信号与系统各章节知识点总结

合集下载

(完整版)信号与系统知识要点

(完整版)信号与系统知识要点

信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。

信号与系统重点概念公式总结

信号与系统重点概念公式总结

信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

信号与系统知识点归纳

信号与系统知识点归纳
频谱特性
周期信号的频谱是离散的,由一系列频率分量组成,每个 分量对应一个傅里叶系数。
幅度谱和相位谱
幅度谱表示各频率分量的幅度大小,相位谱表示各频率分 量的相位信息。
非周期信号频谱分析
傅里叶变换
将非周期信号表示为一系列复指数函数的积分,即 $F(omega) = int_{-infty}^{infty} f(t) e^{jomega t} dt$,其中 $F(omega)$ 是信号的频谱。
单位样值信号
在某一时刻取值为1,其余时 刻为0的信号。
正弦型信号
形如sin(ωn)或cos(ωn)的周期 性信号,其中ω为角频率。
复杂指数型信号
形如ean的形式,其中a和ω为 常数,n为离散时刻。
离散时间信号频谱分析
离散时间信号的频谱
通过傅里叶变换将离散时间信号从时域转换 到频域,得到信号的频谱。
信号分类
根据信号的性质和特征,信号可以分 为多种类型,如连续时间信号和离散 时间信号、周期信号和非周期信号、 能量信号和功率信号等。
系统定义及性质
系统定义
系统是一个由输入信号激励、内部含有某种变换关系、并能产生输出信号的物理装置或算法。在信号处理中,系 统通常表示为对输入信号进行某种变换或处理的过程。
周期信号的频谱
周期信号可以表示为无穷级数,其频谱由傅 里叶系数确定。
非周期信号的频谱
非周期信号的频谱是连续的,可以通过傅里 叶变换求得。
信号的能量和功率谱
能量信号和功率信号的频谱特性不同,分别 对应能量谱和功率谱。
离散时间系统响应
线性时不变系统的响应
线性时不变系统对输入信号的响应具有叠加性和时不变性。
卷积和运算
线性时不变系统的响应可以通过输入信号与系统单位样值响应的卷积 和求得。

信号与系统一二单元总结

信号与系统一二单元总结

i0
ai
dt ni
y(t)
bj
j0
dt m j
x(t)
完全解=齐次解+特解
注意:1、不同的初始条件,导致不同的解-实际对应着不同的系统(指稳定、因果性等,LTI)
2、“信号与系统”的术语:
完全解-全响应,
齐次解-自由响应,由方程的特征根(系统特性)决定,
特解-强迫响应,由激励信号和系统特性共同决定
※ ※ ※ 确定初始条件的方法:δ函数匹配法 2)、线性常系数差分方程
自变量
函数值
连续
模拟信号
离散
抽烟信号
数字信号
2)、信号能量与功率(无限区间) 连续
离散
总能量
| x(t) |2dt
| xn|2
n
平均功率
lim
1
T
| x(t) |2dt
T 2T T
lim
1
N
| x n |2
N 2N 1 nN
3)、偶信号和奇信号 奇部
偶部
3、自变量的变换

连 续
时间
x t Ae j0 t Aest
复 指 A 和α为实数
数 信 (1)σ、ω0 均为 0 时,x(t)=A—直流信


实指
(2)σ≠0, ω0=0 时,实指数信号
数信
(3)σ=0, ω0 ≠ 0 时,忽略常数 A,

xt e j0t —周期复指数信号
(4)σ≠0,ω0 ≠ 0 时,一般复指数信

周期复指数信 号
e j0t cos 0t j sin 0t
Acos(0t )
A e j0te j 2
A e j0t e j 2

信号与系统知识点

信号与系统知识点

| T0 2
−T0 2
x(t) |2
dt
=
∞ n=−∞
Cn
2
A → A2
B
sin
(ω0t )

B2 2
C
cos
(ω0t
)

C2 2
6、 连续非周期信号表达为 e jωt (−∞ < t < ∞) 的线性组合
∫ x(t) = 1 ∞ X ( jω)e jωtdω 2π −∞
x(t) ⇔ X ( jω)
∫ X ( jω) = ∞ x(t)e− jωtdt −∞
7、常用连续非周期信号的频谱
δ (t ),u (t ),sgn (t ), e−αtu (t ),sin (ω0t ), cos (ω0t ), e± jω0t , Sa (ω0t ),δT0 (t) ,矩形波、三
角波等
8、傅里叶变换的性质(用会)
第 3 章 系统的时域分析
1、系统的时域描述
连续 LTI 系统:线性常系数微分方程
y (t )与x (t ) 之间的约束关系
离散 LTI 系统:线性常系数差分方程
y[k]与x[k ]之间的约束关系
2、 系统响应的经典求解(一般了解) 衬托后面方法的优越
纯数学方法
全解=通解+特解
y (t ) = yh (t ) + yp (t )
项)(一般了解)
h[k ] :等效初始条件法(一般了解)
4、 ※卷积计算及其性质
∫ y(t) = x(t) ∗ h(t) = ∞ x(τ )h(t −τ )dτ −∞ ∞
y [k ] = x[k]∗ h[k] = ∑ x[n]h[k − n] n=−∞

信号与系统重要知识总结

信号与系统重要知识总结

基本概念一维信号:信号是一个独立变量的函数时,称为一维信号。

多维信号:如果信号是n 个独立变量的函数,就称为n 维信号。

归一化能量或功率:信号(电压或电流)在单位电阻上的能量或功率。

能量信号:若信号的能量有界,则称其为能量有限信号,简称为能量信号。

功率信号:若信号的功率有界,则称其为功率有限信号,简称为功率信号。

门函数:()g t τ常称为门函数,其宽度为τ,幅度为1因果性:响应(零状态响应)不出现于激励之前的系统称为因果系统。

因果信号:把t=0时接入的信号(即在t<0时,f(t)=0的信号)称为因果信号,或有始信号。

卷积公式:1212()()*()()()f t f t f t f f t d τττ∞-∞==-⎰梳妆函数:相关函数:又称为相关积分。

意义:衡量某信号与另一延时信号之间的相似程度。

延时为0时相似程度是最好的。

1212()()()R f t f t dt ττ∞-∞==-⎰前向差分: ()(1)()f k f k f k ∆=+-后向差分:()()(1)f k f k f k ∇=--单位序列:()k δ单位阶跃序列:()k ε基本信号:时间域:连续时间系统以冲激函数为基本信号,离散时间系统以单位序列为基本信号。

任意输入信号可分解为一系列冲积函数(连续)或单位序列(离散)的加权和。

频率域:连续时间系统以正弦函数或虚指数函数jwt e 为基本信号,将任意连续时间信号表示为一系列不同频率的正弦信号或虚指数信号之和(对于周期信号)或积分(对于非周期信号)。

DTFT :离散时间信号,以虚指数函数2j kn N e π或j k e θ为基本信号,将任意离散时间信号表示为N 个不同频率的虚指数之和(对于周期信号)或积分(对于非周期信号)。

系统响应:()j t j t Ye H j Fe ωωω=正交函数集:n 个函数构成一函数集,如在区间 内满足正交特性。

复变函数的正交性均方误差:误差的均方值2ε帕斯瓦尔方程:j j j t t K C dt t f ∑⎰∞==12221)( 含义:)(t f 在区间),(21t t 信号所含能量恒等于此信号在完备正交函数集中各正交分量能量的总和。

信号与系统重点概念公式总结

信号与系统重点概念公式总结

信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f ji dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

信号与系统_复习知识总结

信号与系统_复习知识总结

信号与系统_复习知识总结信号与系统是电子信息类专业中的一门重要课程,主要介绍信号与系统的基本概念、性质、表示方法、处理方法、分析方法等。

在学习信号与系统的过程中,我们需要掌握的知识非常多,下面是我对信号与系统的复习知识的总结。

一、信号的基本概念1.信号的定义:信号是随时间或空间变化的物理量。

2.基本分类:(1)连续时间信号:在整个时间区间内有无穷多个取值的信号。

(2)离散时间信号:只在一些特定时刻上有取值的信号。

(3)连续振幅信号:信号的幅度在一定范围内连续变化。

(4)离散振幅信号:信号的幅度只能取离散值。

二、信号的表示方法1.连续时间信号的表示方法:(1)方程式表示法:用数学表达式表示信号。

(2)波形表示法:用图形表示信号。

2.离散时间信号的表示方法:(1)序列表示法:用数学序列表示信号。

(2)图形表示法:用折线图表示离散时间信号。

三、连续时间系统的性质1.线性性质:(1)加性:输入信号之和对应于输出信号之和。

(2)齐次性:输入信号的倍数与输出信号的倍数相同。

2.时不变性:系统的输出不随输入信号在时间上的变化而变化。

3.扩展性:输入信号的时延会导致输出信号的时延。

4.稳定性:系统的输出有界,当输入信号有界时。

5.因果性:系统的输出只依赖于当前和过去的输入信号值。

6.可逆性:系统的输出可以唯一地反映输入信号的信息。

四、离散时间系统的性质1.线性性质:具有加性和齐次性。

2.时不变性:输入信号的时移会导致输出信号的相应时移。

3.稳定性:系统的输出有界,当输入信号有界时。

4.因果性:系统的输出只依赖于当前和过去的输入信号值。

五、连续时间系统的分类1.时不变系统:输入信号的时移会导致输出信号的相应时移。

2.线性时不变系统:具有加性和齐次性。

3.时变系统:输入信号的时移会导致输出信号的相应时移,并且系统的系数是时间的函数。

4.非线性系统:不具有加性和齐次性。

六、离散时间线性时不变系统的分类1.线性时变系统:输入信号的时移会导致输出信号的相应时移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档