交流调速系统的发展现状
第8章 交流调压调速系统

调压调速的功率损耗
转速负反馈闭环控制交流调压调速系统
1.异步电动机传递函数 • 在机械特性近似线性段上的稳态工作点A附近,可以证明:
2 3 pn U1A Td (2U1A sA U1 ) ' 1R2 1
J G d ( ) Td TL pn dt
转速负反馈闭环控制交流调压调速系统
调压调速和变极调压调速效率曲线及 机械特性曲线
•低速时,多速电动机效率比4极单速电动机提高很多,定子 电流也减小许多。 •机械特性最上面为 4极,最下面为 10 极。中间部为 6 极。端 电压各为U1>U2>U3>U4,可见调速范围扩大了。
Δ-Y变换节电
采用由交流接触器和时间继电器等简单电器就可构成 ΔY切换降压装置。其显著的特点是:体积小、成本低、 寿命长、动作可靠。因此在工矿企业中某些轻载设备上 使用,可取得显著的节电效果。 当电动机定子绕组由 Δ 形联结改接成 Y 形联结后,电动 1 =3 机每相定子绕组电压降为原来的,即:UY/U 。 Δ 电动机线电流、电磁转矩均降为原来的 1/3 ,即: IY/IΔ =1/3,TY/TΔ =1/3。 由于 Y 接法与 Δ 接法虽然有电压变化,但是电动机的转 速变化不大,可近似的认为n近似为nN,所以Y接法时电 动机的功率降为原来的1/3,即: PY TY n 1 = P T nN 3
第8章 交流调压调速系统
8.1概述 8.1.1交流调压调速的发展 8.1.2交流调速系统的分类 8.2异步电动机调压调速系统工作原理 8.2.1调压调速的工作原理 8.2.2交流调压器原理 8.3异步电动机调压调速系统 8.3.1调压调速系统的组成 8.3.2调压调速系统的特性 8.3.3调压调速的功率损耗
交流电机变频调速原理与应用

异步电动机的“多功能控制器”。
3.风机、泵类的调速节能
风机、泵类的调速节能是调压调速系统应用得最多的领域之一。
3 异步电动机变频调速基础
变频调速时s变化很小,效率最高,性能也最好。
变频调速是异步电机交流调速系统的主流。
3.1 变频时的电压控制方式及控制特性
xK
1.变频的同时为什么要变压
r1
x1
②交交变频
电 动
鼠笼式转子
调压调速
机 感应电动机
交流调压
电压源型
常规意义 同步电动机
①变频调速,他控式
②变频调速,矢量控 制
①交直交变频 (整流+无源逆变) ②交交变频
①电流源型 ②电压源型
同 步
无换向器 电机
变频调速,自控式
电
动 机 无刷直流电动机 变频调速,自控式
开关磁阻电动机 变频调速,自控式
I1
定子每相电动势的有效值: E 14.44f1N 1kN 1 mU 1 U1
E1
x2
Im
xm
若f1↓,U1不变,则磁通Φm ↑ ,Im ↑ ↑ 。
rm
r2
I2 Er
若f1↑,U1不变,则磁通Φm↓,I不变时T ↓ 。
B m ,E1
结论:频率变化时,若不同时改变电压, 则会使电机的磁通 mN 大幅变化,这将使电机运行不正常甚至损坏电机,所以变频的
Ui
+
-
GT
U ct
+
TG
~ VVC
M 3~
Hale Waihona Puke 2.3 交流调压调速系统的制动
交调系统制动时,通常采用在定子绕组中通入直流电流(能耗制动)的方法。
第六章 交流调速系统

交流电机的同步转速表达式为:
n1
=
60 f1 p
异步电动机的转速表达式为:
n1=
60 f1 p
(1
s)
因此,异步电动机的调速方法有改变电动机
定子供电频率,改变转差率及改变极对数等三种。
其中改变转差率又可通过调定子电压、转子电阻、
转差电压及定、转子频率差等方法实现。同步电
动机的调速可用改变供电频率从而改变同步转速
Sm
R2
R12 12 (Ll1 Ll2 )2
Tm
21[R1
3 pU12
R12 12 (Ll1 L'l 2 ) 2 ]
华南理工大学
上式表明,当转速或转差率一定时,电磁转
矩与电压平方成正比。对应不同的定子电压,可 得到一组机械特性曲线,如图6—3 所示,图中
U1N表示定子额定电压。
右图分析: 带恒转矩负载时,普 通笼型异步电动机调 压时的稳定工作点为 A—B—C,转差率在 0—Sm范围内变化,调 速范围很小。如带风 机类负载运行,工作 点为D、E、F,调速范 围稍大些。
电路(e)只用三个晶闸管,它们位于三相绕 组后面可减少电网浪涌电压对它的冲击,即使 三相绕组发生相间短路也不致损坏晶闸管,它 的移相范围为2100。此电路要求定子绕组中性 点能拆开,且只能接成Y形。电路上有偶次谐 波,对电机不利。
华南理工大学
优胜电路:
综上所述,电路(b)、(e)性能 较好,在交流调压调速系统中多采 用这两个方案。
华南理工大学
6.2.2 异步电动机 在调压时的机械特性
根据电机学原理,异步电动机稳态时的简化 等值电络图如图6—2所示。
I1
R1
Ll1
变频调速及其控制技术的现状与发展趋势

变频调速及其控制技术的现状与发展趋势摘要:变频调速技术以其卓越的调速性能、显著的节电效果在各个领域得到广泛的应用,为节能降耗、改善控制性能、提高产品的产量和质量提供了重要手段。
本文首先回顾了变频调速技术的发展历史和现状,然后总结了变频调速中的关键控制技术,并介绍了智能控制理论在变频调速系统中的应用情况,最后指出了变频调速技术的发展趋势。
关键字:变频调速技术矢量控制异步电动机PWM技术智能控制1变频调速技术的发展历史及现状变频调速技术涉及到电力、电子、电工、信息与控制等多个学科领域。
随着电力电子技术、计算机技术和自动控制技术的发展,以变频调速为代表的近代交流调速技术有了飞速的发展。
交流变频调速传动克服了直流电机的缺点,发挥了交流电机本身固有的优点(结构简单、坚固耐用、经济可靠、动态响应好等),并且很好地解决了交流电机调速性能先天不足的问题。
交流变频调速技术以其卓越的调速性能、显著的节电效果以及在*****领域的广泛适用性,而被公认为是一种最有前途的交流调速方式,代表了电气传动发展的主流方向。
交流调速技术为节能降耗、改善控制性能、提高产品的产量和质量提供了至关重要的手段。
变频调速理论已形成较为完整的科学体系,成为一门相对独立的学科。
变频装置有交-直-交系统和交-交系统两大类。
交-直-交系统又分为电压型和电流型,其中,电压型变频器在工业中应用最为广泛。
本文所涉及的就是此类变频调速理论和技术。
20世纪是电力电子变频技术由诞生到发展的一个全盛时代。
最初的交流变频调速理论诞生于20世纪20年代,直到60年代,由于电力电子器件的发展,才促进了变频调速技术向实用方向发展。
70年代席卷工业发达国家的石油危机,促使他们投入大量的人力、物力、财力、去研究高效率的变频器,使变频调速技术有了很大的发展并得到推广应用。
80年代,变频调速已产品化,性能也不断提高,发挥了交流调速的优越性,广泛地应用于工业各部门,并且部分取代了直流调速。
(完整)交流调速系统的现状及发展趋势

(完整)交流调速系统的现状及发展趋势交流调速系统的现状及发展趋势摘要随着电力电子器件的发展,以及对效率的追求,交流调速得到快速发展,加上新技术、新理论不断渗透到交流调速之中,使其不断呈现新的面貌。
关键词交流调速;脉宽调制;智能化0 引言近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。
电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。
变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。
深入了解交流传动与控制技术的走向,具有十分积极的意义。
1 交流调速系统的发展及现状长期以来,直流电动机由于调速性能优越而掩盖了结构复杂等缺点广泛的应用于工程过程中。
直流电动机在额定转速以下运行时,保持励磁电流恒定,可用改变电枢电压的方法实现恒定转矩调速;在额定转速以上运行时,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。
采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。
因此,20世纪80年代以前,在变速传动领域中,直流调速一直占据主导地位.交流变频调速[1]的优越性早在20世纪20年代被人们所认识。
但受当时电力电子器件的限制而未能广泛应用。
从电力拖动的发展过程来看,交、直流两大调速系统一直并存于各个工业领域,虽然由于各个时期科学技术的发展使得它们所处的地位有所不同,但它们始终是随着工业技术的发展,特别是随着电力电子元器件的发展而在相互竞争.随着电力电子器件,单片机的迅速发展,以及现代控制理论向交流电气传动领域的渗透,为交流调速系统的开发研究进一步创造了有利的条件。
1。
1 电力电子器件是交流调速装置的支柱电力电子器件是现代交流调速装置的支柱,其发展直接决定和影响交流调速技术的发展。
调速电气传动系统安规标准的现状和展望

调速电气传动系统安规标准的现状和展望发布时间:2021-08-10T09:20:53.793Z 来源:《中国电气工程学报》2021年第六卷3期作者:李玲冰[导读] 首先,根据国家标准GB/T 12668.501—2013,从产品设计、安装、运行、维护和测试等方面对电气、热力和能源安全的要求进行了说明和分析李玲冰宝钢湛江钢铁有限公司,广东省湛江市 524072摘要:首先,根据国家标准GB/T 12668.501—2013,从产品设计、安装、运行、维护和测试等方面对电气、热力和能源安全的要求进行了说明和分析,并对实际应用给出了一些指导意见;其次,针对UL508C-2016、UL61800-5-1-2017、IEC 61800-5-1: 2007和GB/T 12668.501-2013四个安全标准的产生、发展和终结,对原因、过程及其相互关系进行了逐一阐述和比较,并对未来的发展趋势进行了预测和判断.最后,对我国电力传动系统安全标准的修订过程和后续认证以及如何保证行业健康发展提出了一些建议。
关键词:电动驱动系统;整套传动模块;电气;标准;安全;认证;工业1GB/T 12668.501—2013标准简介GB/T 12668.501—2013是由中国电器工业协会提出,电力电子系统与设备标准化国家技术委员会制定的调速电传动系统安全标准(SAC/TC60)由SAC/TC60/SC1集中控制。
这是我国调速电传动领域第一个与安全相关的国家标准,与国际标准接轨。
它的出现对统一和协调国内调速电传动系统在制造和应用方面的安全要求具有重要的指导意义。
GB/T 12668.501—2013调速电传动系统包括功率转换、电机控制和电机。
本标准中,DC调速驱动系统的电压范围≤1 kV,50 Hz或60hz;;交流调速驱动系统的电压范围为:≤35 kV,50 Hz或60 Hz。
不适用于被驱动设备、牵引驱动系统和电动车驱动系统。
GB/T 12668.501—2013规定了调速电传动系统及其子部件的电气、热力和能量安全要求。
现代交流调速技术

()定子部分 定子铁心:由导磁性能很好的硅钢片叠成——导磁部分。 定子绕组:放在定子铁心内圆槽内——导电部分。 机座:固定定子铁心及端盖,具有较强的机械强度和刚度。 ()转子部分 转子铁心:由硅钢片叠成,也是磁路的一部分。 转子绕组: )鼠笼式转子:转子铁心的每个槽内插入一根裸导 条,形成一个多相对称短路绕组。)绕线式转子:转子绕组为三 相对称绕组,嵌放在转子铁心槽内。
0 n0
临界转差率:sm
R2 R12 ( X1 X 2 )2
正弦波电源供电下运行的功率因数低。
瞬时停电措施 电源供电系统因雷击或其他原因发生接地故障时,将发生
紊乱。从事故发生到瞬时事故消除或通过继电器切断事故回路, 这段时间一般在秒以内,如果变频装置没有瞬时停电措施,会 产生过流或过压,在恢复供电时可能造成逆变器换流失败。
§ 异步电动机的工作原理及机械特性
统分为三类:转差功率消耗型调速系统;转差功率回馈型 调速系统;转差功率不变型调速系统。
类型
调速方法
特点
转差功率消耗型 转差功率回馈型
降压调速;电磁转 差离合器调速;转子回路 串电阻调速;
绕线转子异步电机串级 调速.
消耗全部功率;效率最低; 结构简单;
大部分转差功率回馈利用;效 率较高;需要回馈装置
转差功率不变型
所装转子位置检测器来控制变频装置触发脉冲,使同步电动 机工作在自同步状态。
四、交流调速系统的主要发展方向
.变频调速:是最有发展前途的一种交流调速方式。
交-直-交变频调速系统(在电压型和电流型基础上, 向PWM型变频和多重化技术方向发展) 交-交变频调速系统(在低速大容量应用方面有上升的 趋势)
变频器的电力半导体器件向模块化﹑快速化﹑光控化﹑高电 压﹑大电流﹑自关断和高可靠性方向发展;
毕业设计(论文)-单片机控制的电机交流调速系统设计

毕业设计毕业设计任务书摘要............................................................................................. 错误!未定义书签。
第1章引言................................................................................. 错误!未定义书签。
1.1单片机的产生和发展.......................................................... 错误!未定义书签。
1.2交流调速系统的现状.......................................................... 错误!未定义书签。
第2章硬件设计....................................................................... 错误!未定义书签。
2.1系统总体方案设计.............................................................. 错误!未定义书签。
2.2主回路设计.......................................................................... 错误!未定义书签。
2.2.1整流滤波电路的设计................................................ 错误!未定义书签。
2.2.2整流电路意义总结.................................................... 错误!未定义书签。
2.3整流电路分类...................................................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交流调速系统的发展现状
摘要:
随着电力电子器件的发展,以及对效率的追求,交流调速得到快速发展,加上新技术、新理论不断渗透到交流调速之中,使其不断呈现新的面貌。
关键词:交流调速;脉宽调制;
引言
近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历
史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。
电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量
和改善环境、推动技术进步的一种主要手段。
变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。
深入了解交流传动与控制技术的走向,具有十分积极的意义。
1•现代交流调速技术的发展
现代交流调速的法阵可分为几个阶段20世纪60年代中期,德国的A Schonung等人率先提出了脉宽调制变频的思想,他们把通信系统中的调制技术推广应用于变频调速中,为现代交流调速技术的发展和实用化开辟了新的道路。
从此,交流调速理论及应用技术大致沿下述四个方面发展。
(1)电力电子器件的蓬勃发展
电力电子器件是现代交流调速装置的支柱,其发展直接决定和影响交流调速技术的发展。
迄今为止,电力电子器件的发展经历了分立换流关断器件(第一代)一自关断器件(第二代)-功率集成电路PIC(第三代)一智能模块IPM (第四代)四个阶段。
20世纪80年代中期以前,变频装置功率回路主要采用晶闸管元件。
装置的效率、可靠性、成本、体积均无法与同容量的直流调速装置相比。
20世纪80年代中期以后用第二代电力电子器件GTR( Gia nt Tran sistor)、GTq Gate Turn
Off thyistor) 、VDMOS-IGBT(Insulated GateBipolar Transis2 tor) 等创造的变频装置在性能与价格比上可以与直流调速装置相媲美。
随着向大电流、高电压、高频化、集成化、模块化方向继续发展,第三代电力电子器件是20世纪90年
代制造变频器的主流产品,中、小功率的变频调速装置(1 —100kw)主要是采用IGBT ,中、大功率的变频调速装置(1000 —10000kw)采用GTO器件。
20世纪90年代至今,电力电子器件的发展进入了第四代。
主要实用的第四代器件为:(1) 高压IGBT 器件,⑵ IGCT (In sulated Gate Con trolled 。
由于GTR、GTO器件本身存在的不可克服的缺陷,功率器件进入第三代以来,GTR器件已被淘汰不再使用。
进入第四代后,GTO器件也将被逐步淘汰。
第四代电力电子器件模块化更为成熟。
如智能化模块IPM、专用功率器件模块ASPM等。
模块化功率器件将是21世纪主宰器件。
需要指出的是,以上所述的全控型开关功率器件主要应用于异步电动机变频调速系统中,其原因众所周知。
但是目前同步电动机变频调速系统中仍采用晶闸管,其原因也是众所周知的。
一代电力电子器件带来一代变频调速装置,性价比一代高过一代。
在人类社会进入信息化时代后,电力电子技术连同电力传动控制与计算机技术一起仍是21世纪最重要的两大技术。
电压或电流
中的谐波分量,从而降低或消除了变频调速时电机的转矩脉动,提高了电机的
工作效率,扩大了调速系统的调速范围。
(2)脉宽调制(PWM)技术
脉宽调制(PWM)技术种类很多,并且正在不断发展之中。
基本上可分为四类, 即等宽PWM法正弦PWM法(SPWM)、磁链追踪型PWM法及电流跟踪型PWM法。
PWM技术的应用克服了相控原理的所有弊端,使交流电动机定子得到了接近正弦波形的电压和电流,提高了电机的功率因数和输出功率。
现代PWM生成电路大多采用具有高度输出口HSO的单片机(如80196)及数字信号处理器DSP(Digital Signal Processor),通过软件编程生成PWM近年来,新型全数字化专用PWM^ 成芯片
HEF4752、SLE4520、MA818等达到实用化,并已实际应用。
(3)矢量变换控制技术及直接转矩控制技术
众所周知,直流电动机双闭环调速系统具有优良的静、动态调速特性,其根本原因在于作为控制对象的他励直流电动机电磁转矩能够容易而灵活地进行控制。
而交流电动机是个多变量、非线性、强藕合的被控对象,作为变频系统的控制对象---- 它是否可以模仿直流电动机转矩控制规律而加以控制呢。
1975年,德国学者F Blaschke提出了矢量变换控制原理,成功地解决了交流电动机电磁转矩
的有效控制,在定向于转子磁通的基础上,采用参数重构和状态重构的现代控制理论概念实现了交流电动机定子电流的励磁分量和转矩分量之间的解藕,实现了将交流电动机的控制过程等效为直流电动机的控制过程,在理论上实现了重大突破,从而使得交流调速的动态和静态性能完全可能同直流传动系统相媲美。
矢量控制的关键是静止坐标轴与旋转坐标轴系之间的坐标接转矩控制也是一种很有前途的控制技术。
目前,采用IG2 BT、IGCT的直接转矩控制方式的变频调速装置已广泛应用于工业生产及交通运输部门中。
(4)微型计算机控制技术
随着微机控制技术,特别是以单片微机及数字信号处理器DSP为控制核心的微机控制技术的迅速发展,现代交流调速系统的控制回路由模拟控制迅速走向数字控制。
当今模拟控制器已被淘汰,全数字化的交流调速系统已普遍得到应用。
数字化使得控制器对信息处理能力大幅度提高,许多难以实现的复杂控制,如矢量控制中的复杂坐标变换运算、解藕控制、滑模变结构控制、参数辨识的自适应控制等,采用微机控制器后便都解决了。
高性能的矢量控制系统如果没有微机的支持是不可能真正实现的。
此外,微机控制技术又给交流调速系统增加了多方面的功能,特别是故障诊断技术得到了完全的实现。
微机控制技术的应用提高了交流调速系统的可靠性和操作、设置的多样性和灵活性,降低了变频调速装置的成本和体积。
以微处理器为核心的数字控制已成为现代交流调速系统的主要特征之一。
用于交流调速系统的微处理器的发展经历了单片机(MCS) 一数字信号处理器(DSP) 一精简指令集计算机(Reduced In structio n Set ComputerRISC) 三个阶段。
2现代交流调速系统的类型
现代交流调速系统由交流电动机,电力电子功率交换器,控制器和检测器等四大部分组成。
电力电子功率变换器,控制器,电量检测器集中于一体,称为变频器(变频调速装置)。
交流电机的不同,繁衍出不同的交流调速系统。
因此现代交流调速系统可分为异步电动机调速系统和同步电动机调速系统。
目前较为常用的三种方案,他们是异步电动机交流调速系统:(1)异步电动机交流调速系统。
(2)开关磁阻电动机的交流调速系统(3)同步电动机调速系统。
3交流调速系统之国内外发展
长期以来,我国的传动技术特别是交流调速技术与国外发达国家存在着较大的
差距,但自改革开发以来,这一技术得到了迅速的发展,并以极快的速度赶了上来。
我国在应用变频调速技术上目前虽说尚处于初级阶段,但其发展速度逐年增长较快,国家已将该项技术列为“八五”重点攻关和推广项目。
这将加快交流调速在我国的普及应用。
目前国内变频调速技术产业状况如下:(1)变频器的控制策略的基础研究与国外差距不大;(2)变频器的整体技术落后,国内虽有很多单位投入了一定的人力、物力、但由于力量分散,并没有形成一定的技术和生产规模;(3)变频器产品所用的半导体功率器件的制造业几乎是空白;(4)相关配套产业及行业落后;(5)产销量少,可靠性及工艺水平不高。
交流变频调速技术在工业发达国已得到广泛应用。
美国有60% - 65%的发电量用于电机驱动,由于有效地利用了变频调速技术,仅工业传动用电就节约了15% - 20%的电量。
国外在高性能大容量交流电机传动技术的研究和应用上远远走在我们前面,已有更高级别的高压逆变器产品大量投入市场,并应用于电力机车、船舰电力推进、轧钢、造纸及供水等系统中,交流电机变频调速技术及其产品已成为一些工业发达国家的先导产业。
目前,国外先进的工业国家生产直流传动的装置基本呈下降趋势,而交流变频调速装置的生产大幅度上升。
以日本为例,1975年在调速领域,直流占80%,交流占20%; 1985年交流占80%,直流占20%到目前为止,日本除了个别的地方还继续采用直流电机驱动外,几乎所有的调速系统都采用交流变频装置。
发达国家依靠他们强大的科技实力把变频技术推向小型化、高可靠性、抗公害、多功能、高性能等方向发展。
4结语
交流调速技术的发展过程表明,现代工业生产及社会发展的需要推动了交流调速的飞速发展。
现代控制理论的发展和应用、电力电子技术的发展和应用、微机控制技术及神经网络技术的发展和应用,为交流调速的飞速发展创造了技术和物质条件。
交流调速系统在人类追求节约能源的道路上将发挥越来越重要的作用。
参考文献
(1) 李永东•交流电机数字控制系统[M].北京:机械工业出版社,2002.4
(2) 张学亮.交流调速技术发展与展望[J].
(3) 王兆安、刘进军.电力电子技术[M].第5版.北京:机械工业出版社,2009.5
(4) 赵朝会、王永田、王新威、邢俊敏.现代交流调速技术的发展与现状[J]
(5) 侯鹏.变频调速器运行中存在的问题及对策探讨[J].。