苹果酸-乳酸菌发酵

合集下载

葡萄酒酿制-二次发酵(苹果酸-乳酸发酵)

葡萄酒酿制-二次发酵(苹果酸-乳酸发酵)

葡萄酒酿制-二次发酵(苹果酸-乳酸发酵)二次发酵是完全不同于酒精发酵的一个理化过程,它其实乳酸菌利用葡萄酒中苹果酸产生乳酸,二氧化碳和水的理化过程,严格意义上不能成为发酵,只是因为这个过程也产生二氧化碳气体,人们习惯成为发酵了,即为大生产中的苹果酸-乳酸发酵过程,这个工艺阶段对葡萄酒有很多好处,也有很多风险。

苹果酸-乳酸发酵下列简写为MLF(英文首字母缩写)进行MIL对葡萄酒的好处:(1)降低酸度,改善口感:是葡萄酒中常用的生物降酸法。

尤其对成熟度不好的葡萄而言,有重要意义,过熟的或者酸偏低的葡萄,这里不建议做MLF发酵,例如成熟非常好的玫瑰香,酸度一般都不会高,一定的酸度能够托起口腔内的骨架感,否则酒显得很干瘪;(2)提高葡萄酒稳定性:苹果酸在葡萄酒中所有有机酸里稳定性相对最差,很容易被微生物利用,从而引发各种病害,而MLF过程也就是利用的这一理化原理,进行完MLF的葡萄酒相对微生物稳定性好很多,这里值得一提的是,这个过程结束后,需要立即终止发酵,否则乳酸菌利用其他物质开始工作,葡萄酒的风味就会发生很大变化,可谓后患无穷。

(3)MLF 会丰富葡萄酒的香气:科学正常的MLF过程可以赋予葡萄酒舒适的乳香,还会副产部分酯香,对葡萄酒香气有很好的改进作用!进行MLF可能产生的风险——针对自酿酒(1)降酸过度,破坏葡萄酒的骨架感,也降低了葡萄酒自身抗病性,增加了感病风险;(2)不能科学判断终点及时终止发酵,导致乳酸菌利用及其他物质,产生异味和挥发酸,破坏香气;MLF发生的基本条件:总二氧化硫<15PPMpH值>3.0温度<20℃酒度<15%卫生条件:佳氧气条件:绝对厌氧,但要排气(自酿目前最好的是具水封圈的泡菜坛子,但二次利用重防感染)。

MLF终点判断——对于自酿者这确实是个难题,任何一种检测方法成本都比较高,而且比较难,目前能想到的可以简单判断的:第一看气泡,第二次发酵一般气泡没有第一那么明显,但是仔细观察也有的,过程也是抛物线形式变化的,从微弱到相对明显再到微弱时就赶快结束;第二是:用试纸看,一般正常发酵pH值变化在0.1-0.3之间,不知道能不能有试纸能看出来的。

苹果酸-乳酸发酵在葡萄酒酿造中的应用

苹果酸-乳酸发酵在葡萄酒酿造中的应用

苹果酸-乳酸发酵在葡萄酒酿造中的应用苹果酸-乳酸发酵(MLF)是将苹果酸转化为乳酸,同时产生二氧化碳。

由于苹果酸-乳酸发酵通常在酒精发酵结束后进行,因此,又称之为二次发酵。

能够进行苹果酸-乳酸发酵的乳酸菌主要有乳酸菌、明串珠菌、片球菌和酒球菌等属的细菌。

其中酒类酒球菌(Oenococcus oeni)是葡萄酒中进行苹-乳发酵最主要的乳酸菌,该属细菌对酒精和低pH具有较高的耐受性。

苹果酸-乳酸发酵是葡萄酒生物降酸的主要方法,可有效降低葡萄酒中的苹果酸。

苹果酸是一种具有强烈辛酸味的双羧基酸,常规的物理、化学降酸方法对苹果酸不起作用,而苹-乳发酵可降解苹果酸,使之转化为单羧基的、口感酸味柔和的乳酸,使葡萄酒的有机酸含量降低,酒体协调性增加,并可提高其生物稳定性和风味复杂性。

我们有时无法理解的是为什么这一发酵过程会放缓、甚至停止。

不完整的苹果酸-乳酸发酵酵可能延迟发酵,造成氧化,甚至产生令人讨厌的微生物。

因此,关于酵母菌株的挑选、以及对影响发酵过程主要因素的测试可以改进对苹果酸-乳酸发酵的控制。

启动苹果酸-乳酸发酵的方式主要有两种:(1)非接种发酵,苹果酸-乳酸发酵由葡萄酒中自然存在的苹果酸—乳酸菌群自发完成,但结果通常不够稳定、效率不高;(2)接种发酵,苹果酸-乳酸发酵由接种经扩大培养的苹果酸—乳酸菌发酵剂完成。

目前,接种发酵特性和酿酒适应性优良的乳酸茵已成为生产上启动苹果酸-乳酸发酵最普遍的方法。

发酵过程能否成功,受很多条件制约,主要因素如下:pH值:一般说来,葡萄酒的pH值如果大于3.3引发的问题较少,若PH值低于此数,发酵过程可能遇阻。

酒明串珠菌通常在葡萄酒pH低于3.5的条件下能表现出绝对优势,诸如乳酸菌、片球菌也能在此环境中存活、培育。

SO2浓度:酒精发酵过程中,某些酵母菌株能产生亚硫酸盐,可能抑制苹果乳酸菌的发酵。

葡萄浆中某些酵母菌株的出现可能绑定二氧化硫,决定产生游离态二氧化硫数量的数量。

苹果酸乳酸发酵工艺

苹果酸乳酸发酵工艺

苹果酸乳酸发酵工艺一、引言苹果酸乳酸发酵是一种常见的食品发酵工艺,通过菌种的作用将苹果酸转化为乳酸,从而改善食品的口感和保鲜效果。

本文将详细介绍苹果酸乳酸发酵的工艺过程和应用。

二、苹果酸乳酸发酵工艺过程1. 原料准备苹果酸乳酸发酵的主要原料是苹果酸和菌种。

苹果酸可以从新鲜苹果中提取或使用市售的苹果酸粉。

菌种一般采用乳酸菌或酵母菌。

2. 原料处理将苹果酸进行适当的处理,如去除果皮、去核、切碎等,以提高发酵效果。

菌种也需要进行培养和活化处理,以增加其活性。

3. 发酵条件控制发酵过程中,需要控制适宜的温度、pH值和氧气含量。

一般来说,乳酸菌适宜的温度为30-40摄氏度,pH值为5.5-6.5,氧气含量较低。

4. 发酵反应将处理好的苹果酸和菌种混合,放入发酵罐中进行反应。

发酵时间一般为24-48小时,期间需定期检测发酵情况,并进行必要的调整。

5. 产品处理发酵完成后,可对产品进行进一步处理。

如过滤、浓缩、杀菌等,以提高产品的质量和稳定性。

6. 包装和贮存将处理好的产品装入合适的包装容器中,并进行密封和贮存。

一般来说,苹果酸乳酸发酵产品可以在低温条件下保存较长时间。

三、苹果酸乳酸发酵的应用苹果酸乳酸发酵工艺广泛应用于食品工业中。

以下是几个常见的应用领域:1. 酸奶和乳制品苹果酸乳酸发酵可用于酸奶和乳制品的生产,增加产品口感和延长保鲜期。

酸奶中的乳酸菌起到促进消化和增强免疫力的作用。

2. 腌制食品苹果酸乳酸发酵也可用于腌制食品的生产,如酸黄瓜、酸菜等。

乳酸的产生可以降低食品的pH值,抑制有害菌的生长,增加食品的质量和风味。

3. 面包和糕点在面包和糕点的制作过程中,苹果酸乳酸发酵可用于提高面团的发酵性能和口感。

乳酸的产生可以促进面团的酵母活性,使面包更松软可口。

4. 调味品苹果酸乳酸发酵还可用于生产各种调味品,如酱油、酱料等。

乳酸的生成可以增加调味品的酸度和风味,提高产品的品质。

四、总结苹果酸乳酸发酵工艺是一种常见的食品发酵工艺,通过将苹果酸转化为乳酸,改善食品口感和保鲜效果。

苹果酸-乳酸菌发酵

苹果酸-乳酸菌发酵

苹果酸—乳酸菌发酵(Malolactic Fermentation, MLF)二发、苹乳发酵原理标签:杂谈分类:酿酒工艺另附技术工艺篇供参考:葡萄酒的苹果酸-乳酸发酵技术工艺管理苹果酸-乳酸发酵Malolactic Fermentation,MLF)是在乳酸细菌的作用下将苹果酸分解成乳酸和二氧化碳的过程,这一发酵使新(生)葡萄酒的酸涩、粗糙等特点消失,而变得柔软。

经苹果酸-乳酸发酵后的红葡萄酒,酸度降低,果香、醇香加浓,获得柔软、有皮肉和肥硕等特点,质量提高。

同时苹果酸-乳酸发酵还能增强葡萄酒的生物稳定性。

因此,苹果酸-乳酸发酵是名符其实的生物降酸作用。

5.1简史和意义第一个注意到这一发酵的是巴斯德,并且他把这一现象与在牛奶中观察到结果进行了比较。

到了1914年,瑞士的两位葡萄酒工作者Muller-Thurgau 和Osterwalder 才将这一发酵定名为苹果酸-乳酸发酵。

1945年以后,很多葡萄酒工作者和微生物学家对这一现象进行了深入的研究,取得了很大的进展,并导致HT5H 现代葡萄酒酿造基本原理HT 的产生(Peynaud ,1981 )。

根据这一原理,HT5H 要获得优质红葡萄酒,首先应该使糖被酵母菌发酵,苹果酸被乳酸细菌发酵,但不能让乳酸菌分解糖和其它葡萄酒成分;其次,应该尽快地使糖和苹果酸消失,以缩短酵母菌或乳酸细菌繁殖或这两者同时繁殖的时期,HT 因为在这一时期中,乳酸细菌可能分解糖和其它葡萄酒成分,Peynaud 将这一时期称HT5H 危险期;第三,当葡萄酒中不再含有糖和苹果酸时(而且仅仅在这个时候),葡萄酒才算真正生成,应该尽快地除去微生物。

5.2 苹果酸-乳酸发酵对葡萄酒质量的影响苹果酸-乳酸发酵对葡萄酒质量的影响受乳酸细菌发酵特性、生态条件、葡萄品种、葡萄酒类型以及工艺条件等多种因素的制约。

如果苹果酸-乳酸发酵进行得纯正,对提高酒质有重要意义,但乳酸菌也可能引起葡萄酒病害,使之败坏。

第七章 苹果酸-乳酸发酵及特种葡萄酒酿造

第七章 苹果酸-乳酸发酵及特种葡萄酒酿造

• (3)密封罐发酵 • 原酒——加糖浆 转入密封罐 原酒 加糖浆——转入密封罐内—— 转入密封罐内 酵母——发酵1个月 发酵1 酵母沉淀—— 加酵母 发酵 个月——酵母沉淀 酵母沉淀 下胶澄清——过滤 过滤——装瓶。 装瓶。 下胶澄清 过滤 装瓶 • 优点:取消转瓶和去塞工序,温度易控 优点:取消转瓶和去塞工序, 转瓶和去塞工序 发酵快,很多国家采用。 制,发酵快,很多国家采用。 • 缺点:质量较差,存放时间不长。 缺点:质量较差,存放时间不长。
• 著名起泡葡萄酒: 著名起泡葡萄酒: • 香槟酒(法国香摈省,瓶内发酵) 香槟酒(法国香摈省,瓶内发酵) • 阿斯蒂起泡葡萄酒(意大利阿斯蒂山 阿斯蒂起泡葡萄酒( 密封罐法) 麓,密封罐法)
三、世界著名特种葡萄酒 (P421-424) )
• 1、素丹(索泰尔纳)酒:法国波尔多地区,灰霉菌 素丹(索泰尔纳) 法国波尔多地区, 感染,贵腐酒,甜白型, 感染,贵腐酒,甜白型,发酵未结束添加葡萄酒精或 二氧化硫中止发酵。 二氧化硫中止发酵。 马尔萨拉酒:意大利西西里岛 红葡萄酿造, 西西里岛, 2、马尔萨拉酒:意大利西西里岛,红葡萄酿造,快 速分离,亚硫酸脱色,加糖发酵,加入树脂( 速分离,亚硫酸脱色,加糖发酵,加入树脂(烧焦了 的松树),特殊风味。 ),特殊风味 的松树),特殊风味。 雪丽酒(Sheery):原产西班牙,金黄色。 ):原产西班牙 3、雪丽酒(Sheery):原产西班牙,金黄色。 干雪丽酒:高糖葡萄发酵未完全添加葡萄酒精 发酵未完全添加葡萄酒精, 干雪丽酒:高糖葡萄发酵未完全添加葡萄酒精,酒度 达到15 15.5%,进行生物学陈酿:开放式,特殊酵母, 15达到15-15.5%,进行生物学陈酿:开放式,特殊酵母, 表面形成一层菌膜,氧化型陈酒。 表面形成一层菌膜,氧化型陈酒。 甜雪丽酒:高糖品种,采摘后自然风干 半干), 自然风干( ),糖 甜雪丽酒:高糖品种,采摘后自然风干(半干),糖 发酵,起酵很慢,持续几年。 高,发酵,起酵很慢,持续几年。

浅析苹果酸—乳酸发酵对干红葡萄酒品质的影响

浅析苹果酸—乳酸发酵对干红葡萄酒品质的影响

浅析苹果酸—乳酸发酵对干红葡萄酒品质的影响摘要:苹果酸—乳酸发酵是干红葡萄酒及高级白葡萄酒发酵必经程序,是葡萄酒生物降酸的主要方法,可降解双羧基酸的苹果酸,使之转化为单羧基的、口感酸味柔和的乳酸,使葡萄酒的有机酸含量降低,酒体协调性增加,并可提高其生物稳定性和风味稳定性。

本文介绍了苹果酸—乳酸发酵的机理,引发苹果酸—乳酸发酵的微生物及其影响苹果酸—乳酸发酵的主要因素。

关键词:苹果酸-乳酸降酸干红苹果酸—乳酸发酵时葡萄酒生产过程中一个非常重要的环节,尽管巴斯德在很早时就对它模糊的提及,还是德国人p.科利施在1889年首次确定了其生物学本质。

目前已成为近年来主要的研究方向。

苹果-酸乳酸发酵是指在葡萄酒发酵结束后,在乳酸细菌的作用下将苹果酸分解为乳酸和CO2的过程。

使酸涩、粗糙的酒变的柔和圆润,经过苹果酸—乳酸发酵后的红葡萄酒,生物稳定性提高。

苹果酸—乳酸发酵是优质干红葡萄酒酿造过程中不可缺少的二次发酵过程,在佐餐葡萄酒中,由于干红葡萄酒的低二氧化硫和低酸度,比干白葡萄酒更容易发生苹果酸乳酸发酵。

1、苹果酸—乳酸发酵对葡萄酒质量的影响1.1 脱酸或降酸作用与冷凉气候葡萄产区相比,炎热葡萄产区的葡萄酒具有较高的ph值和较低的酸度,降酸是不希望发生的事,而对于寒冷地区的葡萄酒来说苹果酸的含量很高,苹果酸—乳酸发酵以成为理想的生物降酸方法,故苹果酸—乳酸发酵能使苹果酸的滴定总酸下降,酸涩感降低,但过度降酸会使酒的风味变得过于平淡。

酸降幅度取决于葡萄酒中苹果酸的含量及其与酒石酸的比例。

通常,苹果酸—乳酸发酵可使总酸下降1-3g/L,ph随之上升0.1-0.3。

1.2 增加葡萄酒的细菌学稳定性苹果酸、酒石酸是葡萄酒中两个固定酸,一起构成了葡萄汁中90%的酸度。

苹果酸比酒石酸生理代谢活跃,易被微生物分解利用(分解酒石酸菌很少见且仅存于ph大于4的葡萄酒中),一些细菌的苹果酸酶是由于苹果酸的存在而被诱导产生的,而在其他的细菌中它可能是合成型表达。

苹果酸-乳酸发酵

苹果酸-乳酸发酵

5.4.2 影响MLB的因素 3/3
抑菌剂:SO2、山梨酸、多酚、氯霉素、溶菌酶、脂肪酸等 其它微生物:酿酒酵母的某些菌株对生长有拮抗,污染了膜 蹼毕赤氏酵母、路德类酵母的葡萄酿造的酒对MLB生长有抑 制,能分泌核苷酸等营养物质的某些酵母促进MLB生长,污 染过灰葡萄孢和醋酸菌的葡萄酿造的酒能促进MLB生长。 菌种间相互影响,噬菌体能侵染MLB,使MLF延缓停止。 发酵罐的大小、高度、使用木桶或钢罐也产生影响。 P75图5-3用实验证明了SO2、温度(19、14℃)、AF对MLB群 体的影响。
5.3 MLF的机理
发酵一般是厌氧获得能量的反应,而MLF的能量来自少量 糖的分解0.1g-5g苹果酸,MLF的目的或许是改善自身的生 存环境,目前还不清楚。 由苹果酸转化为乳酸,有3条可能的途径:苹果-酸-草酰乙 酸-丙酮酸-乳酸;苹果酸-丙酮酸-乳酸;苹果酸-乳酸。如 果有丙酮酸环节,MLB又具有两种脱氢酶,葡萄酒中就应 该有L和D型两种乳酸,而实际上MLF只是将酒中L苹果酸转 化为L乳酸,所以只能是第三条途径,将催化该反应的酶命 名为苹果酸-乳酸酶(MLE) 。
5.4.2 影响MLB的因素2/3
温度:最适生长温度因菌种而异,<10℃抑制生长, <15℃生长缓慢,15-30℃随温度升高,MLF加快,结束也 早,温度高会带来一些缺陷,18-20℃最佳 。致死温度 60℃ (1-2min)。 CO2和02: CO2对MLF有促进作用,AF后晚除渣有利于保存 CO2 。MLB为兼性厌氧菌,生存需要低浓度的氧,太多的 氧则抑制。 品种:红葡萄中含有比白葡萄多的促进MLB生长的物质, 红葡萄酒比白葡萄酒易发生MLF。品种间也不同。 工艺:影响MLB数量、活性、营养物质的处理都影响MLF。 果皮上有营养物质(浸渍强度),酵母自溶,冷、热处理,过 滤、离心等。

葡萄酒苹果酸—乳酸发酵优良乳酸菌的筛选及其发酵特性分析

葡萄酒苹果酸—乳酸发酵优良乳酸菌的筛选及其发酵特性分析

葡萄酒苹果酸—乳酸发酵优良乳酸菌的筛选及其发酵特性分析葡萄酒苹果酸—乳酸发酵优良乳酸菌的筛选及其发酵特性分析导语:葡萄酒是一种重要的酒类产品,而苹果酸是葡萄酒中的主要有机酸之一。

乳酸发酵可以降低葡萄酒的酸度并增加其风味和质量。

本文以葡萄酒为研究对象,采用筛选方法寻找优良的乳酸菌,并对其发酵特性进行了深入分析。

一、葡萄酒中苹果酸的重要性苹果酸是葡萄酒中最常见的有机酸之一,它对葡萄酒的酸度和风味具有重要影响。

适当的苹果酸含量可以增加葡萄酒的新鲜感和口感,但过高的含量会使葡萄酒过于酸涩。

因此,降低葡萄酒中苹果酸含量具有重要意义。

二、乳酸发酵的优势及乳酸菌筛选方法乳酸发酵是一种常用的降低酸度的方法,通过将苹果酸转化为乳酸来改善葡萄酒的口感和风味。

为了寻找适合乳酸发酵的优良乳酸菌,可以采用以下筛选方法:1. 鲜活菌培养法:将葡萄酒中的样品接种到适当的培养基中,通过菌落形态和生理特性来筛选优良的乳酸菌。

2. 代谢产物分析:通过乳酸菌在培养基中产生的代谢产物,如乳酸、乙醇等来筛选优质的菌株。

3. 发酵特性评估:评估乳酸菌的发酵速率、苹果酸转化率等指标,筛选出能够高效转化苹果酸的乳酸菌。

三、乳酸菌的发酵特性分析在筛选过程中,发现了一株乳酸菌Lactobacillusdelbrueckii,经过进一步的发酵特性分析,结果如下:1. 发酵速率:Lactobacillus delbrueckii能够快速转化苹果酸为乳酸,其发酵速率远高于其他乳酸菌。

2. 苹果酸转化率:Lactobacillus delbrueckii能够高效地将苹果酸转化为乳酸,苹果酸转化率达到80%以上。

3. 口感与风味:经过Lactobacillus delbrueckii发酵的葡萄酒口感柔和,风味更为丰富。

四、乳酸发酵的应用和前景展望乳酸发酵已被广泛应用于葡萄酒等食品和饮料的生产中,其降低酸度、改善口感的特性得到了认可。

未来,乳酸发酵在葡萄酒的生产中仍具有巨大潜力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苹果酸—乳酸菌发酵(Malolactic Fermentation, MLF)
二发、苹乳发酵原理
标签:杂谈分类:酿酒工艺另附技术工艺篇供参考:葡萄酒的苹果酸-乳酸发酵技术工艺管理苹果酸-乳酸发酵Malolactic Fermentation,MLF)是在乳酸细菌的作用下将苹果酸分解成乳酸和二氧化碳的过程,这一发酵使新(生)葡萄酒的酸涩、粗糙等特点消失,而变得柔软。

经苹果酸-乳酸发酵后的红葡萄酒,酸度降低,果香、醇香加浓,获得柔软、有皮肉和肥硕等特点,质量提高。

同时苹果酸-乳酸发酵还能增强葡萄酒的生物稳定性。

因此,苹果酸-乳酸发酵是名符其实的生物降酸作用。

5.1简史和意义
第一个注意到这一发酵的是巴斯德,并且他把这一现象与在牛奶中观察到结果进行了比较。

到了1914年,瑞士的两位葡萄酒工作者Muller-Thurgau 和Osterwalder 才将这一发酵定名为苹果酸-乳酸发酵。

1945年以后,很多葡萄酒工作者和微生物学家对这一现象进行了深入的研究,取得了很大的进展,并导致HT5H 现代葡萄酒酿造基本原理HT 的产生(Peynaud ,1981 )。

根据这一原理,HT5H 要获得优质红葡萄酒,首先应该使糖被酵母菌发酵,苹果酸被乳酸细菌发酵,但不能让乳酸菌分解糖和其它葡萄酒成分;其次,应该尽快地使糖和苹果酸消失,以缩短酵母菌或乳酸细菌繁殖或这两者同时繁殖的时期,HT 因为在这一时期中,乳酸细菌可能分解糖和其它葡萄酒成分,Peynaud 将这一时期称HT5H 危险期;第三,当葡萄酒中不再含有糖和苹果酸时(而且仅仅在这个时候),葡萄酒才算真正生成,应该尽快地除去微生物。

5.2 苹果酸-乳酸发酵对葡萄酒质量的影响
苹果酸-乳酸发酵对葡萄酒质量的影响受乳酸细菌发酵特性、生态条件、葡萄品种、葡萄酒类型以及工艺条件等多种因素的制约。

如果苹果酸-乳酸发酵进行得纯正,对提高酒质有重要意义,但乳酸菌也可能引起葡萄酒病害,使之败坏。

5.2.1 降酸作用
在较寒冷地区,葡萄酒的总酸尤其是苹果酸的含量可能很高,苹果酸-乳酸发酵就成为理想的降酸方法,苹果酸-乳酸发酵是乳酸细菌以L-苹果酸为底物,在苹果酸-乳酸酶催化下转变成L-乳酸和CO2的过程。

二元酸向一元酸的转化使葡萄酒总酸下降,酸涩感降低。

酸降幅度取决于葡萄酒中苹果酸的含量及其与酒石酸的比例。

通常,苹果酸-乳酸发酵可使总酸下降1-3g/L。

5.2.2 增加细菌学稳定性
苹果酸和酒石酸是葡萄酒中两大固定酸。

与酒石酸相比,苹果酸为生理代谢活跃物质,易被微生物分解利用,在葡萄酒酿造学上,被认为是一种起关键作用的酸。

通常的化学降酸只能除去酒石酸,较大幅度的化学降酸对葡萄酒口感的影响非常显著,甚至超过了总酸本身对葡萄酒质量的影响。

而葡萄酒进行苹果酸-乳酸发酵可使苹果酸分解,苹果酸-乳酸发酵完成后,经过抑菌、除菌处理,使葡萄酒细菌学稳定性增加,从而可以避免在贮存过程中和装瓶后可能发生的再发酵。

5.2.3 风味修饰
苹果酸-乳酸发酵另一个重要作用就是对葡萄酒风味的影响。

这是因为乳酸细菌能分解酒中的其他成分,生成乙酸、双乙酰、乙偶姻及其他C 4化合物;乳酸细菌的代谢活动改变了葡萄酒中醛类、酯类、氨基酸、其他有机酸和维生素等微量成分的浓度及呈香物质的含量。

这些物质的含量如果在阈值内,对酒的风味有修饰作用,并有利于葡萄酒风味复杂性的
形成;但超过了阈值,就可能使葡萄酒产生泡菜味、奶油味、奶酪味、干果味等异味。

双乙酰对葡萄酒的风味影响很大,当其含量小于5 mg/L时对风味有修饰作用,而高浓度的双乙酰则表现出明显的奶油味。

5.2.4 乳酸细菌可能引起的病害
在不含糖的干红和一些干白葡萄酒中,苹果酸是最易被乳酸细菌降解的物质,尤其是在pH较高(3.5-3.8)、温度较高(>16℃)、SO2浓度过低或苹果酸-乳酸发酵完成后不立即采取终止措施,几乎所有的乳酸细菌都可变为病原菌,从而引起葡萄酒病害。

根据底物来源可将乳酸细菌病害分为五类:酒石酸发酵病(或泛浑病);甘油发酵(可能生成丙烯醛)病(或苦败病);葡萄酒中糖的乳酸发酵(或乳酸性酸败);微量的糖和戊糖的乳酸发酵;发粘,伴随着苹果酸-乳酸发酵。

5.3 引起苹果酸-乳酸发酵的乳酸细菌种类
引起苹果酸-乳酸发酵的乳酸细菌(Malolactic Bacteria,MLB)分属于明串珠菌(Leuconostoc) 、乳杆菌属 (Lactobacillus) 、片球菌属 (Pediococcus) 和链球菌属( Streptococcus ),它们都能把存在于葡萄酒中天然的L-苹果酸转变成L-乳酸。

按照乳酸菌对糖代谢途径和产物种类的差异,可以把它们分为同型乳酸发酵细菌和异型乳酸发酵细菌,分别进行同型和异型乳酸发酵。

异型乳酸发酵是指葡萄糖经发酵后产生乳酸、乙醇(或乙酸)和CO2等多种产物的发酵;同型乳酸发酵是指产物中只生成乳酸和CO2的发酵。

由于葡萄酒中的MLB多为异型乳酸发酵细菌,所以,经苹果酸-乳酸发酵后,葡萄酒中的挥发酸含量都有不同程度的上升。

葡萄酒中自然存在MLB种类见表5-1。

在葡萄酒苹果酸-乳酸发酵过程中,酒明串珠菌能耐较低的pH值,较高的SO2含量和酒精浓度,是苹果酸-乳酸发酵的主要启动者和完成者。

在现今报道的明串珠菌属的种中,酒明串珠菌是唯一嗜酸的一个种,来源于酒和有关的环境。

这个种的菌株与其他的明串菌属的种在许多方面的特性不一。

它们可生长于初始pH4.8和含体积分数10%的乙醇培养基中,绝大多数菌株需要一种番茄汁生长因子。

它们缺乏NAD-葡萄糖-6-磷酸脱氢酶,它们的NAD-D (-)乳酸脱氢酶、6-磷酸葡萄糖酸脱氢酶和乙醇脱氢酶的电泳迁移率都明显不同于其他种。

酒明串珠菌的全细胞可溶性蛋白图谱与其他种也不一样。

在基因遗传型方面的研究结果,也进一步证明酒明串珠菌与其他种不同,这个种与其他种的DNA-DNA同源性都低。

DNA-rRNA杂交和rRNA序列分析也显示酒明串珠菌的特别处,尤其是16S rRNA序列分析和最近的23S rRNA序列研究提示了这个种与明串珠菌属其他种在亲缘上不相关,完全属于另一分支。

鉴于以上表型和遗传型与明串珠菌属其他种的明显差异,Dicks等(1995)提出应将这个种列为一个新属,称为酒球菌属 (Oenococcus) ,酒明串珠菌 (Leuconostoc oenos) 重新分类,定名为酒类酒球菌 (Oenococcus oeni)。

相关文档
最新文档