考研数学三必背知识点:概率论与数理统计

合集下载

考研数学三必背知识点:概率论与数理统计

考研数学三必背知识点:概率论与数理统计

概率论与数理统计必考知识点一、随机事件和概率1、 随机事件及其概率运算律名称 表达式交换律A B B A +=+ BA AB =结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()(分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+德摩根律B A B A =+ B A AB +=2、概率的定义及其计算公式名称公式表达式 求逆公式 )(1)(A P A P -= 加法公式 )()()()(AB P B P A P B A P -+=+条件概率公式 )()()(A P AB P A B P =乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P =全概率公式∑==ni iiA B P A P B P 1)()()(贝叶斯公式 (逆概率公式) ∑∞==1)()()()()(i ijj j j A B P A P A B P A P B A P伯努力概型公式 n k p p C k P k n kk n n ,1,0,)1()(=-=-两件事件相互独立相应公式)()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ;1)()(=+A B P A B P二、随机变量及其分布1、分布函数性质)()(b F b X P =≤ )()()(a F b F b X a P -=≤<2、 散型随机变量分布名称 分布律0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k二项分布),(p n Bn k p p C k X P k n kk n ,,1,0,)1()( =-==-泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλ几何分布)(p G,2,1,0,)1()(1=-==-k p p k X P k超几何分布),,(n M N H),min(,,1,,)(M n l l k C C C k X P nNkn MN k M +===--3..续型随机变量分布名称密度函数 分布函数均匀分布),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f⎪⎪⎩⎪⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,1,,0)(指数分布)(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ 正态分布),(2σμN+∞<<∞-=--x ex f x 222)(21)(σμσπ ⎰∞---=xt t ex F d21)(222)(σμσπ标准正态分布)1,0(N+∞<<∞-=-x ex x 2221)(πϕ⎰∞---=xt t ex F d21)(222)(σμσπ三、多维随机变量及其分布1、离散型二维随机变量边缘分布 ∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j i2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=yY dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布 +∞<<-∞=y x f y x f x y f X X Y ,)(),()( +∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关7、协方差和相关系数的性质(1))(),(X D X X Cov = ),(),(X Y C o v Y X C o v =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X a b C o v d bY c aX Cov =++8、常见数学分布的期望和方差分布 数学期望方差0-1分布),1(p B p)1(p p - 二行分布),(p n B np)1(p np -泊松分布)(λP λλ几何分布)(p G p1 21pp -超几何分布),,(n M N H N M n1)1(---N mN N M N M n均匀分布),(b a U 2b a + 12)(2a b - 正态分布),(2σμN μ2σ指数分布)(λEλ1 21λ五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<-2、大数定律:若n X X 1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n11)(11(1)若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X 1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n =η则对任意x 有: ⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b Xa P nk knk k-Φ--Φ≈-≤-≤-=≤≤∑∑==六、数理统计1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X 的联合分布为)(),(121k nk n x F x x x F =∏=2、统计量(1)样本平均值:∑==ni i X nX 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距: 2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1(6)次序统计量:设样本),(21n X X X 的观察值),(21n x x x ,将n x x x 21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤ ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤ 为样本),(21n X X X 的次序统计量。

山东省考研数学复习资料概率论与数理统计重点知识点整理

山东省考研数学复习资料概率论与数理统计重点知识点整理

山东省考研数学复习资料概率论与数理统计重点知识点整理概率论与数理统计是数学的重要分支,广泛应用于各个领域。

在山东省考研的数学科目中,概率论与数理统计是必考内容之一。

为了帮助考生复习,本文将针对概率论与数理统计的重点知识点进行整理,并提供相应的考点解析和习题练习。

一、概率论基础知识1. 随机事件与概率:事件的概念、随机事件的概率、事件的运算(包括事件的和、积,互斥事件,逆事件等)2. 条件概率与独立性:条件概率的概念、乘法定理、全概率公式、贝叶斯公式、独立事件的概念与性质3. 随机变量与分布函数:随机变量的概念、离散型随机变量、连续型随机变量、随机变量函数的分布4. 数学期望与方差:随机变量的数学期望、方差的性质与计算、条件期望、协方差与相关系数的定义与计算二、概率分布1. 离散型随机变量的分布:伯努利分布、二项分布、泊松分布等,包括分布的概率函数、分布函数、数学期望和方差的计算2. 连续型随机变量的分布:均匀分布、指数分布、正态分布等,包括分布的密度函数、分布函数、数学期望和方差的计算3. 两个随机变量的分布:随机变量之和的分布、两个随机变量的函数的分布三、大数定律与中心极限定理1. 大数定律:切比雪夫不等式、大数定律的独立同分布条件、伯努利大数定律、辛钦大数定律2. 中心极限定理:中心极限定理的独立同分布条件、独立同分布情况下的林德伯格-列维定理、棣莫弗-拉普拉斯中心极限定理四、参数估计与假设检验1. 点估计:估计量与矩估计、最大似然估计、无偏性与有效性、均方误差2. 区间估计:置信区间的构造与解释、枢轴变量法构造置信区间、大样本置信区间与小样本置信区间3. 假设检验:假设检验的基本原理与步骤、拒绝域与接受域、显著性水平与p值、参数检验与非参数检验五、相关分析与方差分析1. 相关分析:相关系数的计算与解释、相关系数的性质与应用、线性回归与最小二乘法2. 方差分析:单因素方差分析、双因素方差分析、方差分析的假设条件与检验方法六、样本调查与抽样分布1. 随机抽样:简单随机抽样、分层抽样、整群抽样、多阶段抽样等抽样方法2. 样本调查:样本容量的确定、调查问卷设计与分析、样本误差与抽样误差3. 抽样分布:统计量与抽样分布、正态分布与t分布、卡方分布与F分布通过对概率论与数理统计的重点知识点进行整理,希望能够帮助山东省考研数学的考生有一个清晰的复习框架。

考研数学重要知识点解析概率论与数理统计

考研数学重要知识点解析概率论与数理统计

考研数学重要知识点解析概率论与数理统计概率论与数理统计是考研数学中的一个重要知识点,也是许多专业的必修课程。

它涉及到随机事件的概率计算和数据分析的方法,对于理解和应用数学、统计学、经济学、计算机科学等学科都具有重要意义。

下面,我将从概率论和数理统计两个方面来解析该知识点。

一、概率论概率论是研究随机现象的规律性和不确定性的数学分支。

在考研数学中,概率论主要涉及到基本概念、概率计算、随机变量、概率分布和大数定律等内容。

以下是其中的几个重要知识点:1.基本概念:包括随机试验、样本空间、随机事件、事件的概率、事件的概率运算等。

其中,随机试验是指可重复进行的事件,样本空间是随机试验所有可能结果的集合,随机事件是样本空间的子集。

2.概率计算:概率计算方法主要包括古典概型、几何概型和概率公式法。

古典概型是指随机试验的样本空间是有限个元素的情况,几何概型是指样本空间可以用几何图形表示的情况,概率公式法是通过概率公式进行计算。

3.随机变量和概率分布:随机变量是指一个随机试验可能结果的实值函数。

对于离散型随机变量,其概率分布可以用概率质量函数表示;对于连续型随机变量,其概率分布可以用概率密度函数表示。

常见的离散型随机变量有二项分布、泊松分布等;常见的连续型随机变量有均匀分布、正态分布等。

4.大数定律和中心极限定理:大数定律指出,随着试验次数的增加,随机事件的频率稳定地趋近于事件的概率。

中心极限定理指出,随着独立同分布随机变量的和的数量级趋于无穷大时,其分布逼近于正态分布。

二、数理统计数理统计是利用数学的方法对数据进行运算和分析的学科。

在考研数学中,数理统计主要包括抽样调查、数据描述、参数估计、假设检验、方差分析等内容。

以下是其中的几个重要知识点:1.抽样调查:抽样调查是通过从总体中抽取一部分个体进行观察和测量,然后对这部分个体的特征进行统计推断的方法。

常用的抽样方法有随机抽样、系统抽样、整群抽样等。

2.数据描述和分析:包括数据的集中趋势和离散程度的度量、数据的频数统计和频率统计、描述性统计、数据的图形展示等。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率论知识点总结:1.随机事件:随机事件是指在一次试验中,可能发生也可能不发生的事件。

例如:掷硬币的结果、抽取扑克牌的花色等。

2.概率:概率是描述随机事件发生可能性大小的数值。

概率的取值范围是[0,1],表示事件发生的可能性大小,0表示不可能发生,1表示一定会发生。

3.古典概型:古典概型是指每种可能的结果发生的概率相等的情形。

例如:掷骰子的结果、抽取彩色球的颜色等。

4.随机变量:随机变量是用来描述试验结果的数值,它的取值是根据随机事件的结果确定的。

例如:掷骰子的点数、抽取扑克牌的点数等。

5.概率分布:随机变量的概率分布描述了每个取值发生的概率。

常见的概率分布有离散概率分布和连续概率分布,如二项分布、正态分布等。

6. 期望值:期望值是衡量随机变量取值的平均值。

对于离散型随机变量,期望值=E[X]=∑[xP(X=x)];对于连续型随机变量,期望值=E[X]=∫[x f(x)dx],其中f(x)为概率密度函数。

7. 方差:方差是衡量随机变量取值与期望值之间的偏离程度。

方差=Var(X)=E[(X-E[X])^2]。

8.独立性:两个随机事件或随机变量之间的独立性表示它们的发生与否或取值无关联。

独立性的判定通常通过联合概率、条件概率等来进行推导。

二、数理统计知识点总结:1.样本与总体:在统计学中,样本是指从总体中选取的具体观测数据。

总体是指要研究的对象的全部个体或事物的集合。

2.参数与统计量:参数是描述总体特征的数值,如总体均值、总体方差等。

统计量是根据样本计算得到的参数估计值,用来估计总体参数。

3.抽样方法:抽样方法是从总体中选取样本的方法,常见的抽样方法有简单随机抽样、系统抽样、整群抽样等。

4.统计分布:统计分布是指样本统计量的分布。

常见的统计分布有t分布、F分布、x^2分布等,其中t分布适用于小样本、F分布适用于方差比较、x^2分布适用于拟合优度检验等。

5.点估计与区间估计:点估计是以样本统计量为基础,估计总体参数的数值。

考研数学三概率论与数理统计知识点

考研数学三概率论与数理统计知识点

考研数学三概率论与数理统计知识点考研数学三概率论与数理统计知识点我们在进行考研数学的复习时,要了解三概率论与数理统计的知识点有哪些。

店铺为大家精心准备了数学三概率论与数理统计客观题解析,欢迎大家前来阅读。

考研数学概率论与数理统计总结一、第一章随机事件与概率重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式。

难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算。

二、常考题型事件、概率与独立性是本章给出的概率论中最基本、最重要的三个概念。

事件关系及其运算是本章的重点和难点,概率计算是本章的重点。

注意事件与概率之间的关系。

本章主要考查随机事件的关系和运算,概率的性质、条件概率和五大公式,注意事件的独立性。

近几年单独考查本章的试题相对较少,但是大多数考题中将本章的内容作为基本知识点来考查。

相当一部分考生对本章中的古典概型感到困难。

大纲只要求对古典概率和几何概率会计算一般难度的题型就可以。

考生不必可以去做这方面的难题,因为古典型概率和几何型概率毕竟不是重点。

三、注意事项与线性代数一样,概率也比高数容易,花同样的时间复习概率也更为划算。

但与线代一样,概率也常常被忽视,有时甚至被忽略。

一般的数学考研参考书是按高数、线代、概率的顺序安排的,概率被放在最后,复习完高数和线代以后有可能时间所剩无多;而且因为前两部分分别占60%和20的分值,复习完以后多少会有点满足心理;这些因素都可能影响到概率的复习。

概率这门课如果有难点就应该是"记忆量大"。

在高数部分,公式、定理和性质虽然有很多,但其中相当大一部分都比较简单,还有很多可以借助理解来记忆;在线代部分,需要记忆的公式定理少,而需要通过推导相互联系来理解记忆的多,所以记忆量也不构成难点;但是在概率中,由大量的概念、公式、性质和定理需要记清楚,而且若靠推导来记这些点的话,不但难度大耗时多而且没有更多的用处(因为概率部分考试时对公式定理的内在推导过程及联系并没有什么要求,一般不会在更深的层次上出题)。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结概率论与数理统计是数学的一个重要分支,主要研究各种随机现象的规律性及其数值描述。

下面将对概率论与数理统计的一些重要知识点进行总结。

一、概率论知识点总结1. 随机事件与概率- 随机事件:指在一定条件下具有不确定性的事件。

- 概率:用来描述随机事件发生的可能性大小的数值。

2. 古典概型与几何概型- 古典概型:指随机试验中,所有基本事件的可能性相等的情况。

- 几何概型:指随机试验中,基本事件的可能性不完全相等,与图形的属性有关的情况。

3. 随机变量与概率分布- 随机变量:定义在样本空间上的函数,用来描述试验结果与数值之间的对应关系。

- 离散随机变量:取有限个或可列个数值的随机变量。

- 连续随机变量:取无限个数值的随机变量。

4. 期望与方差- 期望:反映随机变量平均取值的数值。

- 方差:反映随机变量取值偏离期望值的程度。

5. 大数定律与中心极限定理- 大数定律:指在独立重复试验中,随着试验次数增加,事件发生的频率趋近于其概率。

- 中心极限定理:指在独立随机变量之和的情况下,当随机变量数目趋于无穷时,这些随机变量之和的分布趋近于正态分布。

二、数理统计知识点总结1. 抽样与抽样分布- 抽样:指对总体进行有规则地选择一部分样本进行观察和研究的过程。

- 抽样分布:指用统计量对不同样本进行计算所得到的分布。

2. 参数估计与置信区间- 参数估计:根据样本推断总体的未知参数。

- 置信区间:对于总体参数估计的一个区间估计,用来表示这个参数的可能取值范围。

3. 假设检验与统计显著性- 假设检验:用来判断统计推断是否与已知事实相符。

- 统计显著性:基于样本数据,对总体或总体参数进行判断的一种方法。

4. 方差分析与回归分析- 方差分析:用来研究因素对于某一变量均值的影响程度。

- 回归分析:通过观察变量之间的关系,建立数学模型来描述两个或多个变量间的依赖关系。

5. 交叉表与卡方检验- 交叉表:将两个或多个变量的数据按照某种方式交叉排列而形成的表格。

考研概率论与数理统计知识点梳理

考研概率论与数理统计知识点梳理

考研概率论与数理统计知识点梳理概率论与数理统计是考研数学的重要组成部分,对于数学专业的考生来说,掌握好概率论与数理统计的知识点是至关重要的。

本文将对考研概率论与数理统计的知识点进行梳理,以帮助考生更好地备考。

一、概率论知识点梳理1. 事件与概率概率论的基本概念是事件和概率。

事件是指随机试验中一些可能出现的事情,而概率则是事件发生的可能性大小。

概率的计算方法包括古典概型、几何概型和统计概型等。

2. 随机变量与概率分布随机变量是指随机试验结果的数值表示,概率分布是指随机变量可能取值的概率分布情况。

常见的概率分布包括离散型随机变量的二项分布和泊松分布,连续型随机变量的正态分布和指数分布等。

3. 随机变量的数字特征随机变量的数字特征是描述随机变量性质的统计量,包括数学期望、方差、协方差和相关系数等。

这些数字特征可以帮助我们更好地理解和描述随机变量的性质。

4. 大数定律与中心极限定理大数定律和中心极限定理是概率论的两个重要定理。

大数定律指出,随着随机试验次数的增加,随机变量的频率逐渐趋近于其概率。

中心极限定理则指出,若随机变量满足一定条件,其和的分布将趋于正态分布。

二、数理统计知识点梳理1. 统计数据的整理与分析数理统计的基本任务是整理和分析统计数据。

常用的统计图表包括频数分布表、频率分布直方图和箱线图等,可以直观地展示数据的分布情况。

2. 抽样与抽样分布抽样是从总体中选取样本进行统计推断的方法,抽样分布是样本统计量的概率分布。

常见的抽样分布包括正态分布的抽样分布和t分布的抽样分布等。

3. 参数估计与假设检验参数估计是利用样本统计量来估计总体参数的值,常见的参数估计方法包括点估计和区间估计。

假设检验是利用样本数据对总体参数进行检验的方法,常用的假设检验方法包括单样本假设检验和双样本假设检验等。

4. 方差分析与回归分析方差分析是用于比较两个或多个总体均值是否有显著差异的方法,回归分析是用于建立变量之间关系的方法。

考研数学中的概率论与数理统计知识点总结

考研数学中的概率论与数理统计知识点总结

考研数学中的概率论与数理统计知识点总结随着社会的发展,考研越来越受到广大学子的关注和追捧。

为了帮助考研学子们更好地备考,本文将对考研数学中的概率论与数理统计知识点进行总结和梳理。

一、概率论1.基本概念概率是研究随机事件发生可能性的一种数学方法。

其中,随机事件是指在相同的条件下可能出现也可能不出现的事件。

2.概率的计算概率有三种计算方法:古典概型、几何概型和统计概型。

其中,古典概型适用于有限个等可能性事件的概率计算;几何概型适用于连续性问题的概率计算;统计概型适用于大量重复实验的概率计算。

3.条件概率条件概率是指在已知事件B发生的情况下,事件A发生的概率。

其计算公式为P(A|B)=P(AB)/P(B)。

4.独立事件当事件A和事件B的发生没有相互影响时,称它们是独立事件。

根据概率乘法公式可以得到独立事件的计算公式为P(AB)=P(A)P(B)。

5.随机变量随机变量是指一个随机试验结果所对应的数值,可以分为离散型和连续型两种。

其中,离散型随机变量是指取到有限个或无限个可数值的随机变量,例如掷骰子的点数;连续型随机变量是指取到某一区间内任意一个数值的随机变量,例如人的身高。

二、数理统计1.基本概念数理统计是利用概率论在统计学中进行数据分析和研究的一种数学方法。

其中,总体是指含有可度量或可观察的某种特征的全部个体群体;样本是指对总体的部分观测数据。

2.参数估计参数估计是指通过样本中的数据对总体中某个或某些参数进行估计的方法。

其中,点估计是指通过样本数据直接估计总体参数的值;区间估计是指通过样本数据估计总体参数的值所在的区间。

3.假设检验假设检验是指在已知总体参数的情况下,通过样本所得到的样本统计量来推断总体参数是否符合某种假设的方法。

其中,显著性水平是指假设检验中犯错误的概率,一般取0.05或0.01。

4.方差分析方差分析是指通过方差比较来确定组间差异和组内差异及其大小的方法。

其中,单因素方差分析是指只考虑一个因素对结果影响的方差分析;双因素方差分析是指考虑两个因素对结果影响的方差分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计必考知识点
一、随机事件和概率
1、随机事件及其概率
二、随机变量及其分布
1、分布函数性质
2、
3..
三、多维随机变量及其分布
1、离散型二维随机变量边缘分布
2、离散型二维随机变量条件分布
3、连续型二维随机变量( X ,Y )的分布函数⎰⎰
∞-∞
-=
x y
dvdu v u f y x F ),(),(
4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:⎰⎰
∞-+∞

-=
x X dvdu v u f x F ),()( 密度函数:⎰
+∞

-=
dv v x f x f X ),()(
5、二维随机变量的条件分布
四、随机变量的数字特征
1、数学期望
离散型随机变量:∑+∞
==1
)(k k k
p x
X E 连续型随机变量:⎰
+∞

-=
dx x xf X E )()(
2、数学期望的性质
(1)若XY 相互独立则:)()()(Y E X E XY E = 3、方差:)()()(22X E X E X D -= 4、方差的性质
(1)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov 6、相关系数:)
()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关
7、协方差和相关系数的性质 8
五、大数定律和中心极限定理
1、切比雪夫不等式
若,)(,)(2σμ==X D X E 对于任意0>ξ有2
)
(})({ξξX D X E X P ≤
≥-或2
)
(1})({ξξX D X E X P -
≥<-
2、大数定律:若n X X Λ1相互独立且∞→n 时,
∑∑
==−→
−n
i i
D
n
i i X E n
X n
11
)(1
1
(1)若n X X Λ1相互独立,2)
(,)(i i i i X D X E σμ==且M i ≤2
σ则:
∑∑
==∞→−→
−n
i i
P
n
i i n X E n
X n
1
1
)(),(1
1
(2)若n X X Λ1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−
∑=P
n i i X n 1
1 3、中心极限定理
(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有: (2)拉普拉斯定理:随机变量),(~)2,1(p n B n n Λ=η则对任意x 有:
(3)近似计算:)(
)(
)(
)(1
1
σ
μσ
μσ
μσ
μ
σ
μn n a n n b n n b n n X
n n a P b X a P n
k k
n
k k -Φ--Φ≈-≤
-≤
-=≤≤
∑∑
==
六、数理统计
1、总体和样本
总体X 的分布函数)(x F 样本),(21n X X X Λ的联合分布为)(),(121k n
k n x F x x x F =∏=Λ
2、统计量
(1)样本平均值:∑
==
n
i i X n
X 1
1
(2)样本方差:∑∑
==--=
--=
n
i i
n
i i X n X
n X X n S 1
2
2
1
2
2
)(11
)(1
1
(3)样本标准差:∑
=--=
n
i i X X n S 1
2
)(1
1 (4)样本k 阶原点距:Λ2,1,1
1
==
∑=k
X
n A n
i k
i k
(5)样本k 阶中心距:∑==-=
=n
i k i
k k k X X
n
M B 1
3,2,)(1
Λ
(6)次序统计量:设样本),(21n X X X Λ的观察值),(21n x x x Λ,将n x x x Λ21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤Λ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤Λ为样本
),(21n X X X Λ的次序统计量。

),min(21)1(n X X X X Λ=为最小次序统计量;),max(21)(n n X X X X Λ=为
最大次序统计量。

3、三大抽样分布
(1)2χ分布:设随机变量n X X X Λ21,相互独立,且都服从标准正态分布)1,0(N ,则随机变量
2
22212n X X X Λ++=χ所服从的分布称为自由度为n 的2χ分布,记为)(~22n χχ
性质:①n n D n n E 2)]([,)]([22==χχ②设)(~),(~22n Y m X χχ且相互独立,则)(~2n m Y X ++χ (2)t 分布:设随机变量)(~),1,0(~2n Y N X χ,且X 与Y 独立,则随机变量:n
Y X T =
所服从的分布称
为自由度的n 的t 分布,记为)(~n t T
性质:①)2(,2)]([,0)]([>-==n n n n t D n t E ②2
2
2)(21)1,0()(lim σμπ
--∞→=
=x n e N n t
(3)F 分布:设随机变量)(~),(~2212n V n U χχ,且U 与V 独立,则随机变量2
1
21),(n V n U n n F =所服从的分布称为自由度),(21n n 的F 分布,记为),(~21n n F F 性质:设),(~n m F X ,则
),(~1
m n F X
七、参数估计
1、参数估计
(1) 定义:用),,(21n X X X Λ∧
θ估计总体参数θ,称),,(21n X X X Λ∧
θ为θ的估计量,相应的),,(21n X X X Λ∧
θ为总体θ的估计值。

(2) 当总体是正态分布时,未知参数的矩估计值=未知参数的最大似然估计值 2、点估计中的矩估计法:(总体矩=样本矩) 离散型样本均值:∑
==
=n
i i X n
X E X 1
1
)( 连续型样本均值:dx x xf X E X ⎰
+∞

-=
=),()(θ
离散型参数:∑==
n
i i
X
n
X E 1
22
1
)(
3、点估计中的最大似然估计
最大似然估计法:n X X X Λ,,21取自X 的样本,设)]()()[,(~θθP X X P x f X i ==或则可得到概率密度:])()(),,([),(),,,(1
1
21
1
21∏∏∏======
===
n
i i
n i i
n n n
i i
n P x X P x X X
X X P x f x x x f θθθΛΛ或
基本步骤: ①似然函数:])([),()(1
1
∏∏===
n
i i
n
i i
P x f L θθθ或
②取对数:∑==
n
i i
X f L 1
),(ln ln θ
③解方程:0ln ,,0ln 1=∂∂=∂∂k
L
L θθΛ最后得:),,(,),,,(212111n k k n x x x x x x ΛΛΛ∧∧∧∧==θθθθ。

相关文档
最新文档