材料力学实验教学6弯曲正应力电测实验实验报告
电测弯曲正应力实验报告

实验六 直梁弯曲正应力测定一、实验目的:1. 测定矩形截面直梁在纯弯曲(非纯弯曲)时横截面上正应力的分布,并与理论公式比较,以验证弯曲正应力公式。
2. 进一步熟悉电测方法及电阻应变仪的使用。
二、实验装置及仪器1. 矩形截面梁弯曲实验装置2.电阻应变仪 3.钢板尺 三、实验概述直梁受纯弯曲时横截面上的正应力公式为z I yM ⋅=σ 或为zI y M ⋅∆=∆σ 式中M 为作用在横截面的弯矩,Iz 为梁的横截面对中性轴Z 的惯性矩,y 为中性轴到欲求应力点的距离,此公式在非纯弯曲时于一定条件下也可应用。
本实验采用碳钢制成的矩形截面梁,实验装置如图9所示。
在梁跨度中点沿梁的高度h 分别贴电阻应变片,均匀分布共贴五片,贴片位置如图9所示,用砝码加载,即先加一初载荷,测取点的电阻应变仪读数,然后再依次加载,同样测读每点的读数。
每点相邻两次读数差(相邻的大载荷应变读数减去小载荷的应变读数的平均值)即为相应载荷增量下此点的纵向应变值。
当应力在比例极限内时,应用虎克定律εσ⋅=E ,(εσ∆⋅=∆E ),即可算出各点相应的正应力的实验值。
由前述公式可算出各点正应力的理论值,将这些结果画在一张坐标纸上可得到正应力沿高度的分布规律。
图9 测梁弯曲正应力装置示意图四、实验步骤1.测量梁的横截面尺寸b 、h 。
2.按指定的l 、a 长度架设梁,并仔细调整使之平稳。
-21-3.将各点电阻片导线接在应变仪的预调平衡箱上,按半桥线路连接,然后,开启电源,预热仪器,并将灵敏系数K钮旋旋到所需刻度(或相应的标定数)。
4.按给定的载荷加载实验。
从P0~P n,每次载荷下记录各点的读数。
纯弯曲情况实验2~3次。
5.非纯弯测定时,摘掉一个销子,方法同纯弯曲。
6.整理数据,经教师检查通过后,结束实验,整理仪器用具。
五、预习要求1.阅读本讲义,并复习电测法与电阻变应仪介绍,弄清本次实验目的,准备好有关记录表格。
2.若弯曲梁的l=100cm,a=40cm,b=12mm,h=20mm,材料的[σ]=160MPa,试计算此梁允许最大载荷为多少?六、实验报告要求包括:实验目的,所用设备(型号、编号、最小刻度)装置简图,实验记录与结果,按材力理论计算结果,并列表比较理论值与实验值。
梁的弯曲正应力实验报告

一、实验目的1. 通过实验,了解梁在弯曲状态下的应力分布规律;2. 验证梁的弯曲正应力计算公式的准确性;3. 掌握应变电测法的基本原理和操作方法;4. 培养学生严谨的实验态度和科学的研究方法。
二、实验原理梁在弯曲状态下,其横截面上各点的正应力可以用以下公式计算:\[ \sigma = \frac{M y}{I_z} \]其中,\(\sigma\) 为正应力,\(M\) 为弯矩,\(y\) 为梁横截面上某点到中性轴的距离,\(I_z\) 为梁截面对中性轴的惯性矩。
实验中,通过测量梁横截面上不同位置的应变,根据虎克定律,可计算出相应位置的应力。
实验装置主要包括梁、应变片、静态数字电阻应变仪等。
三、实验仪器与设备1. 梁材料:矩形截面试件,尺寸为 \(b \times h\);2. 应变片:电阻应变片,用于测量梁横截面上的应变;3. 静态数字电阻应变仪:用于测量应变片输出的电阻变化,从而计算出应变;4. 加载装置:用于对梁施加弯矩;5. 游标卡尺:用于测量梁的尺寸;6. 计算器:用于计算实验数据。
四、实验步骤1. 准备实验装置,包括梁、应变片、应变仪等;2. 将应变片粘贴在梁的预定位置,确保应变片与梁表面紧密贴合;3. 接通应变仪电源,调整应变仪的量程和灵敏度;4. 使用游标卡尺测量梁的尺寸,记录数据;5. 在梁上施加预定的弯矩,确保梁处于弯曲状态;6. 使用应变仪测量梁横截面上不同位置的应变,记录数据;7. 根据实验数据和应变片的位置,计算出梁横截面上不同位置的应力;8. 比较实验测得的应力与理论计算值,分析误差原因。
五、实验结果与分析1. 实验数据:表1:梁横截面上不同位置的应变测量值| 测点位置 | 应变值(με) || -------- | ------------ || A点 | 120 || B点 | 100 || C点 | 80 || D点 | 60 |表2:梁横截面上不同位置的应力计算值| 测点位置 | 应力值(MPa) || -------- | ------------ || A点 | 12.00 || B点 | 10.00 || C点 | 8.00 || D点 | 6.00 |2. 结果分析:通过实验数据与理论计算值的比较,可以看出,在梁的弯曲状态下,应力在梁横截面上呈线性分布。
3-1弯曲正应力电测实验实验报告

§3-1 弯曲正应力电测实验实验报告一、实验目的
二、实验设备(需填写型号及编号)
三、试件原始参数
弹性模量(GPa): E =
应变片阻值( ): R=
应变片灵敏度系数:K =
四、测试数据及实验结果
1. 实验误差可能原因分析
2. 弯曲正应力的大小是否会受材料弹性模量E的影响?
姓名:班级: 小组成员:指导教师: 实验日期:报告日期: 文件名称及保存地址:
实验成绩:
§3-2 弯扭组合主应力电测实验实验报告
一、实验目的
二、实验设备(需填写型号及编号)
三、实验数据
μ材料:,弹性模量E= GPa,柏松比=
m 构件尺寸:外径D=mm,内径d=mm,构件抗弯截面系数W=3臂长a=m,自由端端部到测点的距离l=m。
四.计算m点及m'点实测主应力和主平面方向,并用单元体表示。
五.计算m点及m'点理论主应力和主平面方向,并用单元体表示。
姓名:班级:
小组成员:指导教师:
实验日期:报告日期:
文件名称及保存地址:
实验成绩:。
实验六纯弯曲梁正应力的测定一、实验目的二、实验仪器

实验六 纯弯曲梁正应力的测定一、实验目的1. 初步掌握电测法的基本原理和方法。
2. 测定梁在纯弯曲时横截面上正应力大小和分布规律;验证纯弯曲梁的正应力计算公式。
二、实验仪器、设备和工具1、组合实验台纯弯曲梁实验装置。
2、静态电阻应变仪。
3、游标卡尺、钢板尺。
三、实验原理梁受纯弯曲时,纯弯曲正应力计算公式为:ZI My=σ式中:M-弯矩-横截面对中性轴的惯矩Z I y-所求应力点到中性轴的距离由上述可知,梁在纯弯曲时,各点处的正应力沿横截面高度按直线规律分布。
如将电阻应变计粘贴在距中性层不等的位置上(见图),测得纯弯曲时沿横截面高度各点的纵向应变ε。
根据理论推导可知,各纵向纤维层只受简单拉伸或压缩,由单向应力状态的虎克定律εσE =,可求出各点处的实验应力实σ。
要测纯弯曲梁沿截面高度各点的应变值,可采用温补半桥组桥方法,见电阻应变片各种接桥方法(1)。
加载采用增量法,即每增加等量的载荷,测出各点的应变增量P ΔεΔ,然后分别取各点应变增量的平均值i εΔ,记录应变仪读数并填入表中,依次求出各点的应变增量实i εΔ.实实i E εσΔ=将实测应力值实σ与理论应力值理σ进行比较,以验证弯曲正应力公式。
四、实验步骤(一)、实验准备1、 按规定位置粘贴电阻应变计,焊线、防护(己由生产厂家准备好)。
2、 制定加载方案,四级加载:20Kg、40Kg、60Kg、80Kg。
3、 接通传感器和负荷显示器及电阻应变仪,预热10分钟。
4、 记录梁的截面尺寸,载荷作用点到支点距离及各应变计的位置。
见附表15、 加初载荷0P (一般取0P =10%max P 左右)估算max P ,记下初读数。
(二)、进行实验1、 均匀缓慢加载到初载荷0P ,记下各点应变的初始读数:后分级等量加载,每增加一级载荷,依次记录各点电阻应变片的应变值仪i ε,直到最终载荷。
实验至少重复两次。
见附表2 2、 按力值对照表分四级加载。
3、 做完实验后,卸掉载荷,仪器复原。
电测弯曲正应力实验报告

电测弯曲正应力实验报告
对于金属材料在抗拉、抗压、抗剪及屈服性能,通常采用电测弯曲来实施类似试验以把结果转换成应力和应变量。
本次实验使用电测弯曲来测试材料的正应力和正应变,旨在验证本次实验的准确性。
实验的测试单位是一根Φ8mm的钢杆,在此基础上记录点之间的距离为250mm,将其安装在测试机上,上表面涂有准确测量长度和精准装配的电感传感器,并根据数据加载两个实验测试点。
然后,启动实验环境,让机器进行加载,将电子衡上的重物放入实验环境中,控制界面上的参数,让机器进行稳定的实验测试,最大值达到10 kg,并开始计时,最后得出实验结果进行记录和计算。
在本次实验中,测得的正应力结果在1000N之内,正应变结果在0.153之内,数据展示测试结果较好,无论是正确性还是准确性都比较合理,比较符合实际情况。
实验中,多项技术手段得到积极锻炼,应力应变测试项目更加准确,数据也更具实用性,而在时间管理上,合理问题安排,在时间内进行实验,并且最大可以达到测试数据要求,以达到实验室测试结果与实际状况一致的方面,有效提高了实验的精度。
总之,实验证实了电测弯曲的有效性,能够有效测试正应力和正应变,得出的测试数据可以作为判断材料品质性能的依据,有助于提高科研工作的效率,对金属材料的研究起到效果。
弯曲正应力测定实验报告

弯曲正应力测定实验报告弯曲正应力测定实验报告• 实验目的: 1. 理解弯曲应力的概念和计算方法; 2. 掌握使用梁的弯曲应力测试仪器的操作方法; 3. 通过实验探究材料的弯曲应力。
• 实验设备:梁的弯曲应力测试仪器、杆状试样。
• 实验原理:梁的弯曲应力是指纵向拉伸状态下的应力状态。
采用三点弯曲法进行测定,使试样左右两端之间产生应力。
根据弯曲梁的基本原理,应力随距离的变化呈现出弧形曲线,计算得到杆状试样左右两端的弯曲应力。
• 实验步骤: 1. 将杆状试样放入梁的弯曲应力测试仪器中,调整完善器中的设置,并将试样固定到夹具上; 2. 打开仪器电源,进行仪器自检,调整试样外形和位置,保证试样在中心点上; 3. 选择合适的测量单位,设置仪器仪表,确定测量参数并进行校准; 4. 开始测量,记录试样左右两端的弯曲应力数据; 5. 根据实验原理和公式计算出杆状试样的弯曲应力。
• 实验结果:在测量过程中,我们发现在试样左右两端的应力状态并不相同,应力值普遍较大而且存在波动明显的情况。
在进行多次试验的数据统计和计算中,确定了试样的实际弯曲应力值。
根据实验所得数据,我们得到弯曲应力的平均值为XMPa,弯曲应变为X。
• 实验结论:通过本次实验,我们深入了解了材料的弯曲应力特性,掌握了梁的弯曲应力测试仪器的操作方法。
实验结果表明,在杆状试样被弯曲的过程中,左右两端存在明显的应力波动,但经过多次试验得出试样的弯曲应力值比较稳定。
本次实验对于材料力学的理解和应用有着深远的意义。
• 实验中可能存在的误差及影响因素: 1. 杆状试样自身的内部缺陷和材料差异等因素对测量值有一定的影响; 2. 杆状试样在被夹具夹住后,由于夹具形状对试样弯曲形状的影响并未考虑,测量值可能出现较大误差; 3. 实验过程中的环境条件(如温度、湿度等)也可能会对测量值产生一定的影响。
• 实验的改进方案: 1. 选取更加均匀的材料、充分检查试样内部是否有缺陷; 2. 优化夹具形状,减少对试样弯曲形状的影响; 3. 保证实验环境的稳定性,消除室温等环境因素造成的影响。
梁弯曲正应力电测实验报告

y1?=15mm;y2?=;y3=0cm;y4????;y5????15mm;E=210Gpa。
2442
23
抗弯曲截面模量WZ=bh/6惯性矩JZ=bh/12
(2)应变?记录:
(3)取各测点?值并计算各点应力:
??1=16×10;??2=7×10;??3= 0;??4=8×10;??5=15×10;??1=E?1=;??2=E??2=;??3=0;
二、实验仪器和设备
1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。4、温度补偿块一块。三、实验原理和方法
弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:
图4-1
此值与理论公式计算出的各点正应力的增量即
?理?
?MyIZ
?pa2
进行比较,就可验证弯曲正应力公式。这里,弯矩增量?M?。
梁上各点的应变测量,采用1/4桥接线,各工作应变片共用一个温度补偿块。
四、实验步骤
1.记录实验台参数,设计实验方法。
2.准备应变仪:把梁上各测量点的应变片(工作应变片)按编号逐点接到电阻应变仪A、B接线柱上,将温度补偿片接到电阻应变仪接线柱上作公共补偿。
如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。
σ实=Eε
式中E是梁所用材料的弹性模量。
实
图3-16
为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε
弯曲正应力测试实验报告

弯曲正应力测试实验报告弯曲正应力测试实验报告一、实验目的本实验旨在通过对材料的弯曲正应力测试,探究材料的弯曲性能及其对应的力学特性参数。
二、实验原理弯曲正应力测试是一种常用的材料力学测试方法,它通过施加一个垂直于试件轴线方向的外力,在试件上产生一个弯曲变形,从而测定材料在这种变形状态下所承受的正应力。
具体来说,当一个悬臂梁试件被施加外力时,试件会发生一定程度的挠曲变形。
根据悬臂梁挠曲理论可知,试件中心处所受到的最大弯矩M为:M = (FL)/4其中F为施加在试件上的外力,L为试件长度。
根据材料力学原理可知,在弯矩作用下,试件中心处产生一个最大正应力σ_max,其计算公式为:σ_max = (My)/I其中y为离中心距离,I为截面惯性矩。
三、实验步骤1. 将样品固定在支架上,并确保样品与支架之间无缝隙。
2. 调整试验机的加载速度和位移量。
3. 施加外力,记录试件挠曲变形程度及所受外力大小。
4. 重复以上步骤,直至得到足够多的数据。
四、实验数据处理根据实验得到的数据,可计算出材料在弯曲状态下所承受的正应力。
为了更好地理解材料的弯曲性能及其对应的力学特性参数,我们可以将实验数据绘制成图表,并进行数据分析和处理。
具体来说,我们可以通过绘制荷载-挠度曲线、荷载-应变曲线以及应力-应变曲线等图表来分析材料的弯曲性能及其对应的力学特性参数。
五、实验结果分析通过对实验得到的数据进行分析和处理,我们可以得出以下结论:1. 材料在弯曲状态下所承受的正应力与施加在试件上的外力大小成正比例关系。
2. 材料在弯曲状态下所产生的挠曲变形程度与施加在试件上的外力大小成反比例关系。
3. 材料在弯曲状态下所承受的最大正应力与试件截面惯性矩成反比例关系。
六、结论通过本次弯曲正应力测试实验,我们深入了解了材料的弯曲性能及其对应的力学特性参数。
同时,我们也掌握了一种常用的材料力学测试方法,并了解了其原理和操作步骤。
在今后的学习和工作中,这些知识和技能将对我们起到重要的指导作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 梁的弯曲实验
一、实验目的
掌握剪应力计算和平衡校核方法。
1、 作梁的整数级或半数级等差线图案;
2、 根据所测定的等差线和等倾线数据,计算各测点的剪应力值;
3、 与材料力学所计算出的理论结果比较。
二、实验设备
偏光弹性仪
三、实验模型及加载方式
四、实验步骤
1、测量模型尺寸
用卡尺测量模型尺寸,做记录,同时检查刻线尺寸。
2、安装模型及调整仪器
(1)调整仪器为正交圆偏振场,并调节杠杆平衡。
(2)调节下支座间距和位置,将模型置于二支座上,并在梁中点置一小钢柱,同时将杠
杆压下并加少许载荷(10N ),调节夹头上下位置使其保持水平。
(3)开启白光光源(同时开启钠光灯预热),观察等差线图案是否对称;若不对称,需
再调整直至对称为止,方可继续加载。
3、绘制等差线图案
(1)用白光观察等差线图案,逐渐加载直至边界处最高条纹级数为4~5级左右。
弄清等
差线图案的特点,找出0级位置及级数变化趋势,并用铅笔在模型上描出0级条纹,记录载荷数量。
(2)用单色光,描出整个等差线图案,标明级数,反复检查核对。
(3)卸除载荷,取下模型,用描图纸描摹出条纹图案,标明级数,注明载荷,最后从模
型上擦掉等差线图案。
4、作等倾线图案,测量各测点的等倾线度数
四点弯曲梁受力示意图
三点弯曲梁受力示意图
(1)调整仪器为正交平面偏振场,重新安装模型,施加适当载荷,按逆时针方向同步旋转偏振轴,仔细观察等倾线的特征,待摸清等倾线的变化规律后,将偏振轴恢
复到00位置。
(2)按逆时针方向同步旋转偏振轴,依次描绘出00、150、300、450、600及750等倾线,标明度数,并反复检查核对。
(3)测量AB、CD截面上各测点的等倾线度数,并填入表格7-2中,分析判定σx方向。
(4)卸下模型,用描图纸描摹等倾线图案,标明度数。
5、补偿各测点的等差线条纹级数
(1)擦去等倾线图案,重新安装模型,并施加作等差线时的相同载荷量。
(2)用单色光,以旋转分析镜补偿法确定各测点的非整数级等差线条纹级数,并填入记录表格。
6、将实验结果交指导教师检查签字。
7、熄灭光源,清理现场。
弯曲正应力电测实验
实验日期:室温:小组成员:
(一)实验目的
(二)实验设备
(三)实验原理
(四)实验记录
表4-1 弯曲正应力实验应变片布片位置
表4-2 弯曲正应力电测实验数据记录
(五)结果处理
表4-3 弯曲电测实验应力
(六)问题讨论
(1)试分析影响测试准确性的主要因素;
(2)温度补偿有哪两种方式?。