各项指标对水质的影响
最新各项指标对水质的影响资料

ph对水质的影响南美白对虾适宜的ph值为7.8—8.5。
ph值低可使养殖虾血液中的ph值下降,削弱其血液载氧能力,尽管水中的溶解氧较高,还是要造成鱼、虾生理缺氧症,经常浮头,且生长受阻或患病。
ph过高会增加氨氮的毒性。
ph下降是水质变坏、溶解氧降低的表现,同时,可使有毒的硫化氢含量增加。
氨氮、硫化氢含量的增加都可以抑制对虾的生长。
ph 值过高则可能腐蚀鱼虾鳃部组织,使粘液凝固,严重时体粘液成丝状,使虾等失去呼吸能力而大批死亡。
ph过高的水体中易形成蓝绿藻水华和形成难溶的磷酸三钙,从而导致水体中的营养物质和能量循环减缓。
另外,水中的ph值过高或过低,均会造成水中的微生物活动受到抑制,有机物不易分解。
ph值是养殖水体的一个综合指标,它主要与水体中的co32--hco3--co2缓冲体系及ca2+-caco3固体缓冲系统有密切关系,并与有机酸、腐殖质缓冲系统有一定相关性。
因此,水体中的ph值会随着水的硬度和co2的增减而变动。
池塘中ph值通常随着日出逐渐上升,至下午16:30-17:30(也有在13:00左右)达到最大值,接着开始持续下降,直至翌日日出前降至最小值,如此循环反复。
池塘中ph值的日正常变化范围为1-2,当水体中ph值过高、过低或变化幅度过大,都会影响水生生物的生长。
ph值在养殖中的变化规律1.养殖全过程ph值的变化规律:从对虾养殖整个过程来看,放苗前肥水阶段ph 值最高,有时可超过9.6,随后会不断下降,到中后期甚至降到7.0以下,如果水质不加以调节,则ph值就会不断发生变化。
2.一天中的ph值变化规律:水中生物的光合、呼吸作用和各种化学变化均能引起ph值的变化。
因此,白天光合作用越强,光照时间越长ph值就会越高;晚上光合作用停止,对虾及各种生物(微生物为主)呼吸产生的酸性二氧化碳越来越多,则ph值就会逐渐下降,天亮前降到最低。
如果是阴雨天,则一天中的ph值变化最小。
3.天气变化对ph值的影响:晴天、阴天和雨天ph值有不同的变化,晴天白天光合作用消耗掉了水中大量的酸性二氧化碳,ph值会升高,而阴雨天情况正好相反,连续的阴雨天会使池水ph值降得很低,必须及时调节。
水质分析报告各参数意义

溶解氧
总结词
表示水中溶解氧的含量,对水生生物的呼吸和水处理效果均有影响。
详细描述
溶解氧是评价水质的重要指标之一,它对水生生物的呼吸和水处理效果具有重要影响。水中的溶解氧含量越高, 越有利于水生生物的生长和繁殖。通常情况下,淡水中溶解氧应不低于5毫克/升,海水中的溶解氧应不低于3毫 克/升。
总硬度
02
水质分析参数概述
物理参数
浊度 描述水体浑浊度的参数,主要反映水体 中悬浮颗粒物的含量。浊度越高,表示
水体越浑浊。
pH值 表示水体酸碱度的参数,范围在1-14
之间。 pH值对水生生物的生存和水 处理的效率有重要影响。
色度 水的颜色深度,通常由水中的溶解性 物质、有机物或无机物造成。色度过 高可能影响水的使用价值。
渔业用水水质标准
为了保证水产养殖的安全和可持续发展,规定了渔业用水的各项水质指标和相应的标准。
水质安全与健康
饮用水安全
01
生活饮用水的水质必须符合国家卫生标准,以保障居民的身体
健康和生命安全。
工业用水安全
02
工业生产过程中使用的各种水质指标必须符合相关标准,以确
保生产安全和产品质量。
渔业用水安全
03
水质分析的目的
评估水体的健康状
况
通过检测水体中的污染物和营养 盐等指标,了解水体的生态平衡 状况,评估其对人类和生态系统 的安全性。
预测环境变化
通过对水质的监测和分析,可以 预测未来环境变化趋势,为环境 保护和治理提供科学依据。
指导水资源管理
了解水质状况有助于合理利用和 保护水资源,为工农业生产和生 活用水提供保障。
研发新技术
鼓励和支持水处理技术的研发 和应用,提高水质改善的科技
水质中各检测指标的关系

水质中各检测指标的关系水质检测是评估水体健康状况的重要手段之一,而水质中各检测指标之间的关系则反映了水体的污染程度和其对人类健康和环境的影响程度。
本文将从各种检测指标中选择几个典型指标进行分析,探讨它们之间的关系。
其次,水中的总溶解固体(TDS)和电导率也是常见的水质指标。
TDS 反映了水中溶解性固体总的含量,包括无机盐类和有机物质等。
而电导率则测量了水体对电流的导电能力,它与水中溶解物质的浓度成正比。
一般来说,TDS越高,水质越差,因为高浓度的溶解物质可能对水生生物和人类健康产生负面影响。
而电导率则可以反映水体中的盐度和离子浓度,通常情况下,电导率和TDS之间存在着一定的线性关系。
此外,水体中的五日生化需氧量(BOD5)和化学需氧量(COD)也是衡量水体有机污染程度的重要指标。
BOD5是指水体中微生物在五天内对有机物质进行氧化分解所需的氧气量,而COD则是指水体中全部可氧化有机物质所需的氧气量。
一般来说,BOD5和COD都是水体中有机污染程度的指示器,它们的含量越高,说明水体中的有机污染物越严重。
然而,BOD5与COD之间并不是简单的线性关系,因为不同的有机物质分解过程和速率不同,它们对BOD5和COD值的影响程度也不同。
最后,氨氮和亚硝酸盐是反映水体中氮污染程度的常见指标。
氨氮一般来自于生物和化学污染,它是水体中氮氧化还原过程的中间产物。
亚硝酸盐也是氮氧化还原过程的产物,它可由氨氮经一系列反应转化而来。
氨氮和亚硝酸盐的含量都可作为水体受氮污染程度的指示器,它们的含量越高,说明水体中氮污染越严重。
此外,氨氮和亚硝酸盐的含量也与水体中的微生物活动和生态系统的健康状况密切相关。
综上所述,各种水质指标之间存在着复杂的相互关系。
不同指标之间的关系受到多种因素的影响,其中可能存在线性关系、非线性关系、正相关、负相关等。
通过对水质指标之间关系的研究和分析,我们可以更好地了解水体的污染程度和其对人类健康和环境的影响程度,为水质监测和水资源管理提供科学依据。
水质监测参数

水质监测是保障水资源安全的重要手段之一,它是通过对水体中各种物理、化学、生物等指标进行检测和分析,评价水的质量状况,并及时发现和解决水质问题。
水质监测参数是指在水质监测过程中需要检测的一系列指标和参数,下面将针对水质监测参数进行详细介绍。
一、物理指标1.温度:水的温度是影响水体生态环境的重要因素,同时也是水生生物适应性的重要指标。
2.浊度:浊度是水中悬浮颗粒物的密度,反映了水中固体颗粒物的含量和大小,对水体的透明度和光合作用有影响。
3.电导率:电导率是水中离子和分子导电能力的指标,反映了水中离子浓度的高低,对水体的化学特性和生物活动有影响。
4.溶解氧:溶解氧是水中氧气的分压值,是评价水体富氧程度和水生生物生存状况的重要指标。
5. pH值:pH值是水中氢离子浓度的负对数,是反映水体酸碱性质的重要参数。
二、化学指标1. 总氮:总氮是水中有机氮和无机氮的总量,是评价水体富营养化程度和生态状况的重要指标。
2. 总磷:总磷是水中有机磷和无机磷的总量,是评价水体富营养化程度和水生态状况的重要指标。
3. 氨氮:氨氮是指水中存在的氨和铵离子的总量,是反映水体污染程度和生物毒性的重要指标。
4. 硝酸盐氮:硝酸盐氮是水中硝酸盐的含量,是反映水体富营养化程度和生态状况的重要指标。
5. 高锰酸盐指数:高锰酸盐指数是反映水中有机物氧化程度的重要指标,也是反映水体腐败状况和污染程度的重要参数。
6. 氯化物:氯化物是水中离子浓度的重要指标,反映了水体盐度和水源地污染程度。
7. 溴酸盐:溴酸盐是水中溴离子和溴酸根离子的总量,是反映水体富营养化和生态状况的重要指标。
8. 氰化物:氰化物是水中有毒物质之一,是反映水源地污染程度的重要指标。
三、生物学指标1. 叶绿素a:叶绿素a是水中藻类的重要代谢产物,是评价水体富营养化和生态环境变化的重要指标。
2. 生物量:生物量是水体中生物总量的指标,反映了水体生态系统的健康状况和生物多样性。
3. 细菌群落:细菌群落是水中微生物的总称,是反映水体污染程度和生态环境变化的重要指标。
水质监测指标及其意义

水质监测指标及其意义1.温度:温度是水体中最基本的物理指标之一、它会影响水中的生物活动、氧溶解度和化学反应速率等。
高温水体可能导致生态系统的破坏,例如鱼类和其他水生生物的死亡。
2.pH:pH值是水体酸碱性的度量标准。
酸性或碱性水体可能导致生物群落的丧失和生态系统的破坏。
pH值还能影响重金属和其他污染物的毒性。
3.溶解氧:溶解氧是水体中支持水生生物生存的重要因素之一、水中的氧气来自大气和水生植物的光合作用。
溶解氧含量较低可能导致水生生物的窒息。
4.水浊度:水浊度是水中悬浮颗粒物(如泥沙、污染物)的浓度。
高浊度水体会影响光的透过性,导致浸水植物的损失,并减少水中氧气的溶解。
5.溶解物质和化学氧化需求量(COD和BOD):COD和BOD是衡量水中溶解有机物质含量的重要指标。
高COD或BOD值表明水体中存在大量有机废弃物,可能导致富营养化和水体生态系统的崩溃。
6.总氮和总磷:总氮和总磷是水体中的营养盐指标。
过量的氮和磷会导致水体富营养化,产生蓝藻爆发,并破坏水生生物的生存环境。
7.重金属:重金属如汞、铅、镉等对人体和生态系统均具有毒性。
监测重金属含量可以评估水体对人类和环境的潜在危害。
8.有机污染物:有机污染物是人类活动的产物,如农药、工业废水和污水处理厂排放物等。
这些化合物可能对人类和生态系统产生毒性和慢性影响。
9.微生物:微生物监测指标主要涉及水体中的细菌和寄生虫等微生物。
这些微生物可能对人体健康造成直接威胁,如引起致命的水传播疾病。
有效监测和管理水质是维护水资源可持续利用和保护生态系统的重要步骤。
通过对水质监测指标的评估,可以及早发现和解决水体污染问题,确保人类和生态系统的健康和安全。
水质分析中的常用指标

水质分析中的常用指标水质分析是对水样中各种物质含量、污染程度和水质状况进行综合评价的过程。
水质分析中使用的指标非常多,下面将介绍一些常用的指标。
一、物理指标1.温度:水温对水体中生物的生长和代谢有直接影响,也是反映水体环境变化的重要指标。
2.pH值:反映水体的酸碱度,是水质评价的重要指标之一3.浊度:浊度是表征水体悬浮物浓度的指标,一般用肉眼或浊度仪来测定。
4.电导率:电导率是水中电离物质的浓度和种类的综合指标,反映水体的盐度。
二、化学指标1.总溶解固体(TDS):是水中所有溶解在其中的固体物质的总重量,反映水中总溶解性物质的含量。
2.溶解氧(DO):溶解氧是指溶解在水中的氧气,是衡量水体中生物呼吸状态和富营养化程度的重要指标。
3.化学需氧量(COD):是水中有机物氧化所消耗的氧量,反映水体中的有机物污染程度。
4.生化需氧量(BOD):是水中有机物在微生物作用下分解所需的氧气量,用来判断水体的自净能力。
5.氨氮(NH₃-N):是水中的主要无机氮形态之一,是衡量水体富营养化状态的重要指标。
6.亚硝酸盐氮(NO₂⁻-N)和硝酸盐氮(NO₃⁻-N):是水中的主要无机氮形态之一,也是判断水体富营养化程度的指标。
7.总磷(TP)和总氮(TN):是衡量水体富营养化程度的重要指标,通常与水体中的藻类生长和富营养化程度关联。
三、有机物指标1.挥发性有机物(VOCs):是一类易挥发的有机化合物,常见的有苯、甲苯、二甲苯等,是常见的水体有机污染物。
2.悬浮物(SS):悬浮物是水中悬浮态物质的总称,包括悬浮固体和悬浮液滴等。
悬浮物的含量反映水质的浑浊程度。
3.油脂和脂类:包括水中的原油、石油产品、炼油废水中的石脑油、轻柴油、石蜡、脂肪酸等,是水体中常见的有机污染物。
四、微生物指标1. 大肠杆菌群(E. coli):是常见的水中致病微生物指标,其含量可以反映水体的细菌污染程度。
2. 耐热大肠杆菌群(Thermotolerant coliform):与大肠杆菌群类似,也是常用的水质微生物指标。
影响水质四大指标因素及存在的问题

影响水质四大指标因素及存在的问题作者:暂无来源:《渔业致富指南》 2015年第20期杨移斌本文就影响水质四大常见指标因素及在养殖生产中应用试剂盒测试水质过程中存在的一些问题进行介绍,以期与同行交流。
1 影响水体四大水质指标因素1.1 pH天然水体pH 值俗称酸碱度,是指水体中已经电离生成氢离子的浓度。
pH 值影响水生生物活动。
pH 值能够反映水中各种物理、化学和生物活动情况,根据pH 值可以间接判断养殖用水的水质状况,不同种生物,同种生物不同发育阶段对pH 值有不同适应范围,因此它是评价水质的一个重要参数。
渔业水质pH 值一般控制在6.5~8.5 之间。
影响水体pH最主要的因素是水中游离的二氧化碳和碳酸盐的平衡系统,以及水中有机质的含量和它的分解条件。
二氧化碳的增减是由水中生物呼吸作用,有机质氧化作用和植物光合作用的相对强弱决定的。
1.2 溶解氧氧气溶解在水中称为溶解氧(DO),溶解氧是生活在水体中水生生物存在的必要条件。
若水中不存在溶解氧时,除了厌氧微生物外几乎一切水生物都无法生存;也是表示水质污染状态的重要指标之一。
在低氧或氧气不足的条件下,即使水生生物不至立即死亡,但长期生活在低氧条件下,水生生物在生理生态上也要受到一系列不利影响,鱼增重率下降,饵料系数增加,对疾病的抵抗力下降,发病率高,影响鱼虾胚胎发育,畸形率增大,有毒物质的毒性增强。
合适的溶氧可以保持良好的水质,使养殖生物获得最适宜的生长条件减少应激反应和胁迫对养殖生物的危害,让养殖生物保持健康的生长状态,让饵料系数保持在一个最低值提高成活率。
溶解氧的来源:空气的溶解:水面与空气接触,空气中的氧气溶于水中。
光合作用:浮游植物在白天通过光合作用产生氧气。
加注新水:在养殖中加注新水是氧气的来源之一。
人工增氧:纯氧增氧或者底部管道(或气石)增氧、化学增氧(过氧化钙)及增氧机增氧。
溶解氧消耗的途径:①养殖生物耗氧(生物呼吸、肠道消化、运动、保持体温);②水呼吸(浮游植物、浮游动物、细菌呼吸耗氧);③底质耗氧(底栖生物呼吸耗氧、有机物分解耗氧、氨氮等转化成无害物质时所需的耗氧。
水质分析中的常用指标

水质分析中的常用指标在水质分析中,有一些常用指标可以帮助我们评估水的质量。
这些指标包括 pH 值、溶解氧、化学需氧量(COD)、总溶解固体(TDS)和氨氮等。
本文将介绍并论述这些指标在水质分析中的重要性和应用。
pH 值是衡量水的酸碱性的指标,它对水中的生物和化学过程具有重要影响。
pH 值的正常范围是 6.5 到 8.5,超出这个范围的水可能对生物体造成伤害。
例如,过酸性的水会对水生生物的呼吸和繁殖产生负面影响。
同时,pH 值也会影响水中溶解物质的稳定性,从而影响水质。
溶解氧是衡量水中氧气含量的指标。
水中的溶解氧来自大气和生物活动。
溶解氧对水中的生物体生存至关重要,包括鱼类和其他水生生物。
水中缺氧会导致水生生物死亡,影响水生态系统的稳定性。
通过监测水中的溶解氧含量,可以及早发现水体中的缺氧问题,并采取相应措施进行修复。
化学需氧量(COD)是测量水中有机物含量的指标。
有机物可能来自废水排放、农业和工业活动等。
高 COD 值表明水体中有机污染物的浓度较高,这可能对水生态系统产生负面影响。
通过对水样进行 COD测定,可以评估水体的有机物负荷,进而采取适当的处理方法来改善水质。
总溶解固体(TDS)是衡量水中溶解性无机盐的总浓度的指标。
这些无机盐可以来自天然的水源,也可以来自工业废水排放等。
高 TDS值可能会对水的味道、透明度和可使用性产生负面影响。
此外,在饮用水中高 TDS 值也可能导致一系列健康问题。
因此,检测和监测水中的 TDS 值对于保护和改善水质是至关重要的。
氨氮是衡量水中氨氮含量的指标,氨氮是一种常见的水体污染物,来自农业和工业废水。
高氨氮含量可能会对水生生物造成严重危害,甚至导致富营养化和藻类爆发。
监测水中的氨氮含量可以帮助我们及时采取措施来减少污染物的输入,保护水生态系统健康。
综上所述,pH 值、溶解氧、化学需氧量、总溶解固体和氨氮是水质分析中常用的重要指标。
这些指标可以帮助我们评估水的质量,及时发现水体污染问题,并采取措施保护和改善水生态系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各项指标对水质的影响————————————————————————————————作者:————————————————————————————————日期:ﻩph对水质的影响南美白对虾适宜的ph值为7.8—8.5。
ph值低可使养殖虾血液中的ph值下降,削弱其血液载氧能力,尽管水中的溶解氧较高,还是要造成鱼、虾生理缺氧症,经常浮头,且生长受阻或患病。
ph过高会增加氨氮的毒性。
ph下降是水质变坏、溶解氧降低的表现,同时,可使有毒的硫化氢含量增加。
氨氮、硫化氢含量的增加都可以抑制对虾的生长。
ph值过高则可能腐蚀鱼虾鳃部组织,使粘液凝固,严重时体粘液成丝状,使虾等失去呼吸能力而大批死亡。
ph过高的水体中易形成蓝绿藻水华和形成难溶的磷酸三钙,从而导致水体中的营养物质和能量循环减缓。
另外,水中的ph值过高或过低,均会造成水中的微生物活动受到抑制,有机物不易分解。
ph值是养殖水体的一个综合指标,它主要与水体中的co32--hco3--co2缓冲体系及ca2+-caco3固体缓冲系统有密切关系,并与有机酸、腐殖质缓冲系统有一定相关性。
因此,水体中的ph值会随着水的硬度和co2的增减而变动。
池塘中ph值通常随着日出逐渐上升,至下午16:30-17:30(也有在13:00左右)达到最大值,接着开始持续下降,直至翌日日出前降至最小值,如此循环反复。
池塘中ph值的日正常变化范围为1-2,当水体中ph值过高、过低或变化幅度过大,都会影响水生生物的生长。
ph值在养殖中的变化规律1.养殖全过程ph值的变化规律:从对虾养殖整个过程来看,放苗前肥水阶段ph 值最高,有时可超过9.6,随后会不断下降,到中后期甚至降到7.0以下,如果水质不加以调节,则ph值就会不断发生变化。
2.一天中的ph值变化规律: 水中生物的光合、呼吸作用和各种化学变化均能引起ph值的变化。
因此,白天光合作用越强,光照时间越长ph值就会越高;晚上光合作用停止,对虾及各种生物(微生物为主)呼吸产生的酸性二氧化碳越来越多,则ph值就会逐渐下降,天亮前降到最低。
如果是阴雨天,则一天中的ph值变化最小。
3.天气变化对ph值的影响:晴天、阴天和雨天ph值有不同的变化,晴天白天光合作用消耗掉了水中大量的酸性二氧化碳,ph值会升高,而阴雨天情况正好相反,连续的阴雨天会使池水ph值降得很低,必须及时调节。
对ph值的调控1.放苗前调控:放苗时如果ph值高于9.0(上午10点左右测量值)则虾苗的成活率会受到很大影响,所以放苗前进行ph值的调控是养殖工作的一个重要环节。
调控可采用施加酸性化学物质的方法,如加入适量醋酸、柠檬酸、草酸等,也可以换水或注入新水(地下深井水更好),尽可能将ph值降到9.0以下(8.5以上),这样可确保放苗后虾苗的成活率达到生产要求。
2.中前期调控:在养殖全过程的前三分之二时间里水质的各项指标一般都还比较正常,如nh3、h2s等浓度很低,对对虾的不良影响就很小,这时候可以放心大胆地将ph值控制在最适合对虾生长的范围里。
随后,ph值逐渐降低,如果上午10点测量出的ph值在8.0以下,则应及时进行调高。
20ppm的生石灰可提高ph值0.5。
3.中后期调控:对虾养殖进入中后期,水质各项指标已经很差,特别是在高密度养殖的情况下,nh3、h2s浓度就不可避免升高甚至超标,且ph值下降又特别快,这个时候如果不调节好ph值,即使增氧机满负荷不停地运转,对虾仍会有生理性缺氧浮头的危险,给养殖者造成不必要的损失,因此中后期的ph值调控技术要求比较高,也是决定养殖效果好坏的关键环节。
由于nh3、h2s的毒性与ph值的高低有密切的关系,中后期调节ph值一定要考虑全面,假如nh3浓度很高而h2s浓度很低,此时可将ph值调到正常偏低水平,这样可降低nh3毒性又确保不会造成对虾生理性缺氧;如果情况恰好相反,则可将ph值调到正常偏高水平。
总的原则是:既要保证ph值的正常,又尽可能地降低水体中nh3和h2s的毒性,这样就会提高养殖的产量。
ph值偏低或偏高的处理措施ph值偏低的处理措施:①可以将池中老水排掉,注入新水,反复2-3次,以调节水体中的ph值;②每半个月泼洒生石灰水(如淡养对虾池ph值低于7.8,每亩用量5-15kg),既可以调节水体酸碱度,又可以防治病害发生;③对于ph值下降过快或过低的水体,也可用naoh或小苏打进行调节,采用1%naoh溶液,一定要进行稀释(比如稀释1000倍),少量多次均匀泼洒,并及时测定水体的ph 值,以确定效果;④加速培植浮游植物,形成新的藻相,对于形成的蓝绿藻要及时控制,必要时追施无机肥料,促使优良藻类繁殖茂盛;⑤充分增氧,控制还原型物质的生成。
ph值过高的处理措施:①注入新水。
②用滑石粉(主要成分硅酸镁)调节,用量为每亩1-2kg。
通常滑石粉以1.5-2.5g /m3全池泼洒,可使水体ph降低0.5-1;③每亩用0.5-1kg明矾,全池泼洒④对ph过高或升幅太快的水体也可用稀盐酸或醋酸泼洒,少量多次泼洒后,并及时测定水体的ph值;用盐酸调节,一般每亩用300毫升~500毫升,充分稀释后全池泼洒。
⑤多施有机肥,以肥调碱。
⑥使用“牧鱼露”(每亩用1 kg)加红糖或腐植酸(每亩用2~3 kg)。
四、溶氧溶氧是水体中最主要的理化指标,养殖池塘中溶氧量通常要求在5-8mg/l之间,至少不低于4mg/l;当溶氧低于3mg/l时,虾会烦躁不适、轻度缺氧、呼吸加快、摄食量降低,从而影响生长。
溶氧更低时就可能造成水产动物的死亡。
水体中溶氧量取决于增氧与耗氧因素的消长作用。
池塘中溶氧主要来源于浮游植物的光合作用(受光照、温度等影响较大);空气溶解(与风浪,水体的水平和垂直移动有关);增氧机或增氧剂的使用;换新水所携带氧气等几个方面。
而水体中溶氧的消耗则包括水生生物及细菌等微生物的呼吸代谢耗氧,池水、底质中有机物等还原性物质的分解等几个方面。
当池塘溶氧不足时可采用的主要应急措施:①增氧机的合理使用;②合理的换水;③减少池塘中有机物、微生物等好氧量;④合理地使用增氧剂;⑤逐渐培育出所需适宜的新藻相。
目前主要的增氧剂作简要的说明:a过硼酸钠,白色细小结晶粉末,属于温和性氧化剂,能缓慢释放氧,当水温高于40℃,氧气逃逸加快,可增加水体中的溶氧。
使用过硼酸钠后可增加水体的碱性,提高池塘水体的p h。
使用时用水溶解后,以1g/m3的水体终浓度全池泼洒,但应注意不能与酸类物质混存。
b过氧化钙,白色结晶粉末,与水反应后能产生大量的氧气,可增加水体中的溶氧,提高水体的碱性,提高ph值,并可絮凝有机物及胶粒,降低水体中的氨氮,去除二氧化碳和硫化氢,防止厌氧菌的繁殖,且杀死致病细菌,起到澄清水体的作用,改良水质。
使用时用水溶解后,以1g/m3的水体终浓度全池泼洒。
但对于缺氧池塘可参考下表使用量。
c过碳酸钠[na2co3.3h2o2]白色、自由流动颗粒结晶粉末。
水溶液呈碱性,活性氧含量14%,具有氧化性。
过碳酸钠干粉的活性氧含量相当于30%浓度的双氧水。
使用过碳酸钠后池塘溶液的ph值呈碱性,生成活性氧,从而发挥了其杀菌、漂白去污的功能。
预防缺氧以0.075-0.15g/m3的水体终浓度全池泼洒;缺氧急救时使用量可加倍,以0.15-0.22g/m3的水体泼洒。
此外,0.02%过碳酸钠溶液还可进行活鱼运输,每5-6h加药1次。
五、氨氮氨氮是由池中残饵、排泄物、浮游生物的尸体等有机物分解产生。
当氨氮的积累在水中达到一定的浓度时就会使鱼中毒。
氨氮超标通常发生在养殖的中后期,这时候由于残饵和粪便的增加,池塘底部的有害物不断沉积,造成氨氮、亚硝酸盐等超标。
正常养殖水体氨氮一般不超0.2㎎/l为宜。
在养殖过程中,要尽量降低氨氮含量,要把氨氮控制在0.5mg/l 以下。
氨氮毒性与池水的ph值及水温有密切关系,一般情况,温度和ph值愈高,毒性愈强。
氨氮的中毒机理氨氮以两种形式存在于水中,一种是氨(nh3),又叫非离子氨,脂溶性,对水生生物有毒。
另一种是铵(nh4+),又叫离子氨,对水生生物无毒。
当氨(nh3)通过鳃进入水生生物体内时,会直接增加水生生物氨氮排泄的负担,氨氮在血液中的浓度升高,血液ph随之相应上升,水生生物体内的多种酶活性受到抑制,并可降低血液的输氧能力,破坏鳃表皮组织,降低血液的携氧能力,导致氧气和废物交换不畅而窒息。
此外,水中氨浓度高也影响水对水生生物的渗透性,降低内部离子浓度。
氨氮对水生动物的危害氨氮对水生动物的危害有急性和慢性之分。
慢性氨氮中毒危害为:摄食降低,生长减慢;组织损伤,降低氧在组织间的输送;鱼和虾均需要与水体进行离子交换(钠,钙等),氨氮过高会增加鳃的通透性,损害鳃的离子交换功能;使水生生物长期处于应激状态,增加动物对疾病的易感性,降低生长速度;降低生殖能力,减少怀卵量,降低卵的存活力,延迟产卵繁殖。
急性氨氮中毒危害为:水生生物表现为亢奋、在水中丧失平衡、抽搐,严重者甚至死亡。
防治养殖过程中氨氮偏高的主要措施:①在养殖初期严格清塘、清淤,减少池塘中氮的库容量;②养殖初期肥水的时候注意有机肥的使用量;③根据水体的实际承受能力,制定合理放养密度;④选择消化率高的饵料,科学投喂;⑤经常开动增氧机;⑥养殖中后期使用沸石粉(15-20g/m3)或活性炭(2-3g/m3)改善底质,吸附氨氮,降解有机物;⑦定期检测水中氨的指标,如果氨氮超标,早预防,早处理;⑧及时清理养殖水域底层的污垢及水产养殖动物排泄的粪便等措施。
⑨正确合理地使用光合细菌、em菌等活菌制剂,能有效降低水体中的氨氮,去除水体中的硫化氢和亚硝酸盐,改善池塘底泥、底质,稳定水体中的ph值,加快水体中的能量和物质循环。
但在使用活菌制剂时,应当注意不同菌类的适应条件和使用方法,否则就达不到预期的效果。
如泼洒活菌制剂前后3-7天忌施消毒剂,也不能与消毒剂、抗生素等同时使用。
光合细菌在日出时使用,效果显着;在使用硝化细菌时,不能像芽孢杆菌一样用红糖、池水活化;硝化细菌繁殖速度慢,使用时最好与其他活菌制剂错开使用,使用后泼洒沸石粉,效果会更加显着;使用硝化细菌后,3-4天内尽量不排水等。
六、亚硝酸盐水生动物排泄的有机废物经氨化作用产生氨,虾的泌氨作用产生氨,人为施用无机氮肥产生氨,这些氨在水体中硝化细菌的作用下逐步氧化经亚硝酸盐转化为硝酸盐,这过程称为硝化作用,硝化作用一旦受阻,结果就会引起硝化的中间产物亚硝酸盐在水体内的累积。
在养殖的中后期,池塘中亚硝酸盐偏高是极其普遍的现象,这与养殖中后期投喂量增加、生物及氮的库存量增加,而硝化细菌自身繁殖相对较慢且生长易受到其他菌群的抑制有关。
亚硝酸盐的毒性机理养殖水体亚硝酸盐浓度过高时,可通过虾体表的渗透与吸收作用进入血液,使血液中的亚铁血红蛋白被氧化成高铁血红蛋白,由于高铁血红蛋白不能与氧结合,从而使血液丧失载氧能力。