解三角形数列不等式

合集下载

高考数学复习备考总结

高考数学复习备考总结

高考数学复习备考总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学复习备考总结高考数学复习备考总结汇总7篇利用各类学习资源,如网课、教辅资料等。

周试2:(答案)解三角形及等差数列的通项和求和、不等式

周试2:(答案)解三角形及等差数列的通项和求和、不等式

郑州树人中学2017-2018学年(上)第二次周考高二数学(文)命题范围:解三角形、数列(通项、求和)、不等式命题人:刘中阳一、选择题:(本大题共12小题,每小题5分,共60分,每小题只有一个选项符合题目要求)1.若1a <1b<0(a ,b ∈R ),则下列不等式恒成立的是(D) A .a <b B .a +b >ab C .|a |>|b |D .ab <b 2 2.在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是( B ) A .(-∞,1) B .(1,+∞)C .(-1,+∞)D .(0,1) 3.设等比数列{a n }中,前n 项之和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9=( B )A .-18B.18C.578 D.558 4.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为(D )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形5.不等式组⎩⎪⎨⎪⎧ x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为( D )A .(0,3]B .[-1,1]C .(-∞,3]D .[3,+∞)6.已知a >1,则不等式x 2-(a +1)x +a <0的解集为( C )A .(a ,+∞)B .(-∞,1)C .(1,a )D .(-∞,1)∪(a ,+∞)7.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( B )A .5B .6C .7D .8 8.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧ x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 的值为( A ).A .12B .1C .2D .139.已知不等式ax 2-5x +b >0的解集为{x |-3<x <2},则不等式bx 2-5x +a >0的解集为( B )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ -13<x <12B.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-13或x >12C .{x |-3<x <2}D.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >13 10.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6等于( C )A .31B .32C .63D .6411.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1)…的前n 项和为( D ) A .2n -1 B .n ·2n -n C .2n +1-n D .2n +1-2-n12.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( C ) A .3B.932 C.332 D .3 3二、填空题(本题共4个小题,每题5分,共20分)13.若x ,y 满足⎩⎪⎨⎪⎧ x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为_____2___.14.在等差数列{a n }中,S 10=100,S 100=10,则S 110=___-110_____.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a -c =0,则角B =___π3_____. 16.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为____1941____. 三、解答题(本题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知f (x )=x 2-⎝⎛⎭⎫a +1a x +1. (1)当a =12时,解不等式f (x )≤0;(2)若a >0,解关于x 的不等式f (x )≤0. 解 (1)当a =12时,有不等式f (x )=x 2-52x +1≤0,所以⎝⎛⎭⎫x -12(x -2)≤0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ 12≤x ≤2. (2)因为不等式f (x )=⎝⎛⎭⎫x -1a (x -a )≤0,当0<a <1时,有1a >a ,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ a ≤x ≤1a ; 当a >1时,有1a <a ,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a ≤x ≤a ; 当a =1时,不等式的解集为{x |x =1}.18.(本小题满分12分)在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.19.(本小题满分12分)某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1600x +2400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1600x +2400y 经过可行域的点P 时,直线z =1600x +2400y 在y 轴上的截距z 2400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小.20.(本小题满分12分)如图,在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C; (2)若AD =1,DC =22,求BD 和AC 的长. 解 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD , 所以AB =2AC .由正弦定理可得sin B sin C =AC AB =12. (2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2.在△ABD 和△ADC 中,由余弦定理,知AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB ,AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC .故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6,由(1)知AB =2AC ,所以AC =1.21.(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =3b sin A -a cos B .(1)求角B ;(2)若b =2,△ABC 的面积为3,求a ,c .解 (1)由a =3b sin A -a cos B 及正弦定理,得sin A =3sin B ·sin A -sin A ·cos B ,∵0<A <π,∴sin A >0,∴3sin B -cos B =1,即sin ⎝⎛⎭⎫B -π6=12.又∵0<B <π,∴-π6<B -π6<5π6,∴B =π3. (2)∵S =12ac sin B =3,∴ac =4,①又∵b 2=a 2+c 2-2ac cos B ,即a 2+c 2=8.②由①②联立解得a =c =2.22.(本小题满分12分)已知数列{a n }的首项a 1=23,a n +1=2a n a n +1,n =1,2,3,…. (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -1是等比数列;(2)求数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n . 解 (1)证明:因为a n +1=2a n a n +1,所以1a n +1=a n +12a n =12+12·1a n ,所以1a n +1-1=12⎝⎛⎭⎫1a n -1. 又a 1=23,所以1a 1-1=12,所以数列⎩⎨⎧⎭⎬⎫1a n -1是以12为首项,12为公比的等比数列. (2)由(1)知1a n -1=12·12n -1=12n ,即1a n =12n +1,所以n a n =n 2n +n . 设T n =12+222+323+…+n 2n ,①则12T n =122+223+…+n -12n +n 2n +1,② 由①-②得12T n =12+122+…+12n -n 2n +1=12⎝⎛⎭⎫1-12n 1-12-n 2n +1=1-12n -n 2n +1,所以T n =2-12n -1-n 2n , 又1+2+3+…+n =n (n +1)2.所以数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n =2-2+n 2n +n (n +1)2=n 2+n +42-n +22n .要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截成三种规格小钢板的块数如下表:每张钢板的面积,第一种1平方单位,第二种2平方单位,今需要A 、B 、C 三种规格的成品各12、15、27块,问各截这两种钢板多少张,可得到所需三种规格成品,且使所用钢板面积最小?解 设需截第一种钢板x 张,第二种钢板y 张,所用钢板面积为z 平方单位,则⎩⎪⎨⎪⎧ x +y ≥12,2x +y ≥15,x+3y ≥27,x ≥0,x ∈N ,y ≥0,y ∈N ,目标函数z =x +2y ,作出一组平行线x +2y =z ,作出不等式组表示的可行域.由⎩⎪⎨⎪⎧x +3y =27,x +y =12.解得x =92,y =152,点A ⎝⎛⎭⎫92,152不是可行区域内整点,在可行区域内的整点中,点(4,8)和(6,7)使目标函数取最小值20.答:符合题意要求的钢板截法有两种,第一种截法是截第一种钢板4张,第二种钢板8张.第二种截法是截第一种钢板6张,第二种钢板7张,两种方法都最少要截两种钢板20平方单位.设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n -2n (n -1)(n ∈N *).(1)求证:数列{a n }为等差数列,并分别写出a n 和S n 关于n 的表达式;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n .求证:15≤T n <14. 证明 (1)当n ≥2时,a n =S n -S n -1=na n -(n -1)a n -1-4(n -1),∴a n -a n -1=4,∴数列{a n }是以1为首项,4为公差的等差数列.∴a n =4n -3,S n =12n (a 1+a n )=2n 2-n . (2)T n =1a 1a 2+1a 2a 3+…+1a n a n +1=11×5+15×9+19×13+…+1(4n -3)(4n +1)=14⎣⎢⎡ ⎝⎛⎭⎫1-15+⎝⎛⎭⎫15-19+⎝⎛⎭⎫19-113+…+⎝⎛ 14n -3⎦⎥⎤ ⎭⎫-14n +1=14⎝⎛⎭⎫1-14n +1<14. 又T n 为单调递增的,故T n ≥T 1=15, ∴15≤T n <14. 10.[2016·徐州高二检测](本小题满分10分)。

数学必修解三角形数列不等式

数学必修解三角形数列不等式

一、解三角形一、知识点 1、正弦定理:2sin sin sin a b cR A B C=== (边角灵活转化) 2、余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.(灵活变形) 3、大边对大角,小边对小角(灵活取舍单解、多解)4、内角和:在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 5、三角形五心内心:内切圆圆心,3内角平分线交点,内心到3边距离相等; 外心:外接圆圆心,3垂直平分线交点,外心到3顶点距离相等; 重心:3中线交点,每条中线被分成2:1,△ABC 的重心的坐标是123123(,)33x x x y y y G ++++; 垂心:3高交点,垂心及顶点四点中任一点是其余三点为顶点的三角形的垂心;旁心:1内角平分线与其他2角的外角平分线交点。

每个三角形都有3个旁心,旁心到三边等距。

【不做要求】 二、题型:(1)求未知边角:梳理已知条件,选择用什么定理;(2)判断三角形形状【思路一:等式化成角(正弦定理+内角和+诱导公式);思路二:等式化成边(两定理联合)】 (3)求三角形面积:111222a b c S ah bh ch ===;111sin sin sin 222S ab C bc A ca B ===;S 二、数列一、知识点: (一)、求通项公式n a 1、已知n s 求n a :⎩⎨⎧∈≥-==-),2()1(*11N n n S S n S a n n n 注意验证n=1。

2、已知递推公式求n a (已知首项1a )(1)c a a n n +=+1型【构造等差数列】 (2)c ka a n n +=+1型【构造等比数列*1-k c】 (3))(1n f a a n n +=+型【累加法】 (4))(1n f a a n n =+型【累乘法】 (二)、n a 、n S 的最大最小问题: [不等式法]n a 最大⎩⎨⎧≥≥⇔+-11n n n n a a a a ;n a 最小⎩⎨⎧≤≤⇔+-11n n n n a a a a ;n S 最大⎩⎨⎧≤≥⇔+001n n a a ;n S 最小⎩⎨⎧≥≤⇔+01n n a a ;[函数法]:数列是特殊的函数(特别注意定义域:*N n ∈)(三)、等差等比数列必备知识点:(四)、重点题型混合型【等差等比混合--分清主次】(五)数列求和【弄清共有多少项?整理完剩余什么项?】 1、公式法【借助常用结论、公式、构造等差等比】2)1(321+=++++n n n ;6)12)(1(3212222++=++++n n n n ;4)1(2)1(3212223333+=⎥⎦⎤⎢⎣⎡+=++++n n n n n 2、错位相减法【每项为等差等比项之积/2式同乘公比,再1式减2式】 3、裂项相消法【通项可拆成两项差】111)1(1+-=+n n n n ; ⎪⎭⎫ ⎝⎛+-=+k n n k t k n n t 11)(; n n n n -+=++111三、不等式㈠ 一元二次不等式1、解法:二次项系数化正→∆>0,解对应方程两根,大时取两边小时取中间;0≤∆时结合对应函数图像写出解集;2、注意事项:(1)解集是集合,要用描述法或区间表示。

不等式解三角形数列高考试题精选

不等式解三角形数列高考试题精选

不等式解三角形数列高考试题精选一.选择题(共6小题)1.设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z2.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<3.已知x,y∈R,且x>y>0,则()A.﹣>0 B.sinx﹣siny>0 C.()x﹣()y<0 D.lnx+lny>0 4.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>05.若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c6.设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q二.选择题(共1小题)7.2﹣3,,log25三个数中最大数的是.三.填空题(共9小题)8.若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.9.若a,b∈R,ab>0,则的最小值为.10.设x,y满足约束条件,则z=3x﹣2y的最小值为.11.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为.12.在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=.13.设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.14.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.15.△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为.四.解答题(共24小题)17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.18.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.19.在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.21.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.23.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.25.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.26.在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.27.已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p ∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.28.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.29.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.30.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则=.31.记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.32.设数列{a n }满足a 1+3a 2+…+(2n ﹣1)a n =2n .(1)求{a n }的通项公式;(2)求数列{}的前n 项和.33.已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.34.已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }通项公式;(2){b n } 为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列的前n 项和T n .35.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.36.已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).37.已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).38.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.39.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.40.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.不等式解三角形数列高考试题精选参考答案与试题解析一.选择题(共6小题)1.设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.2.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.则=4,==,log2(a+b)==∈(1,2),∴<log2(a+b)<a+.故选:B.3.已知x,y∈R,且x>y>0,则()A.﹣>0 B.sinx﹣siny>0 C.()x﹣()y<0 D.lnx+lny>0【解答】解:∵x,y∈R,且x>y>0,则,sinx与siny的大小关系不确定,<,即﹣<0,lnx+lny与0的大小关系不确定.故选:C.4.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>0【解答】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,故选:D.5.若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C6.设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q【解答】解:由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,r=(f(a)+f(b))=(lna+lnb),∴p=r<q,故选:B二.选择题(共1小题)7.2﹣3,,log25三个数中最大数的是log25.【解答】解:由于0<2﹣3<1,1<<2,log25>log24=2,则三个数中最大的数为log25.故答案为:log25.三.填空题(共9小题)8.若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为8.【解答】解:直线=1(a>0,b>0)过点(1,2),则+=1,由2a+b=(2a+b)×(+)=2+++2=4++≥4+2=4+4=8,当且仅当=,即a=,b=1时,取等号,∴2a+b的最小值为8,故答案为:8.9.若a,b∈R,ab>0,则的最小值为4.【解答】解:【解法一】a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.【解法二】a,b∈R,ab>0,∴=+++≥4=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.10.设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.11.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为(﹣5,0)∪(5,﹢∞).【解答】解:作出f(x)=x2﹣4x(x>0)的图象,如图所示,∵f(x)是定义在R上的奇函数,∴利用奇函数图象关于原点对称作出x<0的图象,不等式f(x)>x表示函数y=f(x)图象在y=x上方,∵f(x)图象与y=x图象交于P(5,5),Q(﹣5,﹣5),则由图象可得不等式f(x)>x的解集为(﹣5,0)∪(5,+∞).故答案为:(﹣5,0)∪(5,+∞)12.在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=6.=2a n,【解答】解:∵a n+1∴,∵a1=2,∴数列{a n}是a1=2为首项,以2为公比的等比数列,∴S n===2n+1﹣2=126,∴2n+1=128,∴n+1=7,∴n=6.故答案为:613.设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.【解答】解:∵a n=S n+1S n,+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.14.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.【解答】解:∵2bcosB=acosC+ccosA,由正弦定理可得,2cosBsinB=sinAcosC+sinCcosA=sin(A+C)=sinB,∵sinB≠0,∴cosB=,∵0<B<π,∴B=,故答案为:15.△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=75°.【解答】解:根据正弦定理可得=,C=60°,b=,c=3,∴sinB==,∵b<c,∴B=45°,∴A=180°﹣B﹣C=180°﹣45°﹣60°=75°,故答案为:75°.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为8.【解答】解:∵A∈(0,π),∴sinA==.==bc=,化为bc=24,∵S△ABC又b﹣c=2,解得b=6,c=4.由余弦定理可得:a2=b2+c2﹣2bccosA=36+16﹣48×=64.解得a=8.故答案为:8.四.解答题(共24小题)17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,=ac•sinB=2,∵S△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.=acsinB=,【解答】解:(1)由三角形的面积公式可得S△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.19.在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,=acsinB=×7×3×=6.∴S△ABC20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.21.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.∴S==1.△ABC22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.23.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.25.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,∴B=,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.26.在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分27.已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p ∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.【解答】解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.28.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.29.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos (2A ﹣)的值.【解答】解:(Ⅰ)将sinB=sinC ,利用正弦定理化简得:b=c ,代入a ﹣c=b ,得:a ﹣c=c ,即a=2c ,∴cosA===;(Ⅱ)∵cosA=,A 为三角形内角, ∴sinA==,∴cos2A=2cos 2A ﹣1=﹣,sin2A=2sinAcosA=,则cos (2A ﹣)=cos2Acos+sin2Asin=﹣×+×=.30.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知bcosC +ccosB=2b ,则= 2 .【解答】解:将bcosC +ccosB=2b ,利用正弦定理化简得:sinBcosC +sinCcosB=2sinB , 即sin (B +C )=2sinB , ∵sin (B +C )=sinA , ∴sinA=2sinB ,利用正弦定理化简得:a=2b , 则=2. 故答案为:231.记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 【解答】解:(1)设等比数列{a n }首项为a 1,公比为q , 则a 3=S 3﹣S 2=﹣6﹣2=﹣8,则a 1==,a 2==,由a1+a2=2,+=2,整理得:q2+4q+4=0,解得:q=﹣2,则a1=﹣2,a n=(﹣2)(﹣2)n﹣1=(﹣2)n,∴{a n}的通项公式a n=(﹣2)n;(2)由(1)可知:S n===﹣(2+(﹣2)n+1),则S n+1=﹣(2+(﹣2)n+2),S n+2=﹣(2+(﹣2)n+3),由S n+1+S n+2=﹣(2+(﹣2)n+2)﹣(2+(﹣2)n+3)=﹣[4+(﹣2)×(﹣2)n+1+(﹣2)2×+(﹣2)n+1],=﹣[4+2(﹣2)n+1]=2×[﹣(2+(﹣2)n+1)],=2S n,即S n+1+S n+2=2S n,∴S n+1,S n,S n+2成等差数列.32.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【解答】解:(1)数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1).∴(2n﹣1)a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.(2)==﹣.∴数列{}的前n项和=++…+=1﹣=.33.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n.﹣1【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.34.已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;=b n b n+1,求数列(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n+1的前n项和T n.【解答】解:(1)记正项等比数列{a n}的公比为q,因为a1+a2=6,a1a2=a3,所以(1+q)a1=6,q=q2a1,解得:a1=q=2,所以a n=2n;(2)因为{b n}为各项非零的等差数列,所以S2n=(2n+1)b n+1,+1=b n b n+1,又因为S2n+1所以b n=2n+1,=,所以T n=3•+5•+…+(2n+1)•,T n=3•+5•+…+(2n﹣1)•+(2n+1)•,两式相减得:T n=3•+2(++…+)﹣(2n+1)•,即T n=3•+(+++…+)﹣(2n+1)•,即T n=3+1++++…+)﹣(2n+1)•=3+﹣(2n+1)•=5﹣.35.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.【解答】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0(舍去),则{b n}的通项公式为b n=2n﹣1,n∈N*;(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,d=7﹣(﹣1)=8,S3=﹣1+7+15=21.36.已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).【解答】(Ⅰ)解:设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得,而b1=2,所以q2+q﹣6=0.又因为q>0,解得q=2.所以,.由b3=a4﹣2a1,可得3d﹣a1=8.由S11=11b4,可得a1+5d=16,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,{a n}的通项公式为a n=3n﹣2,{b n}的通项公式为.(Ⅱ)解:设数列{a2n b n}的前n项和为T n,由a2n=6n﹣2,有,,上述两式相减,得=.得.所以,数列{a2n b n}的前n项和为(3n﹣4)2n+2+16.37.已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).【解答】解:(I)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}的通项公式为a n=3n﹣2,数列{b n}的通项公式为b n=2n.(II)设数列{a2n b2n﹣1}的前n项和为T n,由a2n=6n﹣2,b2n﹣1=4n,有a2n b2n﹣1=(3n﹣1)4n,故T n=2×4+5×42+8×43+…+(3n﹣1)4n,4T n=2×42+5×43+8×44+…+(3n﹣1)4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1==﹣(3n﹣2)4n+1﹣8得T n=.所以,数列{a2n b2n﹣1}的前n项和为.38.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.39.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.【解答】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,=2S n+1,a n=2S n﹣1+1,当n≥2时,a n+1两式相减得a n﹣a n=2(S n﹣S n﹣1)=2a n,+1=3a n,当n=1时,a1=1,a2=3,即a n+1=3a n,满足a n+1∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣=,则T n==.40.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号.∴﹣8≤ac+bd≤8.。

高中数学必修5解三角形、数列、不等式测试题

高中数学必修5解三角形、数列、不等式测试题

高中数学必修5解三角形、数列、不等式测试题(考试时间120分钟,总分150分)一.选择题 (本大题共12小题 ,每小题5分,共60分,请把正确答案填在答题卡上)1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab2C .2a-2b<0 D.1a >1b2.sin15°cos45°+cos15°sin45°等于( ) A .0B .21 C .23 D .13.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23 C.1 D.34.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .102 D . 1015.已知0x >,函数4y x x=+的最小值是 ( ) A .5 B .4 C .8 D .6 6.在等比数列中,112a =,12q =,132n a =,则项数n 为 ( ) A. 3B. 4C. 5D. 67.不等式20(0)ax bx c a ++<≠的解集为R ,那么( )A. 0,0a <∆<B. 0,0a <∆≤C. 0,0a >∆≥D. 0,0a >∆>8.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A . 5 B. 3 C. 7 D. -8 9.若)4πtan(α-=3,则tan α 等于( ) A .-2 B .21-C .21 D .210.在等差数列{a n }中,若a 3+a 9+a 15+a 21=8,则a 12等于( )A .1B .-1C .2D .-211.下列各式中,值为23的是( ) A .2sin15°-cos15° B .cos 215°-sin 215° C .2sin 215°-1D .sin 215°+cos 215°12.关于x 的方程2210ax x +-=至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .-1≤a <0C .a >0或-1<a <0D .a ≥-1二.填空题(共4小题,每题5分,共20分,请把正确答案填在答题卡上) 13.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =14. 不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为15.不等式21131x x ->+的解集是 . 16. 已知数列{}n a 满足23123222241n n n a a a a ++++=-,则{}n a 的通项公式 三.解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤,并把正确解答过程写在答题卡上)17. (10分)(1) 解不等式0542<++-x x ,(2)求函数的定义域:5y =18.(12分)等差数列{}n a 满足 212=a ,155=a ,求通项n a 及前n 项和的最大值.19.(12分)在△ABC 中,BC =a ,AC =b ,a ,b是方程220x -+=的两个根, 且2()1coc A B +=。

解三角形数列不等式

解三角形数列不等式

2016年高一下学期期中检测一、选择题。

(12×5分=50分)1.在△ABC 中,b = 8,c =38,S △ABC =316,则∠A 等于( )A. 30 ºB. 60ºC. 30º 或 150ºD. 60º 或120º2.如果1,,,,9a b c --成等比数列,那么( )A.3,9b ac ==B.3,9b ac =-=C.3,9b ac ==-D.3,9b ac =-=-3.已知x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤≤+11y x y y x ,Z=2x+y 的最大值是 ( )A .5B .23C .3D .54.在△ABC 中,若cos cos a b B A=,则该三角形一定是 ( ) A .等腰三角形但不是直角三角形 B .直角三角形但不是等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形5. 公差不为0的等差数列{a n }中,a 2、a 3、a 6依次成等比数列,则公比等于( ) A. 21 B. 31 C.2 D.3 6.设a>0,b>0,若是3a 与3b的等比中项,则+的最小值为( ) (A)8 (B)4 (C)1 (D)7.在△ABC 中,三边a,b,c 成等差数列,B=30°,且△ABC 的面积为,则b 的值是( )(A)1+ (B)2+ (C)3+ (D)8.已知是等比数列,,则=( ) A.16() B.6() C.() D.() 9. 在△ABC 中,a ,b ,c 分别为A , B , C 的对边,如果c a b +=2, B =30°,△ABC 的面积为23,那么b 等于( ) {}n a 41252==a a ,13221++++n n a a a a a a n --41n --21332n --41332n --21A.231+B.31+C.232+ D.32+ 10.在等比数列{a n }中,a 1=1,q ∈R 且|q |≠1,若a m =a 1a 2a 3a 4a 5,则m 等于( )A.9B.10C.11D.1211.等差数列{a n }和{b n }的前n 项和分别为S n 与Tn ,对一切自然数n ,都有n n T S =132+n n ,则55b a 等于( ) A.32 B. 149 C. 3120 D. 1711 12. 一个直角三角形的周长为2p ,则其斜边长的最小值为( )A. 21+B. 21- C.D. 二、填空题。

高中数学数列、解三角形、不等式综合复习

本讲主要复习了必修(5)数列、解三角形、不等式等三部分知识要点和考点。

在利用这些知识点解决问题时注重函数的思想、数与形结合的思想、方程的数学思想、分类讨论的数学思想、等价转化的数学思想及配方法、特值法、分离参数法等数学思想方法的应用。

考点一:数列、不等式、解三角形等基础知识的考查例1、在下列命题中,把正确命题的序号填在题后的横线上。

(1)当三角形的各角的余切成等差数列时,各角所对边的平方成等差数列(2)已知不等式①②x2-6x+8<0 ③2x2-9x+m<0若同时满足①②的x值也满足③,则m9.(3)一个等差数列和一个等比数列,其首项是相等的正数,若其第(2n+1)项是相等的,则这两个数列的第(n+1)项也是相等的。

(4)方程有解时a的取值范围是在上述命题中正确命题的序号是。

分析:(1)设三个角A,B,C所对的边分别是a,b,c.由已知条件得:2cotB=cotA+cotC然后化为正、余弦。

通分再利用正、余弦定理可证:2b2=a2+c2.(2)可用特值法:先求不等式①②解集的交集。

再对m取特值验证。

也可利用二次函数的图像解决。

(3)利用等差、等比数列的通项公式表示这两个数列的第(n+1)项,然后比较大小。

或取特值验证。

(4)分离参数法:把a分离出来,用表示a,再用均值不等式求解。

解析:(1)由已知得:2cotB=cotA+cotC.利用正、余弦定理可证:2b2=a2+c2.故命题(1)是正确的。

(2)不等式①②的交集是(2,3),取m=0时,不等式化为:显然当2<x<3时,不等式成立。

故命题(2)错误另解:利用二次函数图像求解:设f(x)=2x2-9x+m,如图由已知得:(3)设数列分别是等差数列、等比数列。

首项分别是>0公差和公比分别是d、q,取n=2,q=2,由已知:即:,故==-=故,故命题(3)错误。

(4)由方程得:-(4+a)=.故此命题错误。

考点二:不等式与数列的综合应用的考查例2、已知数列{a}是首项a1>0,q>-1且q≠1的等比数列,设数列{b}的通项为b=a-ka(n∈N),数列{a}、{b}的前n项和分别为S,T.如果T>kS对一切自然数n都成立,求实数k的取值范围.分析:由探寻T和S的关系入手谋求解题思路。

解三角形数列不等式考点分析。..

解三角形数列不等式考点分析。

必修五所学三章都为高考考察重点,且是与高考数学联络严密的知识点,温习中应惹起大家注重,本文经过对考点停止剖析来指点温习。

一、解三角形考点剖析〔1〕判别三角形的外形;〔2〕正余弦定理的复杂运用;〔3〕测量效果。

这些标题难度 不大,题型是中档题与复杂题,主要考察考生运用正余弦定理及三角公式停止恒等变形的才干;化简、求值或判别三角形外形为主,也能够与其他知识相结合,重点与三角恒等或平面向量交汇。

例1、台风中心此A 地以每小时20千米的速度向正南方向移动,离台风中心30千米内 的地域为风险区,城市B 在A 的正西方40千米处,城市B 处于风险区内的时间为多长? 解:如图,设台风中心从A 地到C 地用时为t ,|AC|=20t ,在▲ABC 中,由余弦定理得:t t A AC AB AC AB BC 280024001600cos ||||2||||||22-+=-+=, 依题意,只需30||≤BC ,城市B 就处于风险区内,由此得: 121222122min max =--+=-t t 〔小时〕, 所以城市B 处于风险区内的时间为1小时。

点评:正确了解方位角,画出契合实践状况的图形,普通是以时间为变量表达出图形中的线段,然后应用正、余弦定理,结合详细效果情境列式处置,这是应用正、余弦定理处置实践效果的重要思绪之一。

例2、▲ABC 的内角A 、B 、C 所对的边区分为a ,b ,c ,它的外接圆半径为6,三边a ,b ,c ,角A 、C 和▲ABC 的面积S 满足以下条件:22)(a c b S --=和〔1〕求B sin 的值;〔2〕求▲ABC 的面积的最大值。

剖析:此题从所给条件▲ABC 的面积S 满足以下条件:22)(a c b S --=能获取的信息是应用面积公式B ac S sin 21=与的关系式树立起等量关系,结合余弦定理第一问可求得;由条件外接圆半径为6应联想正弦定理以及条件34sin sin =+C A 可得a +c =16为定值,应与基本不等式联络解第二问。

高中数学课堂情景引入经典案例情景设置数列解三角形不等式

太多的事物不仅与表示它的量的大小有关,而且也与方向有关.三角恒等变换左图为世界著名的艺术殿堂——法国卢浮宫,它的正门入口处有一个金字塔建筑,它的设计者就是著名的美籍华人建筑师贝聿铭.那么在测量这类建筑物的高度时(如右图),我们需要来解复合角∠DAC =α-β的正、余弦值,这就需要对两角差的正、余弦进行变换.事实上,变换是数学的重要工具,同时也是高中数学学习的主要对象之一.其中代数变换我们已经在初中学习过,而且在必修4的第一章也涉及同角三角函数的变换.与代数变换一样,三角变换也是一种只变其形,不改变其本质的一种变换.两角差的余弦公式我们知道cos45°=22,cos30°=32.请同学们思考这样一个问题:cos15°=cos(45°-30°)=cos45°-cos30°成立吗?答案当然是不成立,因为cos15°的值应该是一个正值,而cos45°-cos30°是一个负值,那么cos15°的值与cos45°和cos30°之间到底存在什么关系呢?两角和与差的正弦、余弦变脸是川剧艺术中塑造人物的一种特技,演员在熟练的动作之间,奇妙地变换着不同的脸谱,用以表现剧中人物的情绪、心理状态的突然变化,达到“相随心变”的艺术效果,那么在三角函数中,两角和与差的正弦余弦之间又有怎样的变换呢?两角和与差的正切坐在教室里,需要一个合适视角才能看清楚黑板;在足球比赛中,若你从所守球门附近带球过人沿直线推进,要想把球准确地踢进大门去,需要确定一个最佳位置,这些实际生活中的问题可不是仅仅一个角度就可以解决的,其中涉及到至少两个角度的因素,只有把问题分析全面,才能稳操胜券.怎样确定两角之间的关系呢?二倍角的正弦、余弦、正切公式在我们接触到的事物中,带有一般性的事物总是大开大合,纵横驰骋,往往包含一切,而特殊的事物则是小巧玲珑,温婉和融,往往显出简洁,奇峻之美.三角函数的和(差)角的正弦、余弦、正切公式中的角都是带有一般性的,一般性中又蕴含着特殊性,即两角相等的情形,那么这些二倍角又有什么简洁,奇峻之美呢?三角恒等变换变换是生活中的常态,换一个环境,换一种心情,换一个角度,或许就柳暗花明又一村了,我们经常看到的魔术更是如此.可见,变换已深入到我们生活中的每一个角落.在前面几节的学习中,我们已经领略了三角变换的风采,那么,对于前面学习的和角公式,通过对各公式做加减运算,又能得到什么样的变换呢?解三角形在本章“解三角形”的引言中,我们遇到这么一个问题,“遥不可及的月亮离地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,那么,他们是用什么神奇的方法探索到这个奥秘的呢?1992年9月21日,中国政府决定实施载人航天工程,并确定了三步走的发展战略。

必修五解三角形 不等式知识点

1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++===4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B .6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A 等,变形: 222cos 2b c a bc+-A =等,8、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

②已知三边求角) 9、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >. 11、三角形的四心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12 、三角函数中 诱导公式及辅助角公式(和差角、倍角等) 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修5解三角形数列不等式【选择题】1.设,,a b c R ∈,且a b >,则 ( )A .ac bc >B .11a b<C .33a b >D .22a b >⒉ 设n S 为等差数列{}n a 的前n 项和,834S a =,72a =-,则5a =( )A .6-B .4-C .2-D .2 3.在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状为( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定 ⒋ 若点(,)x y 位于曲线y x = 与2y =所围成的封闭区域, 则2x y -的最小值为( )A .-2B .-6C .0D .25.在等比数列{}n a 中,若2nn a =,则7a 与9a 的等比中项为( )A .8aB .8a -C .8a ±D .前3个选项都不对6.关于x 的不等式2260x ax a --<(0a >)的解集为12(,)x x ,且2110x x -=,则a =( )A .2B .5C .52D .32⒎ 已知正项等比数列{}n a 满足2014201320122a a a =+14a =,则116()m n+的最小值为( )A .23B .2C .4D .6 8.△ABC 的内角,,A B C 的所对的边,,a b c 成等比数列,且公比为q ,则sinCsin q A+的取值范围为()A .()0,+∞B .(1,2C .()1,+∞D .)1A .2015-B .2014-C .2014D .2015【填空题】11.若数列}{n a 中,762++-=n n a n ,则其前n项和n S 取最大值时,=n __________.12.在ABC ∆中,060,B AC ∠== ,则3AB BC +的最大值为 . 13.已知关于x 的不等式()()2440ax a x --->的解集为A ,且A 中共含有n 个整数,则当n 最小时实数a 的值为 .14.在ABC ∆中,内角,,A B C 的对边分别是,,a b c ,若1sin cos ,24sin CB A==,且ABC S ∆=,则______.b =15.对于正项数列{}n a ,定义122n nnH a a na =++⋅⋅⋅+为{}n a 的“光阴”值,现知某数列的“光阴”值为n nH =,则数列{}n a 的通项公式为n a =__________。

【解答题】16.已知等比数列{}n a 中,1a a =,2a b =,3a c =,,,a b c 分别为△ABC 的三个内角A ,B ,C 的对边,且3cos 4B =. (1)求数列{}n a 的公比q ; (2)设集合{}22A x N x x =∈<,且1a A ∈,求数列{}n a 的通项公式.解:(1)依题意知2b ac =, ……………………………………………………1分由余弦定理得222113cos ()2224a cb ac B ac c a +-==⋅+-= ………………………3分 而2c q a =,则22q =或212q =; …………………………………………………5分 又∵在△ABC中,,,0a b c >,∴q =2q = …………………6分(2)∵22x x <,∴4240x x -<,即()2240x x ⋅-<,∴22x -<<且0x ≠,………8分又x N ∈,∴{}1A =,∴11a =, ………………………………………………10分 从而∴1n n a -=或1n n a -=。

………………………………………………12分 17.在△ABC 中,,,a b c 分别为内角A ,B ,C 的对边,且2sin (2)sin (2)sin a A b c B c b C =+⋅++⋅。

(1)求A 的大小;(2)若sin sin 1B C +=,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得22(2)(2)a b c b c b c =+⋅++ ……………2分即222a b c bc =++ …………① ∴2221cos 22b c a A bc +-==-,……………4分 又0A π<<, ∴23A π= ………………………………………………6分(2)由①得222sin sin sin sin sin A B C B C =++⋅………………………………………8分又sin sin 1B C +=,故1sin sin 2B C == ……………………………………10分又090,090B C <<<<,∴B C = ………………………………………11分故△ABC 是等腰的钝角三角形。

………………………………………12分18.已知21()1f x x a x a ⎛⎫=-++ ⎪⎝⎭。

(1)当12a =时,解不等式()0f x ≤;(2)若0a >,解关于x 的不等式()0f x ≤。

解: (1)当12a =时,有不等式25()102f x x x =-+≤, ………………2分∴()1202x x ⎛⎫--≤ ⎪⎝⎭,∴不等式的解集为122x x ⎧⎫≤≤⎨⎬⎩⎭……………4分(2)∵不等式()1()0f x x x a a ⎛⎫=--≤ ⎪⎝⎭当1a a >时,有01a <<,∴不等式的解集为1x a x a ⎧⎫≤≤⎨⎬⎩⎭; ……………7分 当1a a<时,有1a >,∴不等式的解集为1xx a a ⎧⎫≤≤⎨⎬⎩⎭; ……………10分 当1a a =时,有1a =,∴不等式的解集为{}1. ……………………………12分19.已知数列{}n a 满足:12n n a a a n a +++=-,其中*n N ∈。

(1)求证:数列{}1n a -是等比数列;(2)令(2)(1)n n b n a =--,求数列{}n b 的最大项。

证:(Ⅰ)当1n =时,111a a =-,∴112a =, ……………………………1分 又12111n n a a a n a +++++=+- ……………………………2分∴111n n n a a a ++=-+,即121n n a a +=+,∴111(1)2n n a a +-=- ……………4分 又1112a -=-,∴数列{}1n a -是首项为12-,公比为12的等比数列;………6分(2)由(1)知,11111()()()222n nn a --=-⨯=-∴2(2)(1)2n n n n b n a -=-⋅-=, ∴1111223222n n n n n n n nb b ++++----=-= ………8分当3n <时,10n n b b +->,即123b b b << …………………………………9分 当3n =时,43b b = ……………………………10分 当3n >时,10n n b b +-<,即456b b b >>> ……………………………11分∴数列{}n b 的最大项为4318b b == ……………………………13分20.某通讯公司需要在三角形地带OAC 区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域BOC内,乙中转站建在区域AOB 内.分界线OB 固定,且(1OB =百米,边界线AC 始终过点B ,边界线OA 、OC 满足∠AOC =75°,∠AOB =30°,∠BOC =45°,设(36)OA x x =≤≤百米,OC y =百米。

(1)试将y 表示成x 的函数,并求出函数y 的解析式;(2)当x 取何值时?整个中转站的占地面积OAC S ∆最小,并求出其面积的最小值。

解: (1)结合图形可知,BOC AOB AOC S S S ∆∆∆+=.于是,((1111sin301sin 45sin 75222x y xy ︒+︒=︒, 解得)36y x =≤≤. ……………………………6分 21.(本小题满分13分)已知数列{}n a 满足:2*1113,332,(1)n n a a a n n n N n n +==+++-∈+。

(1)求数列{}n a 的通项公式;(2)证明:1211112n a a a +++<。

解:(1)因为2111332()1n n a a n n n n +-=++--+, …………………2分 所以11121111111()3(332)()1n n n n k kk k k a a aa k k kk ---+====+-=+++--+∑∑∑ …………………5分 31(1)1133(1)(21)32(1)(1)62n n n n n n n n n n-=+⨯--+⨯+---=++………………………………………8分(2)因为4222222221111()1(1)(1)(1)211n n n n a n n n n n n n n n n n n ====-+++-++-+-+++, ………………………………………10分所以22111111111()[1]2112(1)12nn k k ka k k k k n n ===-=-<-+++++∑∑ ……………13分参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共5小题,每小题5分,共25分. 把答案填在答题卡的相应位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程. 解答写在答题卡上的指定区域内. ⒗ (本小题满分12分)解:(1)依题意知2b ac =, ……………………………………………………1分由余弦定理得222113cos ()2224a cb ac B ac c a +-==⋅+-= ………………………3分 而2c q a =,则22q =或212q =; …………………………………………………5分又∵在△ABC 中,,,0a b c >, ∴q =2q = …………………6分(2)∵22x x <,∴4240x x -<,即()2240x x ⋅-<,∴22x -<<且0x ≠,………8分又x N ∈,∴{}1A =,∴11a =, ………………………………………………10分从而∴1n n a -=或12n n a -=。

相关文档
最新文档