身宽度B:1.6m,基础埋深d:1.60m,自重G:600kN,基础承台厚度hc:1.00m,最大起重荷载Q:60kN,基础承台宽度Bc:5.50m,混凝土强度等级:C35,钢筋级别:HRB400,基础底面配筋直径:25mm二、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=600kN;塔吊最大起重荷载:Q=60kN;作用于塔吊的竖向力:Fk=G+Q=600+60=660kN;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mkmax=960kN·m;三、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=Mk /(Fk+Gk)≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离; Mk──作用在基础上的弯矩;Fk──作用在基础上的垂直载荷;Gk ──混凝土基础重力,Gk=25×5.5×5.5×1=756.25kN;Bc──为基础的底面宽度;计算得:e=960/(660+756.25)=0.678m < 5.5/3=1.833m;基础抗倾覆稳定性满足要求!四、地基承载力验算依据《建筑地基基础设计规范》(GB50007-2011)第5.2条承载力计算。
计算简图:混凝土基础抗倾翻稳定性计算: e=0.678m < 5.5/6=0.917m 地面压应力计算: P k =(F k +G k )/A P kmax =(F k +G k )/A + M k /W式中:F k ──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F k =660kN ; G k ──基础自重,G k =756.25kN ; Bc ──基础底面的宽度,取Bc=5.5m ;M k ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M k = 960kN ·m ; W ──基础底面的抵抗矩,W=0.118Bc 3=0.118×5.53=19.632m 3; 不考虑附着基础设计值:P k =(660+756.25)/5.52=46.818kPaP kmax =(660+756.25)/5.52+960/19.632=95.717kPa ; P kmin =(660+756.25)/5.52-960/19.632=0kPa ; 实际计算取的地基承载力设计值为:f a =160.000kPa ;地基承载力特征值f a 大于压力标准值P k =46.818kPa ,满足要求!地基承载力特征值1.2×f a 大于无附着时的压力标准值P kmax =95.717kPa ,满足要求!五、基础受冲切承载力验算依据《建筑地基基础设计规范》(GB 50007-2011)第8.2.7条。
塔机稳定性计算

4.2.4.突然卸载稳定性
工作状态:考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:自重载荷取1,起升载荷取-0.2,风载荷系数取1.0。(1)起升载荷计算:
F.r=(8000+246)×15500×10=1278130000 Kg.mm(2)偏心e计算:
风力
风压迎风面积
2
部件
总面积mm
2
充实率ω
挡风折减系数
风载荷N
到基础距离mm 23530
对基础底面力矩N.mm 32669052 1406904 33025746 2669776
系数N/m 1.6 1.6 1.2
250 250 250 250
mm
2
塔身下转台支撑
1476273 4110752 0.3591 0.47 13884 657743
M=(132137500×1.5+3125025×1.0-49770422×1.0)×10 =1453108030N.mm F h =0N
Fg+Fv=[(8000+246+279)+120824]×10=1293490N e=1123.4mm
4.2.2.动态稳定性
工作状态:有风载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:起升载荷系数取1.30,离心力系数取1.0,自重载荷取1.0,风载荷系数取1.0(1)风载荷计算:
重心至回转中心距离
mm 2250 10500 20500 30500 40500 50500 57500 62500 67500 70740
力距Kg.mm 1080000 9082500 16154000 21746500 25758000 25856000 26737500 21060000 5871420
塔吊格构柱稳定性验算方法

塔吊格构柱稳定性验算方法本工程塔吊基础下的格构柱高度最长为20.5m,依据《钢结构设计规范》(GB50017-2003),计算模型选取塔吊最大独立自由高度60m,塔身未采取任何附着装置状态。
1、格构柱截面的力学特性:格构柱的截面尺寸为0.502×0.502m;主肢选用:16号角钢b×d×r=160×16mm;缀板选用(mXm):0.42×0.2主肢的截面力学参数为A0=49.07cm2,Z0=4.55cm,Ix0=1175.08cm2,Iy0=1175.08cm2;格构柱截面示意图格构柱的y-y轴截面总惯性矩:Z,=4Z,o÷Λ(∣-^o)2格构柱的x-x轴截面总惯性矩:b2A=4Λo+4经过计算得到:I x=4×[1175.08+49.07×(50.2/2-4.55)1=87589.85cm4;I y=4×[1175.08+49.07×(50.2/2-4.55)2]=87589.85cm4;2、格构柱的长细比计算:格构柱主肢的长细比计算公式:"44)其中H——格构柱的总高度,取21.7m;I——格构柱的截面惯性矩,取,1=87589.85cm1I尸87589.85Cm%A0------------ 个主肢的截面面积,取49.07Cm2。
经过计算得到3=102.72,I y=102.72。
格构柱分肢对最小刚度轴IT的长细比计算公式:其中b——缀板厚度,取b=0.5m°h——缀板长度,取h=0.2m°a1——格构架截面长,取a尸0.502m。
经过计算得iι=[(0.25+0.04)∕48+5×0.2520/8]0M.404m o为二21.7/0.404=53.7。
换算长细比计算公式:―=—经过计算得到NkX=II5.91,2ky=115.91o3、格构柱的整体稳定性计算:格构柱在弯矩作用平面内的整体稳定性计算公式:N赢&力其中N——轴心压力的计算值(kN);取N=1791.33kN;A——格构柱横截面的毛截面面积,取4X49.07cm;0——轴心受压构件弯矩作用平面内的稳定系数;根据换算长细比2ox=115.91,2o y=115.91≤《钢结构设计规范》得到。
稳定性计算计算书

稳定性计算计算书本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《建筑施工计算手册》(江正荣编著)等编制。
一、塔吊有荷载时稳定性验算塔吊有荷载时,计算简图:塔吊有荷载时,稳定安全系数可按下式验算:式中K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15;G──塔吊自重力(包括配重,压重),G=310.00(kN);c──塔吊重心至旋转中心的距离,c=1.50(m);h o──塔吊重心至支承平面距离, h o=6.00(m);b──塔吊旋转中心至倾覆边缘的距离,b=2.50(m);Q──最大工作荷载,Q=60.00(kN);g──重力加速度(m/s2),取9.81;v──起升速度,v=0.50(m/s);t──制动时间,t=20.00(s);a──塔吊旋转中心至悬挂物重心的水平距离,a=15.00(m);W1──作用在塔吊上的风力,W1=4.00(kN);W2──作用在荷载上的风力,W2=0.30(kN);P1──自W1作用线至倾覆点的垂直距离,P1=8.00(m);P2──自W2作用线至倾覆点的垂直距离,P2=2.50(m);h──吊杆端部至支承平面的垂直距离,h=30.00m(m);n──塔吊的旋转速度,n=0.60(r/min);H──吊杆端部到重物最低位置时的重心距离,H=28.00(m);α──塔吊的倾斜角(轨道或道路的坡度),α=2.00(度)。
经过计算得到K1=1.506;由于K1≥1.15,所以当塔吊有荷载时,稳定安全系数满足要求!二、塔吊无荷载时稳定性验算塔吊无荷载时,计算简图:塔吊无荷载时,稳定安全系数可按下式验算:式中K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15; G1──后倾覆点前面塔吊各部分的重力,G1=310.00(kN);c1──G1至旋转中心的距离,c1=3.00(m);b──塔吊旋转中心至倾覆边缘的距离,b=2.00(m);h1──G1至支承平面的距离,h1=6.00(m);G2──使塔吊倾覆部分的重力,G2=100.00(kN);c2──G2至旋转中心的距离,c2=3.50(m);h2──G2至支承平面的距离,h2=30.00(m);W3──作用有塔吊上的风力,W3=5.00(kN);P3──W3至倾覆点的距离,P3=10.00(m);α──塔吊的倾斜角(轨道或道路的坡度),α=2.00(度)。
稳定性计算

稳定性计算本计算主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《建筑施工计算手册》(江正荣编著)等编制。
一、塔吊有荷载时稳定性验算塔吊有荷载时,计算简图:塔吊有荷载时,稳定安全系数可按下式验算:式中K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15;G──塔吊自重力(包括配重,压重),G=550.00(kN);c──塔吊重心至旋转中心的距离,c=1.50(m);h o──塔吊重心至支承平面距离, h o=60.00(m);b──塔吊旋转中心至倾覆边缘的距离,b=2.50(m);Q──最大工作荷载,Q=56.00(kN);g──重力加速度(m/s2),取9.81;v──起升速度,v=0.65(m/s);t──制动时间,t=20.00(s);a──塔吊旋转中心至悬挂物重心的水平距离,a=30.00(m);W1──作用在塔吊上的风力,W1=4.00(kN);W2──作用在荷载上的风力,W2=0.30(kN);P1──自W1作用线至倾覆点的垂直距离,P1=40.50(m);P2──自W2作用线至倾覆点的垂直距离,P2=3.00(m);h──吊杆端部至支承平面的垂直距离,h=118.90m(m);n──塔吊的旋转速度,n=0.65(r/min);H──吊杆端部到重物最低位置时的重心距离,H=83.00(m);α──塔吊的倾斜角(轨道或道路的坡度),α=0.00(度)。
经过计算得到K1=1.256;由于K1≥1.15,所以当塔吊有荷载时,稳定安全系数满足要求!二、塔吊无荷载时稳定性验算塔吊无荷载时,计算简图:塔吊无荷载时,稳定安全系数可按下式验算:式中K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15; G1──后倾覆点前面塔吊各部分的重力,G1=400.00(kN);c1──G1至旋转中心的距离,c1=3.00(m);b──塔吊旋转中心至倾覆边缘的距离,b=2.50(m);h1──G1至支承平面的距离,h1=60.00(m);G2──使塔吊倾覆部分的重力,G2=80.00(kN);c2──G2至旋转中心的距离,c2=3.50(m);h2──G2至支承平面的距离,h2=83.00(m);W3──作用有塔吊上的风力,W3=5.00(kN);P3──W3至倾覆点的距离,P3=40.50(m);α──塔吊的倾斜角(轨道或道路的坡度),α=2.00(度)。
塔吊基础计算

QTZ63塔吊天然基础的计算书(一)参数信息塔吊型号:QTZ63,自重(包括压重)F1=450。
80kN,最大起重荷载F2=60.00kN,塔吊倾覆力距M=630.00kN.m,塔吊起重高度=70。
00m,塔身宽度B=1。
50m,混凝土强度等级:C35,基础埋深D=5.00m,基础最小厚度h=1。
35m,基础最小宽度Bc=5。
00m。
(二)基础最小尺寸计算基础的最小厚度取:H=1。
35m基础的最小宽度取:Bc=5。
00m(三)塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
计算简图:当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心距较大时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×510。
8=612。
96kN;G──基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D) =4012。
50kN;Bc──基础底面的宽度,取Bc=5。
00m;W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20。
83m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×630。
00=882.00kN。
m;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=5。
00/2—882.00/(612。
96+4012。
50)=2.31m。
经过计算得到:无附着的最大压力设计值 Pmax=(612.96+4012.50)/5。
002+882。
00/20。
83=227。
35kPa无附着的最小压力设计值 Pmin=(612。
96+4012.50)/5。
002—882.00/20.83=142.68kPa 有附着的压力设计值 P=(612。
塔吊边坡桩基础稳定性计算书

边坡桩基础稳定性计算书计算依据:1、《建筑基坑支护技术规程》JGJ120-2012一、参数信息1.基坑基本参数土类型粉土或砂土厚度h(m) 4 重度γ(kN/m^3) 18 浮重度γmi(kN/m^3) 8 粘聚力C(kPa) 10 内摩擦角φ(°) 30 土类型粘性土厚度h(m) 10 重度γ(kN/m^3) 21 浮重度γmi(kN/m^3) 11 粘聚力C(kPa) 8 内摩擦角φ(°) 203.荷载参数边坡桩基稳定性二、桩侧土压力计算1、水平荷载(1)、主动土压力系数:K a1=tan2(45°- φ1/2)= tan2(45-30/2)=0.333;K a2=tan2(45°- φ2/2)= tan2(45-30/2)=0.333;K a3=tan2(45°- φ3/2)= tan2(45-30/2)=0.333;K a4=tan2(45°- φ4/2)= tan2(45-30/2)=0.333;K a5=tan2(45°- φ5/2)= tan2(45-20/2)=0.49;K a6=tan2(45°- φ6/2)= tan2(45-20/2)=0.49;(2)、土压力、地下水以及地面附加荷载产生的水平荷载:第1层土:0 ~ 1米;(未与桩接触)第2层土:1 ~ 2米;(未与桩接触)第3层土:2 ~ 3米;H3' = ∑γi h i/γ3 = 36/18 = 2;σa3上= [γ3H3'+P1+P2a2/(a2+2l2)]K a3-2c3K a30.5 = [18×2+10+2.5]×0.333-2×10×0.3330.5 = 4.62kN/m;σa3下= [γ3(H3'+h3)+P1+P2a2/(a2+2l2)]K a3-2c3K a30.5= [18×(2+1)+10+2.5]×0.333-2×10×0.3330.5 = 10.62kN/m;第4层土:3 ~ 4米;H4' = ∑γi h i/γ4' = 54/8 = 6.75;σa4上= [γ4'H4'+P1+P2a2/(a2+2l2)]K a4-2c4K a40.5= [8×6.75+10+2.5]×0.333-2×10×0.3330.5 = 10.62kN/m;σa4下= [γ4'H4'+P1+P2a2/(a2+2l2)]K a4-2c4K a40.5+γ4'h4K a4+γw h4' = [8×6.75+10+2.5]×0.333-2×10×0.3330.5+8×1×0.333+10×1 = 23.286kN/m;第5层土:4 ~ 5米;H5' = ∑γi h i/γ5' = 62/11 = 5.636;σa5上= [γ5'H5'+P1+P2a2/(a2+2l2)]K a5-2c5K a50.5+γw h4' = [11×5.636+10+2.5]×0.49-2×8×0.490.5+10×1 = 35.323kN/m;σa5下= [γ5'H5'+P1+P2a2/(a2+2l2)]K a5-2c5K a50.5+γ5'h5K a5+γw h5' = [11×5.636+10+2.5]×0.49-2×8×0.490.5+11×1×0.49+10×2 = 50.717kN/m;第6层土:5 ~ 9米;H6' = ∑γi h i/γ6' = 73/11 = 6.636;σa6上= [γ6'H6'+P1]K a6-2c6K a60.5+γw h5' = [11×6.636+10]×0.49-2×8×0.490.5+10×2 = 49.491kN/m;σa6下= [γ6'H6'+P1]K a6-2c6K a60.5+γ6'h6K a6+γw h6' = [11×6.636+10]×0.49-2×8×0.490.5+11×4×0.49+10×6 = 111.064kN/m;(3)、水平荷载:第1层土:E a1=0kN/m;第2层土:E a2=0kN/m;第3层土:E a3=h3×(σa3上+σa3下)/2=1×(4.62+10.62)/2=7.62kN/m;作用位置:h a3=h3(2σa3上+σa3下)/(3σa3上+3σa3 )+∑h i=1×(2×4.62+10.62)/(3×4.62+3×10.62)+6=6.434m;下第4层土:E a4=h4×(σa4上+σa4下)/2=1×(10.62+23.286)/2=16.953kN/m;作用位置:h a4=h4(2σa4上+σa4下)/(3σa4上+3σa4)+∑h i=1×(2×10.62+23.286)/(3×10.62+3×23.286)+5=5.438m;下第5层土:E a5=h5×(σa5上+σa5下)/2=1×(35.323+50.717)/2=43.02kN/m;作用位置:h a5=h5(2σa5上+σa5下)/(3σa5上+3σa5)+∑h i=1×(2×35.323+50.717)/(3×35.323+3×50.717)+4=4.47m;下第6层土:E a6=h6×(σa6上+σa6下)/2=4×(49.491+111.064)/2=321.109kN/m;作用位置:h a6=h6(2σa6上+σa6下)/(3σa6上+3σa6)+∑h i=4×(2×49.491+111.064)/(3×49.491+3×111.064)+0=1.744m;下土压力合力:E a= ΣE ai= 7.62+16.953+43.02+321.109=388.701kN/m;合力作用点:h a= Σh i E ai/E a= (7.62×6.434+16.953×5.438+43.02×4.47+321.109×1.744)/388.701=2.299m;2、水平抗力计算(1)、被动土压力系数:K p1=tan2(45°+ φ1/2)= tan2(45+20/2)=2.04;K p2=tan2(45°+ φ2/2)= tan2(45+20/2)=2.04;(2)、土压力、地下水产生的水平荷载:第1层土:4 ~ 5米;σp1上= 2c1K p10.5 = 2×8×2.040.5 = 22.85kN/m;σp1下= γ1h1K p1+2c1K p10.5 = 21×1×2.04+2×8×2.040.5 = 65.682kN/m;第2层土:5 ~ 9米;H2' = ∑γi h i/γ2' = 21/11 = 1.909;σa2上= γ2'H2'K p2+2c2K p20.5 = 11×1.909×2.04+2×8×2.040.5 = 65.682kN/m;σa2下= γ2'H2'K p2+2c2K p20.5+γ2'h2K p2+γw h2' = 11×1.909×2.04+2×8×2.040.5+11×4×2.04+10×4 = 195.425kN/m;(3)、水平荷载:第1层土:E p1=h1×(σp1上+σp1下)/2=1×(22.85+65.682)/2=44.266kN/m;作用位置:h p1=h1(2σp1上+σp1下)/(3σp1上+3σp1 )+∑h i=1×(2×22.85+65.682)/(3×22.85+3×65.682)+4=4.419m;下第2层土:E p2=h2×(σp2上+σp2下)/2=4×(65.682+195.425)/2=522.214kN/m;作用位置:h p2=h2(2σp2上+σp2下)/(3σp2上+3σp2)+∑h i=4×(2×65.682+195.425)/(3×65.682+3×195.425)+0=1.669m;下土压力合力:E p= ΣE pi= 44.266+522.214=566.48kN/m;合力作用点:h p= Σh i E pi/E p= (44.266×4.419+522.214×1.669)/566.48=1.884m;三、桩侧弯矩计算1.主动土压力对桩底的弯矩M1 = 0.7×0.6×388.701×2.299 = 375.329kN·m;2.被动土压力对桩底的弯矩M2 = 0.6×566.48×1.884 = 640.24kN·m;3.支撑对桩底弯矩M3 = 170kN·m;四、基础稳定性计算M3+M2≥K(M+M1)170+640.24=810.24kN·m ≥ 1.2×(100+375.329)=570.395kN·m;塔吊稳定性满足要求!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塔吊稳定性验算稳定安全系数计算公式
塔吊稳定性验算可分为有荷载时和无荷载时两种状态。
下面分别做详细介绍。
一、塔吊有荷载时稳定性验算
塔吊有荷载时,计算简图:
塔吊有荷载时,稳定安全系数可按下式验算:
式中
K1——塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15;
G——起重机自重力(包括配重,压重),G=440.02(kN);c——起重机重心至旋转中心的距离,c=0.5(m);
h0——起重机重心至支承平面距离, h0=6(m);
b——起重机旋转中心至倾覆边缘的距离,b=2.5(m);Q——最大工作荷载,Q=50(kN);
g——重力加速度(m/s2),取9.81;
v——起升速度,v=0.5(m/s);
t——制动时间,t=20(s);
a——起重机旋转中心至悬挂物重心的水平距离,a=15(m);W1——作用在起重机上的风力,W1=5(kN);
W2——作用在荷载上的风力,W2=1(kN);
P1——自W1作用线至倾覆点的垂直距离,P1=8(m);
P2——自W2作用线至倾覆点的垂直距离,P2=2.5(m);h——吊杆端部至支承平面的垂直距离,h=28(m);
n——起重机的旋转速度,n=1(r/min);
H——吊杆端部到重物最低位置时的重心距离,H=30(m);α——起重机的倾斜角(轨道或道路的坡度),α=2(度)。
经过计算得到K1 =1.856,塔吊有荷载时,1.856大于1.15,稳定安全系数满足要求。
二、塔吊无荷载时稳定性验算
塔吊无荷载时,计算简图:
塔吊无荷载时,稳定安全系数可按下式验算:
式中
K2——塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15;
G1——后倾覆点前面塔吊各部分的重力,G1=80(kN);
c1——G1至旋转中心的距离,c1=0.5(m);
b——起重机旋转中心至倾覆边缘的距离,b=3(m);
h1——G1至支承平面的距离,h1=6(m);
G2——使起重机倾覆部分的重力,G2=20(kN);
c2——G2至旋转中心的距离,c2=3.5(m);
h2——G2至支承平面的距离,h2=30(m);
W3——作用有起重机上的风力,W3=5(kN);
P3——W3至倾覆点的距离,P3=15(m);
α——起重机的倾斜角(轨道或道路的坡度),α=2(度)。
经过计算得到k2=2.485,塔吊无荷载时,2.485大于1.15,稳定安全系数满足要求。