流体力学的基本知识点的阐述

合集下载

流体力学知识点大全

流体力学知识点大全

流体力学知识点大全流体力学是研究流体运动规律的一门学科,涉及流体的力学性质、流体力学方程、流体的温度、压力、速度分布等等。

以下是流体力学的一些主要知识点:1.流体的性质和分类:流体包括液体和气体两种状态,液体具有固定体积,气体具有可压缩性。

液体和气体都具有易于流动的特点。

2.流体力学基本方程:流体力学基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程描述了流体质量的守恒,动量守恒方程描述了流体动量的守恒,能量守恒方程描述了流体能量的守恒。

3.流体的运动描述:流体的运动可以通过速度场描述,速度场是空间中每一点上的速度矢量的函数。

速度矢量的大小和方向决定了流体中每一点的速度和运动方向。

4. 流体静力学:流体静力学研究的是处于静止状态的流体,通过压力分布可以确定流体的力学性质。

压力是流体作用在单位面积上的力,根据Pascal定律,压力在流体中均匀传播。

5.流体动力学:流体动力学研究的是流体的运动,通过速度场和压力分布可以确定流体的速度和运动方向。

流体动力学包括流体的运动方程、速度场描述和流动量的计算等。

6.流体的定常流和非定常流:流体的定常流指的是流体的运动状态随时间不变,速度场和压力分布在任意时刻均保持不变。

而非定常流则是指流体的运动状态随时间变化,速度场和压力分布在不同的时刻会有所改变。

7.流体的层流和湍流:流体的层流是指在流体中存在着明确的层次结构,流体颗粒沿着规则的路径流动。

而湍流则是指流体中存在着随机不规则的流动,流体颗粒方向和速度难以预测。

8.流体的黏性:流体的黏性是指流体内部存在摩擦力,影响流体的流动性质。

流体的黏度越大,流体粘性越大,流动越缓慢。

黏性对于流体的层流和湍流特性有重要影响。

9.流体的雷诺数:雷诺数是用于描述流体运动是否属于层流还是湍流的参数。

当雷诺数小于临界值时,流体运动属于层流;当雷诺数大于临界值时,流体运动为湍流。

10.流体的边界层:边界层是指在流体靠近固体表面的地方,速度和压力的变化比较大的区域。

(完整版)流体力学知识点总结汇总

(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。

2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3 流体力学的研究方法:理论、数值、实验。

4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。

作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。

(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。

B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。

即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。

由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。

动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。

运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。

无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。

流体力学基础知识概述

流体力学基础知识概述

流体力学基础知识概述流体力学是研究流体运动及其力学性质的学科领域,它对于了解和分析自然界中的流体现象、工程设计和科学研究都具有重要的意义。

本文将对流体力学的基础知识进行概述,帮助读者对该领域有一个全面的了解。

一、流体的特性流体是一种连续变形的物质,其特性包括两个基本的属性:质量和体积。

质量是指流体的总重量,而体积则表示流体占据的空间。

流体还具有可压缩性和不可压缩性之分,可压缩流体如气体在受力时体积可变,不可压缩流体如液体则在受力时体积基本保持不变。

二、流体的力学性质1. 流体的静力学性质:静力学研究的是流体在静态平衡下的性质。

静力学方程描述了流体静力平衡的条件,在不同的情况下有不同的方程形式。

例如,对于不可压缩流体,静力平衡方程可以表示为斯托克斯定律。

2. 流体的动力学性质:动力学研究的是流体在运动状态下的性质。

根据流体的性质和流动条件,可以使用纳维-斯托克斯方程或欧拉方程来描述流体运动。

这些方程可以通过流体的质量守恒、动量守恒和能量守恒得到。

三、流体的流动类型根据流体的运动方式,流体力学将流动分为两种基本类型:层流和湍流。

层流是指流体以有序、平稳的方式流动,流线相互平行且不交叉;而湍流则是流体运动不规则、混乱的状态,流线交叉、旋转和变化。

层流和湍流的转变由雷诺数决定,雷诺数越大,流动越容易变为湍流。

雷诺数是流体力学中一个无量纲的参数,通过流体的密度、速度和长度等特性计算而来。

四、流体的流速分布流体在管道或河流等容器中的流速分布可以通过速度剖面来描述,速度剖面是指流体速度随离开管道中心轴距离的变化关系。

一般情况下,流体在靠近管道壁面处速度较小,在中心位置处速度较大。

速度剖面可用来研究流体流动的特性,例如通过计算剖面的斜率可以确定流体的平均速度。

此外,流体的速度分布还受到管道壁面的摩擦力和流体性质的影响。

五、流体的流量计算流量是指单位时间内通过某一横截面的流体体积,计算流体流量是流体力学中的一项重要任务。

流体力学基础知识

流体力学基础知识

流体力学基础知识一、流体的物理性质1、流动性流体的流动性是流体的基本特征,它是在流体自身重力或外力作用下产生的。

这也是流体容易通过管道输送的原因2、可压缩性流体的体积大小会随它所受压力的变化而变化,作用在流体上的压力增加,流体的体积将缩小,这称为流体的可压缩性。

3、膨胀性流体的体积还会随温度的变化而变化,温度升高,则体积膨胀,这称为流体的膨胀性。

4、粘滞性粘滞性标志着流体流动时内摩擦阻力的大小,它用粘度来表示。

粘度越大,阻力越大,流动性越差。

气体的粘度随温度的升高而升高,液体的粘度随温度的升高而降低。

二、液体静力学知识1、液体静压力及其基本特性液体静压力是指作用在液体内部距液面某一深度的点的压力。

液体静压力有两个基本特性:①液体静压力的方向和其作用面相垂直,并指向作用面。

②液体内任一点的各个方向的静压力均相等。

2、液体静力学基本方程P=Pa+ρgh式中Pa----大气压力ρ-----液体密度上式说明:液体静压力的大小是随深度按线性变化的。

3、绝对压力、表压力和真空①绝对压力:是以绝对真空为零算起的。

用Pj表示。

②表压力(或称相对压力):以大气压力Pa为零算起的。

用Pb表示。

③真空:绝对压力小于大气压力,即表压Pb为负值。

绝对压力、表压力、真空之间的关系为:Pj=Pa+Pb三、液体动力学知识1、基本概念①液体的运动要素:液体流动时,液体中每一点的压力和流速,反映了流体各点的运动情况。

因此,压力和流速是流体运动的基本要素。

②流量和平均流速:假定流体在流过断面时,其各点都具有相同的流速,在这个流速下所流过的流量与同一断面各点以实际流速流动时所流过的流量相当,这个流速称为平均流速,记作V。

单位时间内,通过与管内液流方向相垂直的断面的液体数量,称为流量。

流量可分为体积流量Qv和质量流量Qm。

Qv=V AQm=ρV A③稳定流和非稳定流:稳定流是指流体流速和压力不随时间的变化而变化的流动,反之则为非稳定流。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。

流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。

密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。

重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。

比容是密度的倒数,它表示单位质量流体所占有的体积。

流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。

通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。

对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。

膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。

用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。

二、流体静力学流体静力学主要研究静止流体的力学规律。

静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。

2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。

流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。

作用在平面上的静水总压力可以通过压力图法或解析法来计算。

对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。

三、流体动力学流体动力学研究流体的运动规律。

连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。

对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。

伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。

其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。

流体力学知识点

流体力学知识点

第一章流体流动§1.1.1、概述1、流体—液体和气体的总称。

流体具有三个特点①流动性,即抗剪抗张能力都很小。

②无固定形状,随容器的形状而变化。

③在外力作用下流体内部发生相对运动。

2、流体质点:含有大量分子的流体微团。

流体分子自由程<流体质点尺寸<设备大小,流体质点成为研究流体宏观运动规律的考察对象。

3、流体连续性假设:假设流体是由大量质点组成的彼此间没有空隙,完全充满所占空间的连续介质。

连续性假设的目的是为了摆脱复杂的分子运动,而从宏观的角度来研究流体的流动规律,这时,流体的物理性质及运动参数在空间作连续分布,从而可用连续函数的数学工具加以描述。

流体流动规律是本门课程的重要基础,这是因为:①流体的输送研究流体的流动规律以便进行管路的设计、输送机械的选择及所需功率的计算。

②压强、流速及流量的测量为了了解和控制生产过程,需要对管路或设备内的压强、流量及流速等一系列的参数进行测量,这些测量仪表的操作原理又多以流体的静止或流动规律为依据的。

③为强化设备提供适宜的流动条件化工生产中的传热、传质过程都是在流体流动的情况下进行的。

设备的操作效率与流体流动状况有密切的联系。

因此,研究流体流动对寻找设备的强化途径具有重要意义。

本章将着重讨论流体流动过程的基本原理及流体在管内的流动规律,并运用这些原理及规律来分析和计算流体的输送问题。

第二节流体静力学方程流体静力学是研究流体在外力作用下处于平衡的规律。

本节只讨论流体在重力和压力作用下的平衡规律。

§1.2.1流体的密度和比容1、流体的密度:单位体积的流体所具有的质量。

/m V ρ=∆∆当V ∆趋近于零时,/m V ∆∆的极限值为流体内部某点的密度,可以写成:0limV mVρ∆→∆=∆各种流体的密度可以从物理化学手册和有关资料中查得。

气体具有可压缩性及膨胀性,故其密度随温度及压强而变化,因此对气体密度必须标出其所处的状态。

从手册中查出的气体密度是某指定状态下的数值 ,应用时一定要换算到操作条件下的数值。

流体力学水力学知识点总结

流体力学水力学知识点总结

流体力学水力学知识点总结一、流体力学基础知识1. 流体的定义:流体是一种具有流动性的物质,包括液体和气体。

流体的特点是没有固定的形状,能够顺应容器的形状而流动。

2. 流体的性质:流体具有压力、密度、粘性、浮力等基本性质。

这些性质对于流体的流动行为具有重要的影响。

3. 流体静力学:研究流体静止状态下的力学性质,包括压力分布、压力力和浮力等。

流体静力学奠定了流体力学的基础。

4. 流体动力学:研究流体在外力作用下的运动规律,包括速度场、流线、流量、动压、涡量等。

流体动力学研究的是流体的流动行为及其相关问题。

5. 流动方程:流体力学的基本方程包括连续方程、动量方程和能量方程。

这些方程描述了流体的运动规律,是解决流体力学问题的基础。

6. 流体模型:流体力学的研究对象是真实流体,但通常会采用模型来简化问题。

常见的模型包括理想流体模型、不可压缩流体模型等。

二、水力学基础知识1. 水的性质:水是一种重要的流体介质,具有密度大、粘性小、表面张力大等特点。

这些性质对于水力学问题具有重要影响。

2. 水流运动规律:水力学研究水的流动规律,包括静水压力分布、流速分布、流线形状等。

3. 基本水力学定律:包括质量守恒定律、动量守恒定律和能量守恒定律。

这些定律是解决水力学问题的基础。

4. 水流的计算方法:水力学中常用的计算方法包括流速计算、水头损失计算、管道流量计算等,这些方法是解决水力学工程问题的重要手段。

5. 水力学工程应用:水力学在工程中具有广泛的应用,包括水利工程、水电站设计、城市供水排水系统等方面。

6. 液体静力学:水力学中涉及了静水压力、浮力、气压等液体静力学问题。

这些问题对水力工程设计和建设具有重要影响。

三、近年来的流体力学与水力学研究进展1. 流固耦合问题:近年来,液固耦合问题成为流体力学与水力学领域的重点研究方向。

在这个方向上的研究主要涉及流固耦合现象的模拟、流固耦合系统的动力学特性等方面。

2. 多相流动问题:多相流动是指不同相的流体在空间和时间上相互混合流动的现象。

流体力学基础知识汇总

流体力学基础知识汇总

流体力学基础知识汇总流体力学是研究流体静力学和流体动力学的学科。

流体力学是物理学领域中的一个重要分支,广泛应用于工程学、地球科学、生物学等领域。

本文将从流体力学的基础知识出发,概述流体力学的相关内容。

一、流体静力学流体静力学研究的是静止的流体以及受力平衡的流体。

静止的流体不受外力作用时,其内部各点的压力相等。

根据帕斯卡定律,压强在静止的流体中均匀分布。

流体静力学的重要概念包括压强、压力、密度等。

压强是单位面积上受到的力的大小,而压力是单位面积上受到的力的大小和方向。

密度是单位体积内质量的多少,与流体的压力和温度有关。

二、流体动力学流体动力学研究的是流体在受力作用下的运动规律。

流体动力学的重要概念包括流速、流量、雷诺数等。

流速是单位时间内流体通过某一截面的体积。

流速与流量之间存在着直接的关系,流量等于流速乘以截面积。

雷诺数是描述流体流动状态的无量纲参数,用于判断流体流动的稳定性和不稳定性。

三、伯努利定律伯努利定律是流体力学中的一个重要定律,描述了流体在沿流线方向上的压力、速度和高度之间的关系。

根据伯努利定律,当流体在流动过程中速度增加时,压力会降低;当流体在流动过程中速度减小时,压力会增加。

伯努利定律在飞行、航海、液压等领域有着重要的应用。

四、黏性流体黏性流体是指在流动过程中会发生内部层滑动的流体。

黏性流体的流动过程受到黏性力的影响,黏性力会导致流体的内部发生剪切变形。

黏性流体的流动规律可以通过纳维-斯托克斯方程来描述。

黏性流体在润滑、液体运输、地质勘探等领域有着广泛的应用。

五、边界层边界层是指在流体与固体表面接触的区域,流体的速度在边界层内逐渐从0增加到与远离表面的流体速度相等。

边界层的存在会导致流体的阻力增加。

研究边界层的特性可以帮助理解流体与固体的相互作用,对于设计高效的流体系统具有重要意义。

流体力学是研究流体静力学和流体动力学的学科。

流体力学的基础知识包括流体静力学、流体动力学、伯努利定律、黏性流体和边界层等内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(压力形式)
(1-8)
1.2 流体静力学基本概念
变形得 p1/ρ+z1g=p2/ρ+z2g (能量形式)(1-9) 若将液柱的上端面取在容器内的液面上,设液面上 方的压力为pa,液柱高度为h,则式(1-8)可改写为 p2=pa+ρgh (1-10) 式(1-8)、式(1-9)及式(1-10)均称为静力学 基本方程,其物理意义在于:在静止流体中任何一点的 单位位能与单位压能之和(即单位势能)为常数。
1.2 流体静力学基本概念
图1.3 绝对压力、表压与真空度的关系
1.2 流体静力学基本概念
1.2.2 流体静力学平衡方程
1.2.2.1 静力学基本方程
假如一容器内装有密度为ρ的液体,液体可认 为是不可压缩流体,其密度不随压力变化。在静 止的液体中取一段液柱,其截面积为A,以容器 底面为基准水平面,液柱的上、下端面与基准水 平面的垂直距离分别为z1和z2,那么作用在上、下 两端面的压力分别为p1和p2。
1.1 流体主要的力学性质
1.1.2 流体的主要力学性质
1. 易流动性
流体这种在静止时不能承受切应力和抵抗剪切变形 的性质称为易流动性
2. 质量密度
单位体积流体的质量称为流体的密度,即ρ=m/V
3. 重量密度
流体单位体积内所具有的重量称为重度或容重,以γ 表示。γ=G/V
1.1 流体主要的力学性质
图1-8
1.4 流动阻力与能量损失
因是直径相同的水平管,u1=u2,Z1=Z2,故 Wf=(P1-P2)/ρ (1-22) 若管道为倾斜管,则 Wf=(P1/ρ+Z1g)-(P2/ρ+Z2g) (1-23) 由此可见,无论是水平安装还是倾斜安装, 流体的流动阻力均表现为静压能的减少,仅当水 平安装时,流动阻力恰好等于两截面的静压能之 差。
2. 根据流体流速的变化来进行分类
(1) 均匀流 在给定的某一时刻,各点速度都不随位置而变化的 流体运动称为均匀流。 (2) 非均匀流 流体中相应点流速不相等的流体运动称为非均匀流。
1.3 流体动力学基础
3. 按液流运动接触的壁面情况分类
(1) 有压流 流体过流断面的周界为壁面包围,没有自由面者称 为有压流或压力流。一般供水、供热管道均为压力流。 (2) 无压流 流体过流断面的壁和底均为壁面包围,但有自由液 面者称为无压流或重力流,如河流、明渠排水管网系统 等。
1.3 流体动力学基础
1.3.2 流体运动的分类
1. 根据流动要素(流速与压强)与流行时间来进行分 类
(1) 恒定流 流场内任一点的流速与压强不随时间变化,而仅与 所处位置有关的流体流动称为恒定流。 (2) 非恒定流 运动流体各质点的流动要素随时间而改变的运动称 为非恒定流。
1.3 流体动力学基础
1.3 流体动力学基础
(3) 射流 流体经由孔口或管嘴喷射到某一空间,由于运动的 流体脱离了原来的限制它的固体边界,在充满流体的空 间继续流动的这种流体运动称为射流,如喷泉、消火栓 等喷射的水柱。
1.3 流体动力学基础
4. 流体流动的因素
(1) 过流断面 流体流动时,与其方向垂直的断面称为过流断面, 单位为m2。在均匀流中,过流断面为一平面。 (2) 平均流速 在不能压缩和无粘滞性的理想均匀流中,流速是不 变的。
质量密度与重量密度的关系为: γ=G/V=mg/V=ρg
4. 粘性
表明流体流动时产生内摩擦力阻碍流体质点或流层 间相对运动的特性称为粘性,内摩擦力称为粘滞力。 粘性是流动性的反面,流体的粘性越大,其流动性 越小。 平板间液体速度变化如图1.1所示。 实际流体在管内的速度分布如图1.2所示。
1.1 流体主要的力学性质
1.2 流体静力学基本概念
1.2.2.2 静压强的特性 • 静压强的方向性流体具有各个方向上的静压强。 • 流体内部任意一点的静压强的大小与其作用的方 向无关。 • 流体的静压强仅与其高度或深度有关,而与容器 的形状及放置位置、方式无关。
1.3 流体动力学基础
1.3.1 流体运动的基本概念
1. 1-15)
(1-16)
1.3 流体动力学基础
推广至任意截面,有 ms=ρ1u1A1=ρ2u2A2=…=ρuA=常数 (1-17) 式(1-15)~式(1-17)均称为连续性方程,表 明在定态流动系统中,流体流经各截面时的质量 流量恒定。 对不可压缩流体,ρ=常数,连续性方程可写 为: Vs=u1A1=u2A2=…=uA=常数 (1-18) 对于圆形管道,式(1-18)可变形为 u1/u2=A2/A1=(d2/d1)2 (1-19)
u P u Z1 Z2 2g 2g P
P
2 1
2 2
1.3 流体动力学基础
【例 1.2 】如图 1-7所示,要 用水泵将水池中的水抽到用 水设备,已知该设备的用水 量为 60m3/h ,其出水管高 出蓄水池液面20m,水压为 200kPa 。如果用直径 d = 100mm 的管道输送到用水 设备,试确定该水泵的扬程 需要多大才可以达到要求?
流线是指同一时刻不同质点所组成的运动的方向线。 迹线是指同一个流体质点在连续时间内在空间运动中 所形成的轨迹线,它给出了同一质点在不同时间的速度的 方向。
图1.4
1.3 流体动力学基础
2. 流管、过流断面、元流和总流
在流场内作一非流线且不自闭相交的封闭曲线,在 某一瞬时通过该曲线上各点的流线构成一个管状表面, 称流管。 在流体中取一封闭垂直于流向的平面,在其中划出 极微小面积,则其微小面积的周边上各点都和流线正交, 这一横断面称为过流断面。 若流管的横截面无限小,则称其为流管元,亦称为 元流。 过流断面内所有元流的总和称为总流。
1.3 流体动力学基础
1.3.3 定态流体系统的质量守恒-连续性方程 如图1-5所示的定态流动系统,流体连续地从 1—1截面进入,从2—2截面流出,且充满全部管 道。以1—1、2—2截面以及管内壁为衡算范围, 在管路中流体没有增加和漏失的情况下,单位时 间进入截面1—1的流体质量与单位时间流出截面 2—2的流体质量必然相等,即 ms1=ms2
【解】管1的内径为: d1=89-2×4=81(mm) 则水在管1中的流速为: u1=1.75(m/s) 管2的内径为: d2=108-2×4=100(mm) 由式(1-19),则水在管2中的流速为: u2=1.15(m/s) 管3a及3b的内径为: d3=57-2×3.5=50(mm) 因水在分支管路3a、3b中的流量相等,则有 u2A2=2u3A3 即水在管3a和3b中的流速为: u3= 2.30(m/s)
1.3 流体动力学基础
故水泵的扬程为:
2 u2 hb Z 2 h 40.92 h 2g
P2
1.4 流动阻力与能量损失
1.4.1 流体在管道中的流动阻力
如图 1-8 所示,流体 在水平等径直管中作定态 流动。在 1 — 1 截面和 2 — 2 截面间列伯努利方程, 得 1 2 P 1 2 P 1 Z1 g u1 Z 2 g u2 1 W f 2 2
1.2 流体静力学基本概念
重力场中在垂直方向上对液柱进行受力分析: (1) 上端面所受总压力P1=p1A,方向向下; (2) 下端面所受总压力P2=p2A,方向向上; (3) 液柱的重力G=ρgA(z1-z2), 方向向下。 液柱处于静止时,上述三项力的合力应为零,即 p2A-p1A-ρgA(z1-z2)=0 整理并消去A,得 p2=p1+ρg(z1-z2)
实验证明,对于一定的流体,内摩擦力F与两流体层 的速度差du成正比,与两层之间的垂直距离dy成反比, 与两层间的接触面积A成正比,即 F=μAdu/dy (1-4) 通常情况下,单位面积上的内摩擦力称为剪应力, 以τ表示,单位为Pa,则式(1-4)变为 τ=μdu/dy (1-5) 式(1-4)、式(1-5)称为牛顿粘性定律,表明流 体层间的内摩擦力或剪应力与法向速度梯度成正比。
1.2 流体静力学基本概念
1.2.1 绝对压强、表压强和大气压强 • 以绝对真空为基准测得的压力称为绝对压力,它 是流体的真实压力;以大气压为基准测得的压力 称为表压或真空度、相对压力,它是在把大气压 强视为零压强的基础上得出来的。 • 绝对压强是以绝对真空状态下的压强(绝对零压 强)为基准计量的压强;表压强简称表压,是指以 当时当地大气压为起点计算的压强。两者的关系 为: 绝对压=大气压+表压
1.3 流体动力学基础
图1-5连续性方程的推导
Back
1.3 流体动力学基础
1.3.4 能量守恒定律-伯努利方程
在理想流动的管段上取两个断面1—1和2—2, 两个断面的能量之和相等,即
假设从1—1断面到2—2断面流动过程中损失 为h,则实际流体流动的伯努利方程为
2 u12 P u2 Z1 Z2 h 2g 2g
1.4 流动阻力与能量损失
1.4.2 沿程损失和局部损失 1. 沿程损失
流体在直管段中流动时,管道壁面对于流体会产 生一个阻碍其运动的摩擦阻力(沿程阻力),流体流 动中为克服摩擦阻力而损耗的能量称为沿程损失。 通常采用达西-维斯巴赫公式计算,即
Lu h1 d 2g
2
1.4 流动阻力与能量损失
1.1 流体主要的力学性质
5.压缩性和膨胀性
流体体积随着压力的增大而缩小的性质,称为流体 的压缩性。 流体体积随着温度的增大而增大的性质,称为流体 的膨胀性。 液体与气体的压缩性和膨胀性的区别: (1)液体是不可压缩流体,液体具有膨胀性 ; (2)气体具有显著的压缩性和膨胀性。
1.1 流体主要的力学性质
1.3 流体动力学基础
【例1.1】如图1-6所示,管路由一段Φ89mm×4mm的管 1、一段Φ108mm×4mm的管2和两段Φ57mm×3.5mm 的分支管3a及3b连接而成。若水以9×10-3m3/s的体积 流量流动,且在两段分支管内的流量相等,试求水在各 段管内的速度。
相关文档
最新文档