高中数学:《简单的线性规划问题》(第一课时)说课稿

合集下载

简单线性规划说课稿1北师大版(教案)

简单线性规划说课稿1北师大版(教案)

课题:简单的线性规划北京师范大学第一版社一般高中课程标准实验教科书(必修)第三章不等式第四节第二课时一、教材剖析:、教材的地位与作用:线性规划是运筹学的一个重要分支,在实质生活中有着宽泛的应用。

本节内容是在学习了不等式的基础上,利用不等式的有关知识睁开的,它是对二元一次不等式的深入和再认识、再理解。

经过这一部分的学习,使学生进一步认识数学在解决实质问题中的应用,体验数形联合和转变的思想方法,培育学生学习数学的兴趣、应用数学的意识和解决实质问题的能力。

、教课要点与难点:要点:画可行域;在可行域内, 用图解法正确求得线性规划问题的最优解。

难点:在可行域内 , 用图解法正确求得线性规划问题的最优解。

二、目标剖析:在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教课目的分设为知识目标、能力目标和感情目标。

知识目标:、认识线性规划的意义,认识线性拘束条件、线性目标函数、可行解、可行域和最优解等看法;、理解线性规划问题的图解法;、会利用图解法求线性目标函数的最优解.能力目标:、在应用图解法解题的过程中培育学生的察看能力、理解能力。

、在变式训练的过程中,培育学生的剖析能力、研究能力。

、在对详细案例的感性认识上涨到对线性规划的理性认识过程中,培育学生运用数形联合思想解题的能力和化归能力。

感情目标:、让学生体验数学根源于生活,服务于生活,体验数学在建设节俭型社会中的作用,品味学习数学的乐趣。

、让学生体验数学活动充满着研究与创建,培育学生勤于思虑、勇于研究的精神;、让学生学会用运动看法察看事物,认识事物之间从一般到特别、从特别到一般的辨证关系,浸透辩证唯心主义认识论的思想。

三、过程剖析:数学教课是数学活动的教课。

所以,我将整个教课过程分为以下六个教课环节:、创建情境,提出问题;、剖析问题,形成看法;、反省过程,提炼方法;、变式操练,深入研究;、运用新知,解决问题;、概括总结,稳固提高。

、创建情境,提出问题:在讲堂教课的开始,我以一组生动的动画(配图片)描绘出在奇特的数学王国里,有一种算法宽泛应用于工农业、军事、交通运输、决议管理与规划等领域,应用它已节俭了亿万财产,还被列为世纪对科学发展和工程实践影响最大的十大算法之一。

《简单的线性规划》说课稿

《简单的线性规划》说课稿

《简单的线性规划》说课稿麟游县中学仇银萍一、内容及其解析本节课是《普通高中课程标准实验教科书数学》北师大版必修5第四章《不等式》中4.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。

简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.二、学生学情分析本节课学生在学习了不等式、直线方程的基础上,通过实例理解了平面区域的意义,并会画出平面区域,还能初步用数学关系表示简单的二元线性规划的限制条件,将实际问题转化成数学问题。

从数学知识上看,问题涉及多个已知数据,多个字母变量、多个不等关系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这成了学生学习的困难。

三、教学目标设计:(1)知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;理解线性规划问题的图解法,并能应用它解决一些简单的实际问题;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力。

(3)情态、态度与价值观:让学生体会数学源于生活,服务于生活;体会数学活动充满着探索与创造,培养学生动手操作、勇于探索的精神。

高二数学 简单线性规划说课

高二数学 简单线性规划说课

y x
x、y满足约束条件:
x
y
1
y 1
求z=2x+y的最大值
高二数学 简单线性规划说课
y x+y=1
线性目标函数的最大(小)值 一般在可行域 的顶点处 取得。
y=-2x
y=x
o A(2,-1)
y x
x
y
1
x y 1
y=1
在点A(2,-1)处z=2x+y最大 高二数学z简m单a线x=性规2划×说课2+(-1)=3
高二数学 简单线性规划说课
(二)教学目标
1、知识目标: (1)了解线性规划的有关概念 (2)会用图解法求线性目标函数的最大值、最小值
2、能力目标: (1)通过特殊到一般,培养学生抽象、概括能力
(2)培养学生数形结合、化归的数学思想的能力
高二数学 简单线性规划说课
3、情感目标: (1)通过体会数学知识的发生发展过程、数学知识在
(3)求:通过解方程组求出最优解 (4)答:作出答案
高二数学 简单线性规划说课
2、有关概念
约束条件 线性约束条件 目标函数 线性目标函数 线性规划问题 可行解 可行域 最优解
高二数学 简单线性规划说课
解决提出问题
深圳某搬运公司经招标承担了每天搬运至少280t水 泥的任务,已知该公司有6辆A型卡车和4辆B型车, 已知A型卡车每天每辆的运载量为30t,成本费为0.9 千元,B型卡车每天每辆的运载量为40t,成本费为1 千元。
2、创新训练 y 已知x、y满足
x 4 y 3
3
x
5
y
25
x 1
如下图所示
如果z=ax+y取到最大
C(1,4.4 )

高中数学说课稿简单线性规划问题

高中数学说课稿简单线性规划问题

高中数学说课稿《简单线性规划问题》一.说教材至此,我们将一个具体的事物"温度计"经过抽象而概括为一个数学概念"数轴",使学生初步体验到一个从实践到理论的认识过程.1.本节课主要内容是线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,根据约束条件建立线性目标函数。

应用线性规划的图解法解决一些实际问题。

2.地位作用:线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它可以解决科学研究、工程设计、经济管理等许多方面的实际问题。

简单的线性规划是在学习了直线方程的基础上,介绍直线方程的一个简单应用。

通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

3.教学目标圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的只是、方法、体验是那个方面进行归纳,我设计了这么三个问题:(1)知识与技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,能根据约束条件建立线性目标函数。

了解并初步应用线性规划的图解法解决一些实际问题。

(2)过程与方法:提高学生数学地提出、分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中蕴含的一些数学模式进行思考和作出判断。

(3)情感、态度与价值观:体会数形结合、等价转化等数学思想,逐步认识数学的应用价值,提高学习数学的兴趣,树立学好数学的自信心。

4.重点与难点重点:理解和用好图解法难点:如何用图解法寻找线性规划的最优解。

高中数学五第三章3.3.2 简单的线性规划问题(第1课时)【教案】

高中数学五第三章3.3.2 简单的线性规划问题(第1课时)【教案】

3.3.2简单线性规划问题(第1课时)一、教学目标及目标分析1.教学目标;(1)了解约束条件、目标函数、可行解、可行域、最优解等基本概念;(2)掌握解决线性规划问题的基本步骤;(3)会用图解法求线性目标函数的最大值、最小值.2.目标解析;(1)了解线性规划模型的特征:约束条件、目标函数、求目标函数的最大值或最小值等.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系.(2)能理解目标函数的几何表征(一组平行直线).能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,掌握解题的基本步骤.(3)在线性规划问题的探究过程中,使学生经历观察、分析、操作、确认的认知过程,培养解决运用已有知识解决新问题的能力,体会数学知识形成过程中所蕴涵的数学思想和方法,引发学生对现实世界中的一些数学模式进行思考.二、教学重点与难点:重点:线性规划问题的基本概念及解决问题的步骤。

难点: 把目标函数转化为斜截式方程时,对含“z”的项的几何意义与“z”最值之间关系的理解三、教学模式与教法、学法教学模式:采用探究教学法,通过“猜想,验证,证明”来探究二元一次不等式(组)表示的平面区域,并通过讲练结合巩固所学的知识。

使用多媒体辅助教学.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线.“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.学法设计:引导学生通过主动参与、合作探讨学习知。

来源:学_科_网Z_X_X_K]四、教学过程设计二、知识探究:问题1. 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。

例如,某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A产品耗时1小时,每生产一件乙产品使用4个B产品耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?设甲、乙两种产品分别生产x 、y 件,应如何列式?生 由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x 师 如何将上述不等式组表示成平面上的区域?生 (板演)师 对照课本98页图3。

《简单的线性规划问题》教案

《简单的线性规划问题》教案

《简单的线性规划问题》教学设计(人教A版高中课标教材数学必修5第三章第3.3.2节)祁东二中谭雪峰一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中第3.3.2《简单的线性规划问题》的第一课时. 本课内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.本节内容是在学习了不等式和直线方程的基础上,利用不等式和直线方程的有关知识展开的.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力.二、教学目标一)、知识目标1.了解线性规划的意义、了解线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念.2.理解线性规划问题的图解法3. 会用图解法求线性目标函数的最优解.二)、能力目标1.在应用图解法解题的过程中培养学生的观察能力、理解能力.2.在变式训练的过程中,培养学生的分析能力、探索能力.3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想.三)、情感目标1.让学生体验数学来源于生活,服务于生活,品尝学习数学的乐趣.2.让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神.三、教学重点、难点重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.难点:借助线性目标函数的几何含义准确理解线性目标函数在y 轴上的截距与z最值之间的关系.四、学习者特征分析1. 已经掌握用平面区域表示二元一次不等式(组)2. 初步学会分析简单的实际应用问题3. 能根据实际数据假设变量,并从中抽象出不等的线性约束条件并用相应的平面区域进行表示本节课学生在学习过程中可能遇到以下疑虑和困难:1.将实际问题抽象成线性规划问题;2.用图解法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化?3.数形结合思想的深入理解.五、教学与学法分析本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法.课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等.1.设置“问题”情境,激发学生解决问题的欲望;2.提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验.3.在教学中体现“重过程、重情感、重生活”的理念;让学生经历“学数学、做数学、用数学”的过程.指导学生做到“四会”:会疑、会议、会思、会变.4.在教学中重视学生的探索经历和发现新知的体验,使学生形成自己对数学知识的理解和有效的学习策略.六、文本教学与信息技术整合点分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,利用多媒体辅助教学,借助信息技术工具,以“几何画板”软件为平台,将目标函数与直线方程进行转化,通过直线的平行移动的演示,观察纵坐标的变化,直观生动地呈现图解法求最优解的过程,既加大课堂信息量,提高教学效率,同时让学生学会用“数形结合”思想方法建立起代数问题和几何问题间的密切联系.七、教学过程分析数学教学是数学活动的教学,我将整个教学过程分为五个环节:1.复习回顾:[幻灯片第2-4张]1)提问:如何作二元一次不等式表示的平面区域?直线定界;特殊点定域.2)巩固练习:画出下面不等式组所表示的平面区域.【设计意图】复习旧知,为本课的图解法解题热身准备. 2. 分析引例,形成概念,规范解答在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题……1) 将实际生活问题转化为数学问题(数学建模) [幻灯片第5-8张]教师组织学生学习引例.[引例]:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么?师生活动:通过教师引导,让学生正确理解题意,用不等式组表示问题中的5003x y x y x -+⎧⎪+⎨⎪⎩≥≥≤限制条件及作出相应的平面区域,将实际问题转化为数学问题.(1)、教师提问:同学们,你们能用不等式组表示问题中的限制条件吗?引导学生设定未知数(设甲、乙两种产品分别生产x 、y 件), 分析已知条件得到二元一次方程组:(2)、让学生画出不等式组所表示的平面区域.【设计意图】数学是现实世界的反映.通过引入学生感兴趣的实际生活问题,激发学生兴趣,使学生产生急于解决问题的内驱力,引发了学生的思考,同时师生之间通过互动复习旧知,培养学生从实际问题抽象出数学模型的能力.(3)、教师进一步提出新问题:若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?引导学生若设定工厂获得的利润为z ,则易得z = 2x + 3y ,此时问题转化为即求z 的最大值的问题了.【设计意图】添加优化问题,定义目标函数,引出新问题.2)分析问题,形成概念[幻灯片第9-17张]师生活动:教师根据引题得出线性规划问题相关概念.(1)、就在学生兴趣顿起的时候,教师就此给出了相关概念:① 上述问题中,不等式组是一组对变量 x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,所以又叫线性约束条件. 线性约束条件除了用一次不等式表示外,有时也用一次方程表示.② 欲求最大值或最小值的函数z=2x+3y 叫做目标函数. 由于 z=2x+y 又是x 、y 的一次解析式,所以又叫线性目标函数.③ 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④ 满足线性约束条件的解(x,y)叫做可行解.2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩⑤ 由所有可行解组成的集合叫做可行域.⑥ 使目标函数取得最大值或最小值的可行解,它们都叫做这个问题的最优解.(2)、 引导学生理解,引题的问题就是一个线性规划问题. 图中阴影部分(即可行域)的整点(坐标为整数的点)就代表所有可能的日生产安排. 于是问题就转化为当点(x,y )在可行域运动时如何求z=2x+3y 的最大值问题.3)探究交流,解决问题[幻灯片第18-20张](1)、教师提问:如何求z=2x+3y 的最大值问题?先让学生自主探究,再分组讨论交流,然后试着这样引导学生:由于已经将x ,y 所满足的条件几何化了,你能否将式子z=2x+3y 作某种几何解释?学生自然地想到它在几何上表示直线2x+3y-z=0. 当z 取不同的值时可得到一族平行直线.于是问题又转化为当这族直线与可行域有公共交点时,如何求z=2x+3y 的最大值.(2)、这一问题对于部分学生仍有一定难度,教师再次提问:在直线2x+3y-z=0中,z 是否与这直线的某种几何意义有关?学生讨论交流后得出:将直线2x+3y-z=0改写成斜截式233z y x =-+,学生此时会明白直线2,33z y x =-+它表示为斜率为2,3k =-截距3z b =的直线,当z 变化时,可以得到一组互相平行的直线,而且当截距3z 最大时,z 取最大值. 于是问题又转化为当2x+3y-z=0这族直线与可行域有公共交点时,在可行域内找一个点,使直线经过此点时在y 轴上的截距最大. 接着让学生动手实践,用作图法找到点E 并求出点E 的坐标(4,2),而求出z 的最大值为14,所以每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元 .师生活动:教师引发学生思考变形目标函数,将z=2x+3y 化成233z y x =-+的形式,挖掘几何含义,作过原点直线23y x =-并进行平移,观察纵截距的最大值,教师利用多媒体辅助教学工具作动态演示平移确定最值,并有意强调解题步骤:画、作、移、求.【设计意图】:让学生自主探究,体验数学知识的发生、发展过程,体验转化和数形结合的思想方法,通过目标函数的不同变式,让学生熟悉求最值的方法,从而让学生更好地理解数学概念和方法,突出了重点,化解了难点.3.反思过程,提练方法[幻灯片第21张]教师引导学生归纳、提炼求解步骤:第一步:画——根据约束条件画出可行域;第二步:作——过原点作目标函数直线的平行直线0l ;第三步: 移——平移直线0l 找出与可行域有公共点且纵截距最大或最小的直线,确定可行域内最优解的位置;第四步:求——解有关方程组求出最优解,将最优解代入目标函数求最值.4.模仿练习,强化方法,拓展题型[幻灯片第22-26张]为了更好地理解图解法解线性规划问题的内在规律,同时让学生掌握解决简单线性规划问题的基本步骤,让学生做下面这个练习:练习(教材例5)、营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪,1kg 食物A 含有0.105kg 碳水化合物,0.07kg 蛋白质,0.14kg 脂肪,花费28元;而1食物B 含有0.105kg 碳水化合物,0.14kg 蛋白质,0.07kg 脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 多少kg ?师生活动:教师引领学生理解题意,让学生领会用表格形式描述数据的直观性.让学生独立建立线性规划的数学模型,并正确设出变量,找好目标函数及约束条件后自行完成此题. 由一位同学生展示自己的解题过程和结果. 教师规范解题步骤和格式.1.分析:将已知数据列成表格解:设每天食用x (kg )食物A ,y (kg )食物B ,总成本为z ,那么 0.1050.1050.075,0.070.140.06,0.140.070.06,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩①目标函数为2821z x y =+.二元一次不等式组①等价于775,7146,1476,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩ ②二元一次不等式组所表示的平面区域(图1),即可行域.考虑2821z x y =+,将它变形为4321z y x =-+.这里4321z y x =-+是斜率为43-,随z 变化的一组平行直线,21z 是直线在y 轴上的截距,当21z 取最小值时,z 的值最小.当然直线要与可行域相交,即在满足约束条件时目标函数2821z x y =+取得最小值.由图1可见,当直线2821z x y =+经过可行域上的点M 时,截距21z 最小,即z 最小. 解方程组775,147 6.x y x y +=⎧⎨+=⎩ 得M 的坐标为17x =,47y =. 所以282116z x y =+=.答:每天食用食物A 为17kg ,食物B 为47kg ,能够满足日常饮食要求,又使花费最低,最低成本为16元.【设计意图】1). 通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.2).通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.3).展现线性规划的另一类型题(可行域不封闭、最优解为最小值),并与引例相比较,对比可行域封闭与不封闭、最优解为最大值与最小值两种情况的线性规划问题.师生活动:由教师帮助学生分析错解的原因,并提出问题.学生意识到可以把所有可能的解都求出来,进行比较即可.师生一起反思练习的求解过程.教师通过巡视发现错解的学生,帮助学生找到错误的原因.并提出问题:有时若由于不可避免的误差带来错解,你如何解决?【设计意图】通过反思及寻求问题答案,让学生深入思考,培养学生科学严谨的学习态度和解决问题的能力.5.变式演练,深入探究,开阔视野[幻灯片第27张]师生活动:让学生自己动手解决问题,教师可用几何画板演示。

简单的线性规划问题说课稿

简单的线性规划问题说课稿

简单的线性规划问题说课稿简单的线性规划张雪丽一.说教材1.地位与重要性本节课是人教a版必修5第三章的第三节的内容,是继上一节二元一次不等式(组)表示平面区域的后续内容,也是在学习了直线方程的基础上,介绍直线方程的一个简单应用。

本节课的主要内容是线性规划的意义以及线性约束条件、线性目标函式、可行域、可行解、最优解等概念。

通过本节的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣,应用数学的意识和解决实际问题的能力。

2.重点,难点根据本节课的教学内容,以及在学生掌握了二元一次不等式(组)表示的平面区域的基础上,我确立本课的重点、难点如下:教学重点:线性规划的**法教学难点:利用**法求最优解。

解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化。

二.说教学目标(1)知识目标:了解线性规划的意义,了解线性约束条件、线性目标函式、可行解、可行域、最优解等概念;理解线性规划的**法;会利用**法求线性目标函式的最优解。

(2)能力目标:在应用**法解题的过程中培养学生的观察能力、理解能力 ;在变式训练的过程中,培养学生的分析能力、探索能力;在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。

(3)情感目标:让学生体验数学**于生活又服务于生活,体验数学在建设节约型社会中的作用,品嚐学习数学的乐趣;让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神.三.说教学过程(一)情景教学提出问题通过展示几幅幻灯片,以景激情,以情激思,点燃学生的求知慾,引领学生进入学习情境。

引例:某工厂用a、b两种配件生产甲、乙两种产品,每生产一件甲产品使用4个a配件并耗时1 h,每生产一件乙产品使用4个b配件并耗时2 h,该厂每天最多可从配件厂获得16个a配件和12个b配件,按每天工作8 h计算,该厂所有可能的日生产安排是什幺?让学生分析题目,根据题意列出满足条件的不等式组。

《简单线性规划》说课稿.

《简单线性规划》说课稿.

《简单线性规划》说课稿蔡绵绵一.说教材1.本节课主要内容是线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,根据约束条件建立线性目标函数。

应用线性规划的图解法解决一些实际问题。

2.地位作用:线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它可以解决科学研究、工程设计、经济管理等许多方面的实际问题。

简单的线性规划是在学习了直线方程的基础上,介绍直线方程的一个简单应用。

通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

3.教学目标(1)知识与技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,能根据约束条件建立线性目标函数。

了解并初步应用线性规划的图解法解决一些实际问题。

(2)过程与方法:提高学生数学地提出、分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中蕴含的一些数学模式进行思考和作出判断。

(3)情感、态度与价值观:体会数形结合、等价转化等数学思想,逐步认识数学的应用价值,提高学习数学的兴趣,树立学好数学的自信心。

4.重点与难点重点:理解和用好图解法难点:如何用图解法寻找线性规划的最优解。

二.说教学方法教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。

根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:(1)启发引导学生思考、分析、实验、探索、归纳。

这能充分调动学生的主动性和积极性。

(2)采用“从特殊到一般”、“化抽象为具体”、“化静为动”的方法。

这有利于学生对知识进行主动建构;有利于突出重点、解决难点;也有利于发挥学生的创造性。

(3)体现“等价转化”、“数形结合”的思想方法。

这样可发挥学生的主观能动性,有利于提高学生的各种能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学:《简单的线性规划问题》(第一课时)说课稿一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.本节教学重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.二、目标和目标解析(一)教学目标1.了解约束条件、目标函数、可行解、可行域、最优解等基本概念.2. 会用图解法求线性目标函数的最大值、最小值.3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想.4.结合教学内容培养学生学习数学的兴趣和“用数学”的意识.(二)教学目标解析1. 了解线性规划模型的特征:一组决策变量(,)x y表示一个方案;约束条件是一次不等式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系.2.使学生学会从实际优化问题中抽象、识别出线性规划模型.能理解目标函数的几何表征(一组平行直线).能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,其基本步骤为画、移、求、答.3.教学中不但要教教材,还要教教材中的蕴含的方法.在探究如何求目标函数的最值时,通过以下几方面让学生领悟数形结合思想、化归思想在数学中的应用.(1)不定方程的解与平面内点的坐标的结合,进而产生了直线的方程.(2)线性目标函数解析式与直线的斜截式方程的结合.(3)线性目标函数的函数值与直线的纵截距的结合.(4)二元一次不等式(组)的解集与可行域的结合.(5)线性目标函数在线性约束条件下的最值与直线过可行域内的点时纵截距的最值的结合.这样就能使学生对数形结合思想的理解更透彻,为以后解析几何的学习和研究奠定基础,使学生从更深层次理解“以形助数”的作用以及具体方法.4. 在线性规划问题的探究过程中,使学生经历观察、分析、操作、归纳、概括的认知过程,培养解决运用已有知识解决新问题的能力.三、教学问题诊断分析本节课学生在学习过程中可能遇到以下疑虑和困难:(1)将实际问题抽象成线性规划问题;(2)用图解法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化?(3)数形结合思想的深入理解.为此教学中教师要千方百计地为学生创设探究情境,并作合理适度的引导,通过学生的积极主动思考,运用由特殊到一般的研究方法,借助于讨论、动手画图等形式进行深入探究.教师的引导是至关重要的,要做到既能给学生启示又能发展学生思维,让学生通过自己的探究获取直接经验.教学难点:用图解法求最优解的探索过程;数形结合思想的理解.教学关键:指导学生紧紧抓住化归、数形结合的数学思想方法找到目标函数与直线方程的关系四、教法分析新课程倡导学生积极主动、勇于探索的学习方式,课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等.本节课以学生为中心,以问题为载体,采用启发、引导、探究相结合的教学方法.(1)设置“问题”情境,激发学生解决问题的欲望;(2)提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验.(3)在教学中体现“重过程、重情感、重生活”的理念; (4)让学生经历“学数学、做数学、用数学”的过程. 五、教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,借助信息技术工具,以“几何画板”软件为平台,将目标函数与直线方程进行转化,通过直线的平行移动的演示,观察纵坐标的变化,求出目标函数的最值.让学生学会用“数形结合”思想方法建立起代数问题和几何问题间的密切联系.六、教学过程(一) 创设情境,激发探究欲望 组织学生做选盒子的游戏活动.在下图的方格中,每列(x )与每行(y )的交汇处都放有一个盒子,每次你只能选其中的一个盒子,每个盒子对应一个分值,即为你的得分,而且该分值与盒子所在的行数和列数有关,且每次的关系式在变化,你会选哪个盒子?例如: 第一次:分值=x y + (即: 列数+行数) 第二次:分值=2y x - (即: 行数-列数×2)师生活动:教师组织学生做选盒子得分的游戏,学生用“运算—比较”的方法容易解决老师提出的问题.之后,给出图3,让学生在图中找目标函数2b x y =+的最大值,学生沿用上面计算的方法显然很复杂,于是学生的思维产生“结点”.引出课题,提出何为线性(即为一次的)?xy 0 12 345 1 24 3 y 012 3 45 x12 43图1图2怎么规划(即求函数的最值)?是本节课的研究重点.【设计意图】数学是现实世界的反映.创设学生感兴趣的问题情境,从兴趣解决→稍有困难→有较大困难,使学生产生急于解决问题的内驱力,同时培养学生从实际问题抽象出数学模型的能力.(二)独思共议,引导探究方法引导学生由特殊到一般分析目标函数的函数值. 问题1:当6b =时,求x ,y 的值.师生活动:学生通过计算找到三个点的坐标,并观察出三点共线,求出直线方程26y x =-+,教师引导学生观察6b =所对应的直线的纵截距.【设计意图】通过特殊问题,帮助学生理解问题的实质:求x ,y 的值即求不定方程的解.数形结合,将求变量x ,y 转化成求点的坐标(,)x y .观察6b =时三个盒子所在点的位置关系及直线的方程,使学生体会b 值就是直线的纵截距.问题2.在图3中,求2b x y =+的最大值.师生活动:学生在教师的引导下分组讨论,求b 的最大值.通过之前教师的引导及学生对上一节“二元一次不等式表示的平面区域”的学习,对学生的讨论结果有两种预案:预案1:学生通过由特殊到一般的分析,将目标函数2b x y =+转化成2y x b =-+,x ,y 在x14 523791011 812 3 4 Oy图3取得每个可行解时,b 的取值就是直线2y x b =-+过(,)x y 这个点时的纵截距,而所有这些直线都是平行的,因此只需平移直线看纵截距的最大值即可.预案2:根据上一节“二元一次不等式(组)所表示的平面区域”的知识,学生认为b 取最大值时x 、y 的取值一定在直线26y x =-+的右上方的位置,为此就依次在这些位置上画平行于26y x =-+的直线,只要上面有点就不停的画,直至最后一点.师生活动:学生展示讨论结果,教师借助几何画板作演示、分析,渗透转化和数形结合的数学思想.并对学生的结论作出总结,先作直线2y x =-,再作平移,观察直线的纵截距.【设计意图】由特殊到一般,利用数形结合,寻求解题思路. (三)变式思考,深化探究思路1.将目标函数变成34b x y =+, 求b 的最大值.师生活动:通过学生将34b x y =+化成344b y x =-+的形式,做直线34y x =-并进行平移,观察纵截距的最大值的回答过程,教师强调解题步骤:画、作、移、求.【设计意图】规范方法并检验学生对方法的理解程度,使学生感受由直线斜率的变化引起使b 取最大值的过程中点的变化.2.将目标函数变成34b x y =-,求b 的最大值.师生活动:教师引导学生比较此题和上题的区别,学生发现平移直线时若按上题的方法找纵截距的最大值便会出现问题,通过思考、讨论,找到本题需取截距最小的原因.【设计意图】通过目标函数的不同变式,让学生熟悉求最值的方法,尤其是直线中纵截距的符号为负的情况.借助“几何画板”集中呈现目标函数的图形变化,提高课堂效率,建立精准的数形联系.(四)规范格式,应用探究成果1.例1:(习题3.3A 组第3题)电视台应某企业之约播放两套连续剧,其中,连续剧甲每次播放时间为80min ,其中广告时间为1min ,收视观众为60万;连续剧乙每次播放时间为40min ,广告时间为1min ,收视观众为20万.已知此企业与电视台达成协议,要求电视台每周至少播放6mi n 广告,而电视台每周只能为该企业提供不多于320min 的节目时间.如果你是电视台的制片人,电视台每周应播映两套连续剧各多少次,才能获得最高的收视率?播放时间广告时间观众人数(万)(min)(min) 甲 80 1 60 乙 40120320≥ 6≤解:设甲播放x 次,乙播放y 次,收视观众z 万人次 则6020z x y =+.8040320,6,0,0.x y x y x y +≥⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 用如下步骤求z 的最大值: (1)画出可行域;(2)作出直线0l :3y x =-(3)平移0l 至点A 处纵截距最大,即z 最大;(4)解方程组:80403206x y x y +=⎧⎨+=⎩ 得24x y =⎧⎨=⎩,因此max200z=.答:甲播放2次,乙播放4次,收视观众最多为200万人次.师生活动:教师引领学生理解题意,让学生继续领会用表格形式描述数据的直观性.让学生独立建立线性规划的数学模型,并正确设出变量,找好目标函数及约束条件后自行完成此题.通过学生板演,教师规范写法,然后借助解题的过程介绍线性目标函数、线性约束条件、可行解、可行域、最优解及线性规划的数学概念.【设计意图】利用学生感兴趣的例子激发学习动机,通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.2.反思例1解题过程,深入体会数形结合思想师生活动:教师引导学生纵观解题过程,体会在解题中“数”与“形”是怎样结合的,并加以总结.代数几何线性目标函数6020z x y =+ 直线320zy x =-+线性目标函数的函数值直线的纵截距转化图4xyO线性约束条件(二元一次不等式(组)的解集) 可行域线性目标函数的最值直线的纵截距的最值【设计意图】通过反思总结,加强对“数形结合”数学思想的认识,形成学生良好的认知结构.3.例2:(课本例2)营养学家指出,成人良好的日常饮食应该至少提供0.075kg 的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪.1kg 食物A 含有0.105kg 的碳水化合物,0.07kg 的蛋白质,0.14kg 的脂肪,花费28元; 1kg 食物B 含有0.105kg 的碳水化合物,0.14kg 的蛋白质,0.07kg 的脂肪,花费21元.为了满足饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少kg?师生活动:学生独自完成此题,由一位同学生展示自己的解题过程和结果.规范解题步骤和格式.解:设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,那么0.1050.1050.075,0.070.140.06,0.140.070.06,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩① 目标函数为2821z x y =+.二元一次不等式组①等价于775,7146,1476,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩ ②二元一次不等式组所表示的平面区域(图5),即可行域.考虑2821z x y =+,将它变形为4321zy x =-+.这里4321z y x =-+是斜率为43-,随z 变化的一组平行直线,21z是直线在y 轴上的截距,当21z取最小值时,z 的值最小.当然直线要与可行域相交,即在满足约束条件时目标函数2821z x y =+取得最小值.由图5可见,当直线2821z x y =+经过可行域上的点M 时,截距21z最小,即z 最小. MN图5O xy解方程组775,147 6.x yx y+=⎧⎨+=⎩得M的坐标为17x=,47y=.所以282116z x y=+=.答:每天食用食物A为17kg,食物B为47kg,能够满足日常饮食要求,又使花费最低,最低成本为16元.【设计意图】通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.4.反思例2的求解过程.教师通过巡视发现错解的学生,帮助学生找到错误的原因.并提出问题:有时若由于不可避免的误差带来错解,你如何解决?师生活动:由教师帮助学生分析错解的原因,并提出问题.学生意识到可以把所有可能的解都求出来,进行比较即可.【设计意图】通过反思及寻求问题答案,让学生深入思考,培养学生科学严谨的学习态度和解决问题的能力.(五)归纳梳理,体会探究价值由学生和教师共同总结本节课所学到的知识.师生活动:先由学生总结学习的内容,教师作补充说明,尤其是本节课是如何经历的知识探究过程,如何运用化归与数形结合思想得到方法,以及如何通过数学建模解决实际问题.再有教师介绍数学是有用的,通过本节课看到了时间如何合理分配收获最大的问题,如何使消费最少保证饮食健康的问题,还有很多实际应用由学生自己查资料作为拓展作业.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.(六)目标检测题1.在线性约束条件5315153x yy xx y+≤⎧⎪≤+⎨⎪-≤⎩下,求①目标函数35z x y=+的最大值和最小值;②目标函数310z x y=-的最大值和最小值;2.某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是多少?【设计意图】检测题主要考查学生对本节课重点知识的掌握情况,检查学生能否运用所学知识解决问题的能力;拓展作业的设置是为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台,这是本节内容的一个提高与拓展.。

相关文档
最新文档