2020年北京新高考海淀一模试题及答案(word精编版)
2020年北京市海淀区高考数学一模试卷(附答案详解)

2020年北京市海淀区高考数学一模试卷1.在复平面内,复数i(2−i)对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知集合A={x|0<x<3},A∩B={1},则集合B可以是()A. {1,2}B. {1,3}C. {0,1,2}D. {1,2,3}3.已知双曲线x2−y2b2=1(b>0)的离心率为√5,则b的值为()A. 1B. 2C. 3D. 44.已知实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A. b−a<c+aB. c2<abC. cb >caD. |b|c<|a|c5.在(1x−2x)6的展开式中,常数项为()A. −120B. 120C. −160D. 1606.如图,半径为1的圆M与直线l相切于点A,圆M沿着直线l滚动.当圆M滚动到圆M′时,圆M′与直线l相切于点B,点A运动到点A′,线段AB的长度为3π2,则点M′到直线BA′的距离为()A. 1B. √32C. √22D. 127.已知函数f(x)=|x−m|与函数g(x)的图象关于y轴对称.若g(x)在区间(1,2)内单调递减,则m的取值范围为()A. [−1,+∞)B. (−∞,−1]C. [−2,+∞)D. (−∞,−2]8.某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为()A. √5B. 2√2C. 2√3D. √139.若数列{a n}满足a1=2,则“∀p,r∈N∗,a p+r=a p a r”是“{a n}为等比数列”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件10.形如22n+1(n是非负整数)的数称为费马数,记为F n.数学家费马根据F0,F1,F2,F3,F4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F5不是质数,那么F5的位数是()(参考数据:lg2≈0.3010)A. 9B. 10C. 11D. 1211.已知点P(1,2)在抛物线C:y2=2px上,则抛物线C的准线方程为______.12.在等差数列{a n}中,a1=3,a2+a5=16,则数列{a n}的前4项的和为______.13.已知非零向量a⃗,b⃗ 满足|a⃗|=|a⃗−b⃗ |,则(a⃗−12b⃗ )⋅b⃗ =______.14.在△ABC中,AB=4√3,∠B=π4,点D在边BC上,∠ADC=2π3,CD=2,则AD=;△ACD的面积为.15.如图,在等边三角形ABC中,AB=6.动点P从点A出发,沿着此三角形三边逆时针运动回到A点,记P运动的路程为x,点P 到此三角形中心O距离的平方为f(x),给出下列三个结论:①函数f(x)的最大值为12;②函数f(x)的图象的对称轴方程为x=9;③关于x的方程f(x)=kx+3最多有5个实数根.其中,所有正确结论的序号是______.16.如图,在三棱柱ABC−A1B1C1中,AB⊥平面BB1C1C,AB=BB1=2BC=2,BC1=√3,点E为A1C1的中点.(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)求二面角A−BC−E的大小.17.已知函数f(x)=2cos2ω1x+sinω2x.(Ⅰ)求f(0)的值;(Ⅱ)从①ω1=1,ω2=2;②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f(x)在[−π2,π6]上的最小值,并直接写出函数f(x)的一个周期.18.科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.如图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).(Ⅰ)从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(Ⅱ)从2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;(Ⅲ)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.19.已知函数f(x)=e x+ax.(Ⅰ)当a=−1时,①求曲线y=f(x)在点(0,f(0))处的切线方程;②求函数f(x)的最小值;(Ⅱ)求证:当a∈(−2,0)时,曲线y=f(x)与y=1−lnx有且只有一个交点.20.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,A1(−a,0),A2(a,0),B(0,b),△A1BA2的面积为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设M是椭圆C上一点,且不与顶点重合,若直线A1B与直线A2M交于点P,直线A1M与直线A2B交于点Q.求证:△BPQ为等腰三角形.21.已知数列{a n}是由正整数组成的无穷数列.若存在常数k∈N∗,使得a2n−1+a2n=ka n对任意的n∈N∗成立,则称数列{a n}具有性质Ψ(k).(Ⅰ)分别判断下列数列{a n}是否具有性质Ψ(2);(直接写出结论)①a n=1;②a n=2n.(Ⅱ)若数列{a n}满足a n+1≥a n(n=1,2,3,…),求证:“数列{a n}具有性质Ψ(2)”是“数列{a n}为常数列”的充分必要条件;(Ⅲ)已知数列{a n}中a1=1,且a n+1>a n(n=1,2,3,…).若数列{a n}具有性质Ψ(4),求数列{a n}的通项公式.答案和解析1.【答案】A【解析】【分析】本题考查复数的代数表示法及其几何意义,属于基础题.首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.【解答】解:∵复数z=i(2−i)=−i2+2i=1+2i,∴复数对应的点的坐标是(1,2),这个点在第一象限,故选A.2.【答案】B【解析】解:∵A={x|0<x<3},A∩B={1},∴集合B可以是{1,3}.故选:B.根据A={x|0<x<3},A∩B={1},即可得出集合B可能的情况.本题考查了描述法、列举法的定义,交集的定义及运算,考查了计算能力,属于基础题.3.【答案】B=1(b>0)的离心率为√5,【解析】解:双曲线x2−y2b2可得√b2+1=√5,解得b=2,1故选:B.利用双曲线的离心率公式,列出方程,求解b即可.本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.4.【答案】D【解析】解:(法1)根据数轴可得c<b<a<0且|c|>|b|>|a|,对于A:因为c<b,a<0,所以c+a<c,b−a>b,则c+a<c<b−a,即c+a< b−a,故A错误;对于B:因为c<b<a<0,|c|>|b|>|a|,所以c2>b2>a2,且b2>ab,所以c2> b2>ab,则c2>ab,故B错误;对于C:因为b<a<0,所以1b >1a,则cb<ca,故C错误;对于D:因为|b|>|a|,且c<0,所以|b|c<|a|c,故D正确,(法2)不妨令c=−5,b=−4,a=−1,则c+a=−6<b−a=−3,故A错误;c2=25>ab=4,故B错误;cb =54<ca=5,故C错误;故选:D.法1:根据数轴得到c<b<a<0且|c|>|b|>|a|,结合不等式基本性质逐一进行判断即可;法2:用特值法带入验证即可.本题考查不等式的相关应用,考查合情推理,属于中档题.5.【答案】C【解析】解:由题意得:T k+1=(−2)k C6k x2k−6,令2k−6=0得k=3,故常数项为T4=(−2)3C63=−160.故选:C.先求出通项,然后令x的指数为零即可.本题考查二项式展开式通项的应用和学生的运算能力,属于基础题.6.【答案】C【解析】解:根据条件可知圆周长=2π,因为BA =32π=34×2π,故可得A’位置如图:∠A′M′B =90°,则△A′M′B 是等腰直角三角形, 则M′到A′M 的距离d =√22r =√22,故选:C .根据条件可得圆旋转了34个圆,作图可得到△A′M′B 是等腰直角三角形,进而可求得M′到A′M 的距离.本题考查点到直线的距离,考查圆旋转的长度求法,数中档题.7.【答案】D【解析】解:根据题意,函数f(x)=|x −m|与函数g(x)的图象关于y 轴对称.若g(x)在区间(1,2)内单调递减, 则f(x)在区间(−2,−1)上递增,而f(x)=|x −m|={x −m,x ≥m −x +m,x <m ,在区间(m,+∞)上为增函数,则有m ≤−2,即m 的取值范围为(−∞,−2]; 故选:D .根据题意,分析可得f(x)在区间(−2,−1)上递增,将f(x)写成分段函数的形式,分析可得f(x)在区间(m,+∞)上为增函数,据此可得m 的取值范围.本题考查函数的单调性,涉及函数之间的对称性、不等式的解法,属于基础题.8.【答案】C【解析】解:根据几何体的三视图可得直观图为:该几何体为四棱锥体, 如图所示:所以最长的棱长AB =√22+22+22=2√3. 故选:C .首先把三视图转换为直观图,进一步求出最大棱长.本题考查的知识要点:三视图和直观图形之间的转换,几何体的棱长的求法和应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.【答案】A【解析】解:“∀p,r∈N∗,a p+r=a p a r”,取p=n,r=1,则a n+1=2a n,∴{a n}为等比数列,充分性成立.若{a n}为等比数列,则a p+r=2×q p+r−1,a p a r=22⋅q p+r−2,只有q=2时才能成立,必要性不成立.∴数列{a n}满足a1=2,则“∀p,r∈N∗,a p+r=a p a r”是“{a n}为等比数列”的充分不必要条件.故选:A.利用等比数列的定义、通项公式即可判断出结论.本题考查了等差数列的通项公式,充分必要条件的判断,考查了推理能力与计算能力,属于基础题.10.【答案】B【解析】【分析】本题考查指对数运算,考查学生阅读理解能力.根据所给定义表示出F5≈109.632×109,进而即可判断出其位数.【解答】解:根据题意,F5=225+1=232+1≈232=10lg232=1032lg2≈1032×0.3010= 109.632=100.632×109,因为1<100.632<10,所以F5的位数是10.故选:B.11.【答案】x=−1【解析】解:把点P(1,2)代入抛物线方程有,4=2p,∴p=2,=−1.∴抛物线的准线方程为x=−p2故答案为:x=−1.把点P的坐标代入抛物线的方程可求得p,而准线方程为x=−p2,从而得解.本题考查抛物线的方程、准线方程等,考查学生的运算能力,属于基础题.12.【答案】24【解析】解:设等差数列{a n}的公差为d,∵a1=3,a2+a5=16,∴2×3+5d=16,解得d=2.则数列{a n}的前4项的和=4×3+4×32×2=24.故答案为:24.利用等差数列的通项公式求和公式即可得出.本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.13.【答案】0【解析】解:因为非零向量a⃗,b⃗ 满足|a⃗|=|a⃗−b⃗ |,∴a⃗2=a⃗2−2a⃗⋅b⃗ +b⃗ 2⇒a⃗⋅b⃗ =12b⃗ 2;则(a⃗−12b⃗ )⋅b⃗ =a⃗⋅b⃗ −12b⃗ 2=0.故答案为:0.把所给条件平方整理得到a⃗⋅b⃗ =12b⃗ 2;代入数量积即可求解结论.本题考查向量的数量积以及模长的应用,考查向量的表示以及计算,考查计算能力.14.【答案】4√22√6【解析】【分析】本题主要考查正弦定理以及三角形的面积,属于基础题目.先根据正弦定理求得AD,进而求得三角形的面积.【解答】 解:如图:因为在△ABC 中,AB =4√3,∠B =π4,点D 在边BC 上,∠ADC =2π3,CD =2,所以:ADsin∠ABD =ABsin∠ADB ⇒AD =4√3×sinπ4sin π3=4√2;S △ACD =12⋅AD ⋅CD ⋅sin∠ADC =12×4√2×2×sin 2π3=2√6;故答案为:4√2,2√6.15.【答案】①②【解析】解:由题可得函数f(x)={3+(x −3)2,0≤x <63+(x −9)2,6≤x <123+(x −15)2,12≤x ≤18,作出图象如图:则当点P 与△ABC 顶点重合时,即x =0,6,12,18时,f(x)取得最大值12,故①正确; 又f(x)=f(18−x),所以函数f(x)的对称轴为x =9,故②正确;由图象可得,函数f(x)图象与y =kx +3的交点个数最多为6个,故方程最多有6个实根,故③错误. 故答案为:①②.写出函数解析式并作出图象,数形结合进行逐一分析.本题考查命题的真假性判断,涉及函数的应用、图象与性质,数形结合思想,逻辑推理能力,属于难题.16.【答案】(Ⅰ)证明:因为AB ⊥平面BB 1C 1C ,C 1B ⊂平面BB 1C 1C 所以AB ⊥C 1B .在△BCC 1中,BC =1,BC 1=√3,CC 1=2,所以BC 2+BC 12=CC 12. 所以CB ⊥C 1B .因为AB ∩BC =B ,AB ,BC ⊂平面ABC , 所以C 1B ⊥平面ABC .(Ⅱ)解:由(Ⅰ)知,AB ⊥C 1B ,BC ⊥C 1B ,AB ⊥BC , 如图,以B 为原点建立空间直角坐标系B −xyz .则B(0,0,0),E(−12,√3,1),C(1,0,0).BC ⃗⃗⃗⃗⃗ =(1,0,0),BE ⃗⃗⃗⃗⃗ =(−12,√3,1). 设平面BCE 的法向量为n ⃗ =(x,y,z), 则{n⃗ ⋅BC ⃗⃗⃗⃗⃗ =0n ⃗ ⋅BE ⃗⃗⃗⃗⃗ =0, 即{x =0,−12x +√3y +z =0. 令y =√3则x =0,z =−3, 所以n ⃗ =(0,√3,−3).又因为平面ABC 的法向量为m ⃗⃗⃗ =(0,1,0), 所以cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ ||n ⃗⃗ |=12. 由题知二面角A −BC −E 为锐角,所以其大小为π3.【解析】(Ⅰ)证明AB ⊥C 1B .CB ⊥C 1B .利用直线与平面垂直的判断定理证明C 1B ⊥平面ABC .(Ⅱ)以B 为原点建立空间直角坐标系B −xyz.求出平面BCE 的法向量,平面ABC 的法向量,利用空间向量的数量积求解二面角的大大小即可,本题考查二面角的平面角的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及逻辑推理能力计算能力,是中档题.17.【答案】解:(Ⅰ)由函数f(x)=2cos 2ω1x +sinω2x ,则f(0)=2cos 20+sin0=2;(Ⅱ)选择条件①,则f(x)的一个周期为π;由f(x)=2cos 2x +sin2x=(cos2x +1)+sin2x =√2(√22sin2x +√22cos2x)+1 =√2sin(2x +π4)+1;因为x ∈[−π2,π6],所以2x +π4∈[−3π4,7π12];所以−1≤sin(2x +π4)≤1, 所以1−√2≤f(x)≤1+√2; 当2x +π4=−π2,即x =−3π8时,f(x)在[−π2,π6]取得最小值为1−√2. 选择条件②,则f(x)的一个周期为2π; 由f(x)=2cos 2x +sinx=2(1−sin 2x)+sinx=−2(sinx −14)2+178;因为x ∈[−π2,π6],所以sinx ∈[−1,12];所以当sinx =−1,即x =−π2时,f(x)在[−π2,π6]取得最小值为−1.【解析】(Ⅰ)由函数f(x)的解析式求出f(0)的值; (Ⅱ)选择条件①时f(x)的一个周期为π,利用三角恒等变换化简f(x),再求f(x)在[−π2,π6]的最小值. 选择条件②时f(x)的一个周期为2π,化简f(x),利用三角函数的性质求出f(x)在[−π2,π6]的最小值.本题考查了三角函数的图象与性质的应用问题,也考查了转化与运算能力,是基础题.18.【答案】解:(Ⅰ)设事件A 为“从2010年至2019年中随机选取一年,研发投入占当年总营收的百分比超过10%”,从2010年至2019年一共10年,其中研发投入占当年总营收的百分比超过10%有9年, 所以P(A)=910.(Ⅱ)由图表信息,从2010年至2019年10年中有5年研发投入超过500亿元,所以X 的所有可能取值为0,1,2.且P(X =0)=C 52C 102=29;P(X =1)=C 51C 51C 102=59;P(X =2)=C 52C 102=29.所以X 的分布列为:故X 的期望E(X)=0×29+1×59+2×29=1.(Ⅲ)从两个方面可以看出,该公式是比较重视研发的:一、从2010年至2019年,每年的研发投入是逐年增加的(2018年除外),并且增加的幅度总体上逐渐加大;二、研发投入占营收的比例总体上也是逐渐增加的,虽然2015年往后有些波动,但是总体占比还是较高的.【解析】(Ⅰ)按照古典概型概率计算公式计算即可;(Ⅱ)显然这是一个超几何分布,按照超几何分布的概率计算方法,分别算出随机变量X 取0,1,2时的概率,然后画出分布列,即可求期望;(Ⅲ)结合折线图从“每年的研发投入”“研发投入占营收比”的变化来分析即可. 本题考查离散型随机变量的分布列、期望的求法,注意对题意的理解需到位、准确.同时考查学生的数学建模的素养,属于中档题.19.【答案】解:(Ⅰ)①当a =−1时,f(x)=e x −x ,则 f′(x)=e x −1.所以f′(0)=0. 又f(0)=1,所以曲线y =f(x)在点(0,f(0))处的切线方程为y =1; ②令f′(x)=0,得x =0,此时f′(x),f(x)随x 的变化如下:可知f(x)min =f(0)=1,函数f(x)的最小值为1. (Ⅱ)证明:由题意可知,x ∈(0,+∞),令g(x)=e x +ax +lnx −1,则g′(x)=e x +1x +a , 由(Ⅰ)中可知e x −x ≥1,故 e x ≥1+x ,因为a ∈(−2,0),则g′(x)=e x +1x+a ≥(x +1)+1x+a ≥2√x ⋅1x+a +1=3+a >0,所以函数g(x)在区间(0,+∞)上单调递增, 因为g(1e)=e 1e +ae−2<e 12−2<0,又因为g(e)=e e +ae >e 2−2e >0, 所以g(x)有唯一的一个零点.即函数y =f(x)与y =1−lnx 有且只有一个交点.【解析】本题考查导数的几何意义,利用导数研究函数的最值,函数的零点等问题,考查运算求解能力及推理论证能力,属于中档题.(Ⅰ)①将a =−1代入,求导,求出切线斜率及切点,利用点斜式方程即得解; ②求出函数函数f(x)的单调性情况,进而得出最值;(Ⅱ)即证函数g(x)=e x +ax +lnx −1仅有一个零点,利用导数可知函数g(x)在区间(0,+∞)上单调递增,结合零点存在性定理即得证.20.【答案】解:(Ⅰ)由题{ca=√32,ab =2,a 2=b 2+c 2.解得{a =2,b =1.所以椭圆方程为x 24+y 2=1.( II)解法1证明:设直线A 2M 方程为y =k(x −2)(k ≠0且k ≠±12),直线A 1B 方程为y =12x +1 由{y =k(x −2),y =12x +1.解得点P(4k+22k−1,4k 2k−1). 由{y =k(x −2),x 24+y 2=1.得(4k +1)x 2−16k 2x +16k 2−4=0, 则2x M =16k 2−44k 2+1.所以x M =8k 2−24k 2+1,y M =−4k4k 2+1.即M(8k 2−24k 2+1,−4k4k 2+1).k A 1M =−4k 4k 2+18k 2−24k 2+1+2=−14k .于是直线A 1M 的方程为y =−14k (x +2),直线A 2B 的方程为y =−12x +1.由{y =−14k (x +2)y =−12x +1解得点Q(4k+22k−1,−22k−1). 于是x P =x Q ,所以PQ ⊥x 轴. 设PQ 中点为N ,则N 点的纵坐标为4k 2k−1+−22k−12=1.故PQ 中点在定直线y =1上.从上边可以看出点B 在PQ 的垂直平分线上,所以|BP|=|BQ|, 所以△BPQ 为等腰三角形. 解法2证明:设M(x 0,y 0)(x 0≠±2,y 0≠±1)则x 02+4y 02=4. 直线A 2M 方程为y =yx 0−2(x −2),直线A 1B 方程为y =12x +1.由{y =y0x 0−2(x −2),y =12x +1.解得点P(2x 0+4y 0−42y 0−x 0+2,4y 02y0−x 0+2).直线A 1M 方程为y =yx 0+2(x +2),直线A 2B 方程为y =−12x +1.由{y =yx 0+2(x +2),y =−12x +1.解得点Q(2x 0−4y 0+42y 0+x 0+2,4y 02y0+x 0+2).x P −x Q =2x 0+4y 0−42y 0−x 0+2−2x 0−4y 0+42y 0+x 0+2=2(x 0+2y 0−2)(2y 0+x 0+2)−2(x 0−2y 0+2)(2y 0−x 0+2)(2y 0−x 0+2)(2y 0+x 0+2)=2[(x 0+2y 0)2−4)−(4−(x 0−2y 0)2](2y 0−x 0+2)(2y 0+x 0+2)=0.于是x P =x Q ,所以PQ ⊥x 轴.y P +y Q =4y 02y0−x 0+2+4y 02y 0+x 0+2=4y 0(4y 0+4)(2y 0−x 0+2)(2y 0+x 0+2)=4y 0(4y 0+4)(2y 0+2)2−x 02=2.故PQ 中点在定直线y =1上.从上边可以看出点B 在PQ 的垂直平分线上,所以|BP|=|BQ|, 所以△BPQ 为等腰三角形.【解析】(Ⅰ)由题{ca=√32,ab =2,a 2=b 2+c 2.,求出a ,b ,即可得到椭圆方程.(II)解法1,设直线A 2M 方程为y =k(x −2)(k ≠0且k ≠±12),直线A 1B 方程为y =12x +1,通过联立直线与椭圆方程组,求出M 坐标,Q 坐标,推出|BP|=|BQ|,即可证明△BPQ 为等腰三角形.(x−2),解法2,设M(x0,y0)(x0≠±2,y0≠±1)则x02+4y02=4.直线A2M方程为y=y0x0−2x+1.通过联立直线与椭圆方程组,求出P,Q坐标,转化推出|BP|=直线A1B方程为y=12|BQ|,得到△BPQ为等腰三角形.本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,考查转化思想以及计算能力,是难题.21.【答案】解:(Ⅰ)①数列{a n}具有“性质Ψ(2)”;②数列{a n}不具有“性质Ψ(2)”.(Ⅱ)证明:先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n−1+a2n=2a n,又因为a n+1≥a n,所以0≤a2n−a n=a n−a2n−1≤0,进而有a n=a2n结合a n+1≥a n有a n=a n+1=⋯=a2n,即“数列{a n}为常数列”;再证“必要性”:若“数列{a n}为常数列”,则有a2n−1+a2n=2a1=2a n,即“数列{a n}具有“性质Ψ(2)”.(Ⅲ)首先证明:a n+1−a n≥2.因为{a n}具有“性质Ψ(4)”,所以a2n−1+a2n=4a n.当n=1时,有a2=3a1=3.又因为a2n−1,a2n,a n∈N∗,且a2n>a2n−1,所以有a2n≥2a n+1,a2n−1≤2a n−1,进而有2a n+1≤a2n≤a2n+1−1≤2a n+1−2,所以2(a n+1−a n)≥3,结合a n+1,a n∈N∗可得:a n+1−a n≥2.然后利用反证法证明:a n+1−a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N∗满足:a2k+1−a2k≥3或a2k+2−a2k+1≥3,进而有4(a k+1−a k)=(a2k+2+a2k+1)−(a2k+a2k−1)=(a2k+2−a2k)+(a2k+1−a2k−1)=[(a2k+2−a2k+1)+(a2k+1−a2k)]+[(a2k+1−a2k)+(a2k−a2k−1)]≥12.又因为a k+1−a k∈N∗,所以a k+1−a k≥3依此类推可得:a2−a1≥3,矛盾,所以有a n+1−a n≤2.综上有:a n+1−a n=2,结合a1=1可得a n=2n−1,经验证,该通项公式满足a2n−1+a2n=4a n,所以:a n=2n−1.【解析】(Ⅰ)①②利用已知条件及其定义解验证判断出结论.(Ⅱ)先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n−1+a2n=2a n,根据a n+1≥a n,可得0≤a2n−a n=a n−a2n−1≤0,进而有a n=a2n,结合a n+1≥a n即可证明结论.再证“必要性”:若“数列{a n}为常数列”,容易验证a2n−1+a2n=2a1= 2a n,即可证明.(Ⅲ)首先证明:a n+1−a n≥2.根据{a n}具有“性质Ψ(4)”,可得a2n−1+a2n=4a n.当n=1时,有a2=3a1=3.由a2n−1,a2n,a n∈N∗,且a2n>a2n−1,可得a2n≥2a n+1,a2n−1≤2a n−1,进而有2a n+1≤a2n≤a2n+1−1≤2a n+1−2,可得2(a n+1−a n)≥3,可得:a n+1−a n≥2.然后利用反证法证明:a n+1−a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N∗满足:a2k+1−a2k≥3或a2k+2−a2k+1≥3,进而有4(a k+1−a k)=(a2k+2+ a2k+1)−(a2k+a2k−1)=[(a2k+2−a2k+1)+(a2k+1−a2k)]+[(a2k+1−a2k)+(a2k−a2k−1)]≥12.又因为a k+1−a k∈N∗,可得a k+1−a k≥3,依此类推可得:a2−a1≥3,矛盾.综上有:a n+1−a n=2,结合a1=1可得a n=2n−1,本题考查了新定义、等差数列的通项公式、数列递推关系、反证法、转化方法、方程以不等式的性质,考查了推理能力与计算能力,属于难题.。
2020年北京市海淀区高考数学一模试卷 (解析版)

2020年北京市海淀区高考数学一模试卷一、选择题(共10小题)1.在复平面内,复数i (2﹣i )对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合A ={x |0<x <3},A ∩B ={1},则集合B 可以是( ) A .{1,2} B .{1,3} C .{0,1,2} D .{1,2,3}3.已知双曲线x 2−y 2b2=1(b >0)的离心率为√5,则b 的值为( ) A .1B .2C .3D .44.已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .b ﹣a <c +aB .c 2<abC .c b>caD .|b |c <|a |c5.在(1x−2x )6的展开式中,常数项为( )A .﹣120B .120C .﹣160D .1606.如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚动到圆M '时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3π2,则点M '到直线BA '的距离为( )A .1B .√32C .√22D .127.已知函数f (x )=|x ﹣m |与函数g (x )的图象关于y 轴对称.若g (x )在区间(1,2)内单调递减,则m 的取值范围为( ) A .[﹣1,+∞)B .(﹣∞,﹣1]C .[﹣2,+∞)D .(﹣∞,﹣2]8.某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为( )A .√5B .2√2C .2√3D .√139.若数列{a n }满足a 1=2,则“∀p ,r ∈N *,a p +r =a p a r ”是“{a n }为等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.形如22n+1(n 是非负整数)的数称为费马数,记为F n .数学家费马根据F 0,F 1,F 2,F 3,F 4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F 5不是质数,那么F 5的位数是( )(参考数据:lg 2≈0.3010) A .9B .10C .11D .12二、填空题共5小题,每小题5分,共25分.11.已知点P (1,2)在抛物线C :y 2=2px 上,则抛物线C 的准线方程为 . 12.在等差数列{a n }中,a 1=3,a 2+a 5=16,则数列{a n }的前4项的和为 .13.已知非零向量a →,b →满足|a →|=|a →−b →|,则(a →−12b →)•b →= .14.在△ABC 中,AB =4√3,∠B =π4,点D 在边BC 上,∠ADC =2π3,CD =2,则AD = ;△ACD 的面积为 .15.如图,在等边三角形ABC 中,AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9; ③关于x 的方程f (x )=kx +3最多有5个实数根. 其中,所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16.如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,AB=BB1=2BC=2,BC1=√3,点E为A1C1的中点.(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)求二面角A﹣BC﹣E的大小.17.已知函数f(x)=2cos2ω1x+sinω2x.(Ⅰ)求f(0)的值;(Ⅱ)从①ω1=1,ω2=2;②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f(x)在[−π2,π6]上的最小值,并直接写出函数f(x)的一个周期.18.科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.如图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).(Ⅰ)从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(Ⅱ)从2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;(Ⅲ)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.19.已知函数f(x)=e x+ax.(Ⅰ)当a=﹣1时,①求曲线y=f(x)在点(0,f(0))处的切线方程;②求函数f(x)的最小值;(Ⅱ)求证:当a∈(﹣2,0)时,曲线y=f(x)与y=1﹣lnx有且只有一个交点.20.已知椭圆C:x2a+y2b=1(a>b>0)的离心率为√32,A1(﹣a,0),A2(a,0),B(0,b),△A1BA2的面积为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设M是椭圆C上一点,且不与顶点重合,若直线A1B与直线A2M交于点P,直线A1M与直线A2B交于点Q.求证:△BPQ为等腰三角形.21.已知数列{a n}是由正整数组成的无穷数列.若存在常数k∈N*,使得a2n﹣1+a2n=ka n对任意的n∈N*成立,则称数列{a n}具有性质Ψ(k).(Ⅰ)分别判断下列数列{a n}是否具有性质Ψ(2);(直接写出结论)①a n=1;②a n=2n.(Ⅱ)若数列{a n}满足a n+1≥a n(n=1,2,3,…),求证:“数列{a n}具有性质Ψ(2)”是“数列{a n}为常数列”的充分必要条件;(Ⅲ)已知数列{a n}中a1=1,且a n+1>a n(n=1,2,3,…).若数列{a n}具有性质Ψ(4),求数列{a n}的通项公式.参考答案一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,复数i (2﹣i )对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限. 解:∵复数z =i (2﹣i )=﹣i 2+2i =1+2i ∴复数对应的点的坐标是(1,2) 这个点在第一象限, 故选:A .【点评】本题考查复数的代数表示法及其几何意义,本题解题的关键是写成标准形式,才能看出实部和虚部的值.2.已知集合A ={x |0<x <3},A ∩B ={1},则集合B 可以是( ) A .{1,2}B .{1,3}C .{0,1,2}D .{1,2,3}【分析】根据A ={x |0<x <3},A ∩B ={1},即可得出集合B 可能的情况. 解:∵A ={x |0<x <3},A ∩B ={1}, ∴集合B 可以是{1,3}. 故选:B .【点评】本题考查了描述法、列举法的定义,交集的定义及运算,考查了计算能力,属于基础题. 3.已知双曲线x 2−y 2b2=1(b >0)的离心率为√5,则b 的值为( ) A .1B .2C .3D .4【分析】利用双曲线的离心率公式,列出方程,求解b 即可. 解:双曲线x 2−y 2b2=1(b >0)的离心率为√5,可得√b 2+11=√5,解得b =2,故选:B .【点评】本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.4.已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .b ﹣a <c +aB .c 2<abC .cb>caD .|b |c <|a |c【分析】法1:根据数轴得到c <b <a <0且|c |>|b |>|a |,结合不等式基本性质逐一进行判断即可;法2:用特值法带入验证即可.解:(法1)根据数轴可得c <b <a <0且|c |>|b |>|a |,对于A :因为c <b ,a <0,所以c +a <c ,b ﹣a >b ,则c +a <c <b ﹣a ,即c +a <b ﹣a ,故A 错误;对于B :因为c <b <a <0,|c |>|b |>|a |,所以c 2>b 2>a 2,且b 2>ab ,所以c 2>b 2>ab ,则c 2>ab ,故B 错误;对于C :因为b <a <0,所以1b>1a,则cb<ca,故C 错误;对于D :因为|b |>|a |,且c <0,所以|b |c <|a |c ,故D 正确, (法2)不妨令c =﹣5,b =﹣4,a =﹣1,则c +a =﹣6<b ﹣a =﹣3,故A 错误;c 2=25>ab =4,故B 错误;cb =54<c a=5,故C错误; 故选:D .【点评】本题考查不等式的相关应用,考查合情推理,属于中档题. 5.在(1x −2x )6的展开式中,常数项为( )A .﹣120B .120C .﹣160D .160【分析】先求出通项,然后令x 的指数为零即可.解:由题意得:T k+1=(−2)k C 6k x2k ﹣6, 令2k ﹣6=0得k =3,故常数项为T 4=(−2)3C 63=−160. 故选:C .【点评】本题考查二项式展开式通项的应用和学生的运算能力,属于基础题. 6.如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚动到圆M '时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3π2,则点M '到直线BA '的距离为( )A .1B .√32C .√22D .12【分析】根据条件可得圆旋转了34个圆,作图可得到△A 'M 'B 是等腰直角三角形,进而可求得M '到A 'M 的距离.解:根据条件可知圆周长=2π,因为BA =32π=34×2π,故可得A ’位置如图:∠A 'M 'B =90°,则△A 'M 'B 是等腰直角三角形,则M '到A 'M 的距离d =√22r =√22,故选:C .【点评】本题考查点到直线的距离,考查圆旋转的长度求法,数中档题.7.已知函数f (x )=|x ﹣m |与函数g (x )的图象关于y 轴对称.若g (x )在区间(1,2)内单调递减,则m 的取值范围为( ) A .[﹣1,+∞)B .(﹣∞,﹣1]C .[﹣2,+∞)D .(﹣∞,﹣2]【分析】根据题意,分析可得f (x )在区间(﹣2,﹣1)上递增,将f (x )写成分段函数的形式,分析可得f (x )在区间(m ,+∞)上为增函数,据此可得m 的取值范围. 解:根据题意,函数f (x )=|x ﹣m |与函数g (x )的图象关于y 轴对称.若g (x )在区间(1,2)内单调递减,则f (x )在区间(﹣2,﹣1)上递增,而f (x )=|x ﹣m |={x −m ,x ≥m−x +m ,x <m ,在区间(m ,+∞)上为增函数,则有m ≤﹣2,即m 的取值范围为(﹣∞,﹣2]; 故选:D .【点评】本题考查函数的单调性,涉及函数之间的对称性、不等式的解法,属于基础题.8.某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为()A.√5B.2√2C.2√3D.√13【分析】首先把三视图转换为直观图,进一步求出最大棱长.解:根据几何体的三视图可得直观图为:该几何体为四棱锥体,如图所示:所以最长的棱长AB=√22+22+22=2√3.故选:C.【点评】本题考查的知识要点:三视图和直观图形之间的转换,几何体的棱长的求法和应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.若数列{a n}满足a1=2,则“∀p,r∈N*,a p+r=a p a r”是“{a n}为等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用等比数列的定义通项公式即可判断出结论.解:“∀p,r∈N*,a p+r=a p a r”,取p=n,r=1,则a n+1=2a n,∴{a n}为等比数列.反之不成立.{a n}为等比数列,则a p+r=2×q p+r﹣1,a p a r=22•q p+r﹣2,只有q=2时才能成立.∴数列{a n}满足a1=2,则“∀p,r∈N*,a p+r=a p a r”是“{a n}为等比数列”的充分不必要条件..故选:A.【点评】本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.10.形如22n+1(n是非负整数)的数称为费马数,记为F n.数学家费马根据F0,F1,F2,F3,F4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F5不是质数,那么F5的位数是()(参考数据:lg2≈0.3010)A.9B.10C.11D.12【分析】根据所给定义表示出F5=109.632×109,进而即可判断出其位数.解:根据题意,F5=225+1=232+1≈232=10lg232=1032lg2≈1032×0.3010=109.632=100.632×109,因为1<100.632<10,所以F5的位数是10.故选:B.【点评】本题考查指对数运算,考查学生阅读理解能力,属于中档题.二、填空题共5小题,每小题5分,共25分.11.已知点P(1,2)在抛物线C:y2=2px上,则抛物线C的准线方程为x=﹣1.【分析】把点P的坐标代入抛物线的方程可求得p,而准线方程为x=−p2,从而得解.解:把点P(1,2)代入抛物线方程有,4=2p,∴p=2,∴抛物线的准线方程为x=−p2=−1.故答案为:x=﹣1.【点评】本题考查抛物线的方程、准线方程等,考查学生的运算能力,属于基础题.12.在等差数列{a n}中,a1=3,a2+a5=16,则数列{a n}的前4项的和为24.【分析】利用等差数列的通项公式求和公式即可得出.解:设等差数列{a n}的公差为d,∵a1=3,a2+a5=16,∴2×3+5d=16,解得d=2.则数列{a n}的前4项的和=4×3+4×32×2=24.故答案为:24.【点评】本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.13.已知非零向量a →,b →满足|a →|=|a →−b →|,则(a →−12b →)•b →= 0 .【分析】把所给条件平方整理得到a →•b →=12b →2;代入数量积即可求解结论.解:因为非零向量a →,b →满足|a →|=|a →−b →|,∴a →2=a →2−2a →•b →+b →2⇒a →•b →=12b →2;则(a →−12b →)•b →=a →⋅b →−12b →2=0. 故答案为:0.【点评】本题考查向量的数量积以及模长的应用,考查向量的表示以及计算,考查计算能力.14.在△ABC 中,AB =4√3,∠B =π4,点D 在边BC 上,∠ADC =2π3,CD =2,则AD = 4√2 ;△ACD 的面积为 2√6 .【分析】先根据正弦定理求得AD ,进而求得三角形的面积. 解:如图;因为在△ABC 中,AB =4√3,∠B =π4,点D 在边BC 上,∠ADC =2π3,CD =2, 所以:ADsin∠ABD =ABsin∠ADB⇒AD =4√3×sin π4sin π3=4√2; S △ACD =12•AD •CD •sin ∠ADC =12×4√2×2×sin 2π3=2√6; 故答案为:4√2,2√6.【点评】本题主要考查正弦定理以及三角形的面积,属于基础题目.15.如图,在等边三角形ABC 中,AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9; ③关于x 的方程f (x )=kx +3最多有5个实数根. 其中,所有正确结论的序号是 ①② .【分析】写出函数解析式并作出图象,数形结合进行逐一分析解:由题可得函数f (x )={3+(x −3)2,0≤x <63+(x −9)2,6≤x <123+(x −15)2,12≤x ≤18,作出图象如图:则当点P 与△ABC 顶点重合时,即x =0,6,12,18时,f (x )取得最大值12,故①正确;又f (x )=f (18﹣x ),所以函数f (x )的对称轴为x =9,故②正确;由图象可得,函数f (x )图象与y =kx +3的交点个数为6个,故方程有6个实根,故③错误.故答案为:①②.【点评】本题考查命题的真假性判断,涉及函数的应用、图象与性质,数形结合思想,逻辑推理能力,属于难题三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16.如图,在三棱柱ABC ﹣A 1B 1C 1中,AB ⊥平面BB 1C 1C ,AB =BB 1=2BC =2,BC 1=√3,点E 为A 1C 1的中点.(Ⅰ)求证:C 1B ⊥平面ABC ;(Ⅱ)求二面角A ﹣BC ﹣E 的大小.【分析】(Ⅰ)证明AB ⊥C 1B .CB ⊥C 1B .利用直线与平面垂直的判断定理证明C 1B ⊥平面ABC .(Ⅱ)以B 为原点建立空间直角坐标系B ﹣xyz .求出平面BCE 的法向量,平面ABC 的法向量,利用空间向量的数量积求解二面角的大大小即可, 【解答】(Ⅰ)证明:因为AB ⊥平面BB 1C 1C ,C 1B ⊂平面BB 1C 1C 所以AB ⊥C 1B .在△BCC 1中,BC =1,BC 1=√3,CC 1=2,所以BC 2+BC 12=CC 12.所以CB ⊥C 1B .因为AB ∩BC =B ,AB ,BC ⊂平面ABC , 所以C 1B ⊥平面ABC .(Ⅱ)解:由(Ⅰ)知,AB ⊥C 1B ,BC ⊥C 1B ,AB ⊥BC , 如图,以B 为原点建立空间直角坐标系B ﹣xyz .则B (0,0,0),E(−12,√3,1),C (1,0,0).BC →=(1,0,0),BE →=(−12,√3,1). 设平面BCE 的法向量为n →=(x ,y ,z ), 则{n →⋅BC →=0n →⋅BE →=0, 即{x =0,−12x +√3y +z =0. 令y =√3则x =0,z =﹣3, 所以n →=(0,√3,−3).又因为平面ABC 的法向量为m →=(0,1,0),所以cos <m →,n →>=m →⋅n →|m →||n →|=12.由题知二面角A ﹣BC ﹣E 为锐角,所以其大小为π3.【点评】本题考查二面角的平面角的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及逻辑推理能力计算能力,是中档题. 17.已知函数f (x )=2cos 2ω1x +sin ω2x . (Ⅰ)求f (0)的值;(Ⅱ)从①ω1=1,ω2=2;②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f (x )在[−π2,π6]上的最小值,并直接写出函数f (x )的一个周期.【分析】(Ⅰ)由函数f (x )的解析式求出f (0)的值; (Ⅱ)选择条件①时f (x )的一个周期为π,利用三角恒等变换化简f (x ),再求f (x )在[−π2,π6]的最小值. 选择条件②时f (x )的一个周期为2π,化简f (x ),利用三角函数的性质求出f (x )在[−π2,π6]的最小值. 解:(Ⅰ)由函数f (x )=2cos 2ω1x +sin ω2x , 则f (0)=2cos 20+sin0=2;(Ⅱ)选择条件①,则f (x )的一个周期为π; 由f (x )=2cos 2x +sin2x =(cos2x +1)+sin2x=√2(√22sin2x +√22cos2x)+1=√2sin(2x +π4)+1;因为x ∈[−π2,π6],所以2x +π4∈[−3π4,7π12];所以−1≤sin(2x+π4)≤1,所以1−√2≤f(x)≤1+√2;当2x+π4=−π2,即x=−3π8时,f(x)在[−π2,π6]取得最小值为1−√2.选择条件②,则f(x)的一个周期为2π;由f(x)=2cos2x+sin x=2(1﹣sin2x)+sin x=−2(sinx−14)2+178;因为x∈[−π2,π6],所以sinx∈[−1,12];所以当sin x=﹣1,即x=−π2时,f(x)在[−π2,π6]取得最小值为﹣1.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了转化与运算能力,是基础题.18.科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.如图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).(Ⅰ)从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(Ⅱ)从2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;(Ⅲ)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.【分析】(Ⅰ)按照古典概型概率计算公式计算即可;(Ⅱ)显然这是一个超几何分布,按照超几何分布的概率计算方法,分别算出随机变量X取0,1,2时的概率,然后画出分布列,即可求期望;(Ⅲ)结合折线图从“每年的研发投入”“研发投入占营收比”的变化来分析即可.解:(Ⅰ)设事件A为“从2010年至2019年中随机选取一年,研发投入占当年总营收的百分比超过10%”,从2010年至2019年一共10年,其中研发投入占当年总营收的百分比超过10%有9年,所以P(A)=9 10.(Ⅱ)由图表信息,从2010年至2019年10年中有5年研发投入超过500亿元,所以X 的所有可能取值为0,1,2.且P(X=0)=C52C102=29;P(X=1)=C51C51C102=59;P(X=2)=C52C102=29.所以X的分布列为:X012P295929故X的期望E(X)=0×29+1×59+2×29=1.(Ⅲ)从两个方面可以看出,该公式是比较重视研发的:一、从2010年至2019年,每年的研发投入是逐年增加的(2018年除外),并且增加的幅度总体上逐渐加大;二、研发投入占营收的比例总体上也是逐渐增加的,虽然2015年往后有些波动,但是总体占比还是较高的.【点评】本题考查离散型随机变量的分布列、期望的求法,注意对题意的理解需到位、准确.同时考查学生的数学建模的素养,属于中档题.19.已知函数f(x)=e x+ax.(Ⅰ)当a=﹣1时,①求曲线y=f(x)在点(0,f(0))处的切线方程;②求函数f(x)的最小值;(Ⅱ)求证:当a∈(﹣2,0)时,曲线y=f(x)与y=1﹣lnx有且只有一个交点.【分析】(Ⅰ)①将a=﹣1带入,求导,求出切线斜率及切点,利用点斜式方程即得解;②求出函数函数f(x)的单调性情况,进而得出最值;(Ⅱ)即证函数g(x)=e x+ax+lnx﹣1仅有一个零点,利用导数可知函数g(x)在区间(0,+∞)上单调递增,结合零点存在性定理即得证.解:(Ⅰ)①当a=﹣1时,f(x)=e x﹣x,则f'(x)=e x﹣1.所以f'(0)=0.又f(0)=1,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=1;②令f'(x)=0,得x=0,此时f'(x),f(x)随x的变化如下:x(﹣∞,0)0(0,+∞)f'(x)﹣0+f(x)↘极小值↗可知f(x)min=f(0)=1,函数f(x)的最小值为1.(Ⅱ)证明:由题意可知,x∈(0,+∞),令g(x)=e x+ax+lnx﹣1,则g′(x)=e x+1x+a,由(Ⅰ)中可知e x﹣x≥1,故e x≥1+x,因为a∈(﹣2,0),则g′(x)=e x+1x+a≥(x+1)+1x+a≥2√x⋅1x+a+1=3+a>0,所以函数g(x)在区间(0,+∞)上单调递增,因为g(1e )=e1e+ae−2<e12−2<0,又因为g(e)=e e+ae>e2﹣2e>0,所以g(x)有唯一的一个零点.即函数y=f(x)与y=1﹣lnx有且只有一个交点.【点评】本题考查导数的几何意义,利用导数研究函数的最值,函数的零点等问题,考查运算求解能力及推理论证能力,属于中档题. 20.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,A 1(﹣a ,0),A 2(a ,0),B(0,b ),△A 1BA 2的面积为2. (Ⅰ)求椭圆C 的方程;(Ⅱ)设M 是椭圆C 上一点,且不与顶点重合,若直线A 1B 与直线A 2M 交于点P ,直线A 1M 与直线A 2B 交于点Q .求证:△BPQ 为等腰三角形. 【分析】(Ⅰ)由题{ ca =√32,ab =2,a 2=b 2+c 2.,求出a ,b ,即可得到椭圆方程.( II )解法1,设直线A 2M 方程为y =k(x −2)(k ≠0且k ≠±12),直线A 1B 方程为y =12x +1,通过联立直线与椭圆方程组,求出M 坐标,Q 坐标,推出|BP |=|BQ |,即可证明△BPQ 为等腰三角形.解法2,设M (x 0,y 0)(x 0≠±2,y 0≠±1)则x 02+4y 02=4.直线A 2M 方程为y =y0x 0−2(x −2),直线A 1B 方程为y =12x +1.通过联立直线与椭圆方程组,求出P ,Q 坐标,转化推出|BP |=|BQ |,得到△BPQ 为等腰三角形. 解:(Ⅰ)由题{ ca =√32,ab =2,a 2=b 2+c 2. 解得{a =2,b =1.所以椭圆方程为x 24+y 2=1.( II )解法1证明:设直线A 2M 方程为y =k(x −2)(k ≠0且k ≠±12),直线A 1B 方程为y =12x +1 由{y =k(x −2),y =12x +1.解得点P(4k+22k−1,4k 2k−1). 由{y =k(x −2),x 24+y 2=1.得(4k +1)x 2﹣16k 2x +16k 2﹣4=0,则2x M =16k 2−44k 2+1.所以x M =8k 2−24k 2+1,y M =−4k4k 2+1.即M(8k 2−24k 2+1,−4k 4k 2+1).k A 1M =−4k 4k 2+18k 2−24k 2+1+2=−14k .于是直线A 1M 的方程为y =−14k (x +2),直线A 2B 的方程为y =−12x +1. 由{y =−14k (x +2)y =−12x +1解得点Q(4k+22k−1,−22k−1). 于是x P =x Q ,所以PQ ⊥x 轴. 设PQ 中点为N ,则N点的纵坐标为4k 2k−1+−22k−12=1.故PQ 中点在定直线y =1上.从上边可以看出点B 在PQ 的垂直平分线上,所以|BP |=|BQ |, 所以△BPQ 为等腰三角形. 解法2证明:设M (x 0,y 0)(x 0≠±2,y 0≠±1)则x 02+4y 02=4.直线A 2M 方程为y =yx 0−2(x −2),直线A 1B 方程为y =12x +1.由{y =y0x 0−2(x −2),y =12x +1.解得点P(2x 0+4y 0−42y 0−x 0+2,4y2y 0−x 0+2). 直线A 1M 方程为y =yx 0+2(x +2),直线A 2B 方程为y =−12x +1. 由{y =yx 0+2(x +2),y =−12x +1.解得点Q(2x 0−4y 0+42y 0+x 0+2,4y02y 0+x 0+2).x P −x Q =2x 0+4y 0−42y 0−x 0+2−2x 0−4y 0+42y 0+x 0+2=2(x 0+2y 0−2)(2y 0+x 0+2)−2(x 0−2y 0+2)(2y 0−x 0+2)(2y 0−x 0+2)(2y 0+x 0+2)=2[(x 0+2y 0)2−4)−(4−(x 0−2y 0)2](2y 0−x 0+2)(2y 0+x 0+2)=0.于是x P =x Q ,所以PQ ⊥x轴.y P +y Q =4y 02y 0−x 0+2+4y2y 0+x 0+2=4y0(4y0+4)(2y0−x0+2)(2y0+x0+2)=4y0(4y0+4)(2y0+2)2−x02=2.故PQ中点在定直线y=1上.从上边可以看出点B在PQ的垂直平分线上,所以|BP|=|BQ|,所以△BPQ为等腰三角形.【点评】本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,考查转化思想以及计算能力,是难题.21.已知数列{a n}是由正整数组成的无穷数列.若存在常数k∈一、选择题*,使得a2n﹣1+a2n =ka n对任意的n∈N*成立,则称数列{a n}具有性质Ψ(k).(Ⅰ)分别判断下列数列{a n}是否具有性质Ψ(2);(直接写出结论)①a n=1;②a n=2n.(Ⅱ)若数列{a n}满足a n+1≥a n(n=1,2,3,…),求证:“数列{a n}具有性质Ψ(2)”是“数列{a n}为常数列”的充分必要条件;(Ⅲ)已知数列{a n}中a1=1,且a n+1>a n(n=1,2,3,…).若数列{a n}具有性质Ψ(4),求数列{a n}的通项公式.【分析】(Ⅰ)①②利用已知条件及其定义解验证判断出结论.(Ⅱ)先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n﹣1+a2n=2a n,根据a n+1≥a n,可得0≤a2n﹣a n=a n﹣a2n﹣1≤0,进而有a n=a2n,结合a n+1≥a n即可证明结论.再证“必要性”:若“数列{a n}为常数列”,容易验证a2n﹣1+a2n=2a1=2a n,即可证明.(Ⅲ)首先证明:a n+1﹣a n≥2.根据{a n}具有“性质Ψ(4)”,可得a2n﹣1+a2n=4a n.当n=1时,有a2=3a1=3.由a2n−1,a2n,a n∈N∗,且a2n>a2n﹣1,可得a2n≥2a n+1,a2n ﹣1≤2a n﹣1,进而有2a n+1≤a2n≤a2n+1﹣1≤2a n+1﹣2,可得2(a n+1﹣a n)≥3,可得:a n+1﹣a n≥2.然后利用反证法证明:a n+1﹣a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N*满足:a2k+1﹣a2k≥3或a2k+2﹣a2k+1≥3,进而有4(a k+1﹣a k)=(a2k+2+a2k+1)﹣(a2k+a2k ﹣1)=[(a2k+2﹣a2k+1)+(a2k+1﹣a2k)]+[(a2k+1﹣a2k)+(a2k﹣a2k﹣1)]≥12.又因为a k+1−a k∈N∗,可得a k+1﹣a k≥3,依此类推可得:a2﹣a1≥3,矛盾.综上有:a n+1﹣a n=2,结合a1=1可得a n=2n﹣1,解:(Ⅰ)①数列{a n}具有“性质Ψ(2)”;②数列{a n}不具有“性质Ψ(2)”.(Ⅱ)证明:先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n﹣1+a2n=2a n,又因为a n+1≥a n,所以0≤a2n﹣a n=a n﹣a2n﹣1≤0,进而有a n=a2n结合a n+1≥a n有a n=a n+1=…=a2n,即“数列{a n}为常数列”;再证“必要性”:若“数列{a n}为常数列”,则有a2n﹣1+a2n=2a1=2a n,即“数列{a n}具有“性质Ψ(2)”.(Ⅲ)首先证明:a n+1﹣a n≥2.因为{a n}具有“性质Ψ(4)”,所以a2n﹣1+a2n=4a n.当n=1时,有a2=3a1=3.又因为a2n−1,a2n,a n∈N∗,且a2n>a2n﹣1,所以有a2n≥2a n+1,a2n﹣1≤2a n﹣1,进而有2a n+1≤a2n≤a2n+1﹣1≤2a n+1﹣2,所以2(a n+1﹣a n)≥3,结合a n+1,a n∈N∗可得:a n+1﹣a n≥2.然后利用反证法证明:a n+1﹣a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N*满足:a2k+1﹣a2k≥3或a2k+2﹣a2k+1≥3,进而有4(a k+1﹣a k)=(a2k+2+a2k+1)﹣(a2k+a2k﹣1)=(a2k+2﹣a2k)+(a2k+1﹣a2k﹣1)=[(a2k+2﹣a2k+1)+(a2k+1﹣a2k)]+[(a2k+1﹣a2k)+(a2k﹣a2k﹣1)]≥12.又因为a k+1−a k∈N∗,所以a k+1﹣a k≥3依此类推可得:a2﹣a1≥3,矛盾,所以有a n+1﹣a n≤2.综上有:a n+1﹣a n=2,结合a1=1可得a n=2n﹣1,经验证,该通项公式满足a2n﹣1+a2n=4a n,所以:a n=2n﹣1.【点评】本题考查了新定义、等差数列的通项公式、数列递推关系、反证法、转化方法、方程以不等式的性质,考查了推理能力与计算能力,属于难题.。
2020届 海淀区 高三一模 语文试题 参考答案

2020北京海淀高三一模语文
参考答案
一、本大题共5小题,共18分。
1.(3分)B
2.(3分)C
3.(4分)
参考答案:
最有效的方法是为北京雨燕佩戴光敏地理定位仪。
因为:
①光敏定位仪重量很轻,适合佩戴在体重较轻的北京雨燕身上;
②光敏定位仪续航时间长,适合远距离、长时间迁徙的北京雨燕;
③光敏定位仪需要回收同一个体的追踪器获取数据,适合多年往返同一地点、延用旧巢的北京雨燕;
④科学家通过光敏定位仪记录的信息,可计算出鸟迁徙的准确路线、飞行速度和确切越冬地,该方法适合飞往远方过冬的北京雨燕。
【评分标准】方法1分;理由分析一点1分,答出三点即可;其它答案视合理程度给分。
4.(2分)A
5.(6分) 参考答案:
1 / 5。
2020北京海淀区高三一模语文试题答案

海淀区高三年级第二学期语文期中练习答案2015.4 一、本大题共7小题,共27分。
1.(3分)“清明节”既是天文学上的重要时间节点——节气,又是入选“国家级非物质文化遗产”名录的传统节日。
如全抄第一段或答“拥有自然科学和民俗学的双重身份”得2分。
2.(3分)“清明”吸纳融合了寒食、上巳二节的习俗,从节气演变为兼有“节日”内涵的文化符号。
如答“上巳节与寒食、清明合在一起了”得2分。
3.(3分)立春立夏秋分(每点1分)4.(3分)C5.(6分)第一问:清明时节,我国江南、华南上空冷暖空气往来频繁、相持交锋,因此多雨,北方也有降雨概率。
(2分)第二问:①从生理层面看,阴雨连绵之时,人体分泌的松果体激素增加,促进神经兴奋和细胞代谢的甲状腺素、肾上腺素减少,故清明雨令人忧郁不悦。
(2分)②从心理层面看,心怀悲戚的人会赋予清明细雨悲凉之意,清明冷雨又加剧悲凉的心理体验。
(2分)(意思对即可)6.(3分)清明时节,古人有亲近自然、游艺踏青的习俗。
(意思对即可)7. (6分)要点:清明节踏青、修禊等习俗反映了人们感受生命和谐的心理需求和张扬生命活力的愿望;(2分)清明节祭奠祖先先贤的活动包含了中华民族的敬祖意识、感恩心理、天人观念以及人们以懿行嘉言留名传后、追求生命清明的理想;(2分)人们对安定祥和的社会生活、君圣臣贤(官清吏廉)的清明之治的渴求。
(2分)(意思对即可)二、本大题共11小题,共42分。
8.(3分)C9.(3分)①赞扬美好的;②美好的心灵;③喜欢(爱好)阅读10.(4分)(1)穷神尽相:《水浒》描写人、事、物和日常生活细节,摹形传神,淋漓尽致。
(2分)(2)不可枚举:《儒林外史》刻画的人物数量多、类型多样(性情心术多样)。
(2分)11.(3分)A12.(3分)富贵非吾愿安能摧眉折腰事权贵使我不得开心颜(书写正确、规范、美观,笔画不清按错别字扣分。
每空1分,写错字、别字或漏字不给分)13.(6分)评分要点:观点鲜明1分,论据可靠(要结合名著内容)2分,分析合理3分。
2020年北京市海淀区高考数学一模试卷 (含答案解析)

2020年北京市海淀区高考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.已知复数z=−1+i,z是z的共轭复数,在复平面内,z所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知集合A={x|x2−4x<0},B={−1,3,7},则A∩B=()A. {−1}B. {3}C. {3,7}D. {−1,7}3.若a>1,则双曲线x2−y2=1的离心率的取值范围是()a2A. (√2,+∞)B. (√2,2)C. (1,√2)D. (1,2)4.下列叙述正确的是()A. 若|a|=a,则a>0B. 若a≠b,则|a|≠|b|C. 若|a|=|b|,则a=bD. 若a=−b,则|a|=|b|+1)5展开式中的常数项为()5.(x−1xA. 1B. 11C. −19D. 516.A为圆O:x2+y2=1上的点,B为直线l:x+y−2=0上的点,则线段AB长度的最小值为()A. √2B. 2C. √2−1D. 17.若函数f(x)=log2(x2−2ax+3)在区间(−∞,1]内单调递减,则a的取值范围是()A. [1,+∞)B. (1,+∞)C. [1,2)D. [1,2]8.某多面体的三视图如图所示,则该多面体中的最长棱的棱长为()A. 2B. 2√2C. √5D. 39.已知数列{a n}为等比数列,则“a1<a2<a3”是“数列{a n}单调递增”的A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件10.历史上,最伟大的数学家一直都热衷于寻找质数的“分布规律”,法国数学家马林⋅梅森就是研究质数的数学家中成就很高的一位,正因为他的卓越贡献,现在人们将形如“2p−1(p是质数)”的质数称为梅森数,迄今为止共发现了51个梅森数,前4个梅森数分别是22−1=3,23−1=7,25−1=31,27−1=127,3,7是1位数,31是2位数,127是3位数.已知第10个梅森数为289−1,则第10个梅森数的位数为(参考数据:lg2≈0.301)()A. 25B. 29C. 27D. 28二、填空题(本大题共5小题,共25.0分)11.已知抛物线y2=−2px过点M(−2,2),则p=____,准线方程是____.12.在等差数列{a n}中,a3+a5+2a10=4,则此数列的前13项的和等于______ .13.已知向量a⃗=(−2,1),b⃗ =(1,0),则|2a⃗−3b⃗ |=______ .14.已知,在△ABC中B=π,b=2,S▵ABC的最大值为________.315.若定义在R上的函数f(x)满足f(x+2)=f(x)且x∈[−1,1]时,f(x)=|x|,则方程f(x)=log3|x|的根的个数是_______.三、解答题(本大题共6小题,共85.0分)16.如图,三棱柱ABC−A1B1C1中,A1B⊥平面ABC,且AB⊥AC.(1)求证:AC⊥BB1;(2)若AB=AC=A1B=2,M为B1C1的中点,求二面角M−AB−A1的余弦值.17.已知函数f(x)=2√3sinxcosx+2cos2x−1(x∈R)]上的最大值和最小值;(Ⅰ)求函数f(x)的最小正周期及在区间[0,π2(Ⅱ)若f(x0)=65,x0∈[π4,π2],求cos2x0的值.18.面对美国的科技打压,《人民日报》评论指出:与其坐而“联想”,不如奋起“华为”。
2020年海淀区高三一模语文试题及答案(WORD版)

2020年海淀区高三年级第二学期阶段性测试语文试题2020 春本试卷共10页,150分。
考试时长150分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
一、本大题共5小题,共18分。
阅读下面的材料,完成1-5题。
材料一寒风凛冽的严冬,生活在北京的鸟类多是麻雀、喜鹊等留鸟。
到了春暖花开、草长莺飞的季节,京城的鸟会多起来,因为夏候鸟来了。
在众多的夏候鸟中,最著名的要数北京雨燕。
1870年,英国著名鸟类学家罗伯特•斯温侯在北京采集到了这种鸟的标本,并将其命名为“北京雨燕”。
北京雨燕翅膀呈细长而尖的镰刀形,尾羽有分叉,体重只有31-41克,体长169-184毫米。
成鸟的体羽多为黑褐色,喉部呈灰白色,胸腹部有白色细纵纹。
喙呈短三角形,口裂非常宽大,能够使它们在飞行中兜捕到大量农林害虫,包括蚊、蝇、虻等。
北京雨燕是典型的夏候鸟。
每年4月底,它们飞抵北京,繁殖、育雏,再于当年8月离开,飞往远方过冬。
它们具有超强的导航定向能力,常多年返回同一地点,有延用旧巢的习性。
北京雨燕具有高超的飞行本领,飞行速度可达每小时110-200公里。
在风雨到来之前,它们常常作超低空飞行表演,流矢一般掠地而过,成为天气变化的一种标志。
雨燕身形小巧,在高空飞行时很少扇翅,尖长的翅膀能提供强大的升力。
展开双翅时,雨燕能够长距离地滑翔;向内收起翅膀时,又能够高速冲刺追捕飞虫。
它们飞行技术高超,可是脚爪却很细弱,四趾向前,无法握住树枝,也就无法借此腾跃,要想飞起来,就只能在从高处向下落的过程中展翅飞翔。
这种生理结构特性决定了其迁徙到京城之后,会选择在高耸的城楼、高大的皇城建筑和古塔筑巢。
这些建筑飞檐翘角,梁、標、椽纵横交错,形成一个个“人造洞穴”,为雨燕提供了理想的集群繁殖之所和起飞滑翔的平台。
北京雨燕,是极少数以“北京"命名的野生动物之一。
春夏季节的黄昏,从太庙到雍和宫,从天安门到内外城的城门楼、箭楼,从天坛到十三陵,从通州的燃灯塔到海淀的慈寿寺塔,以及景山、颐和园等处的楼台亭阁,雨燕倾巢而出,伴随着此起彼伏的尖锐叫声,一道道黑色的剪影划过天空,成为古都北京引人注目的景观。
北京市海淀区2020届高三一模考试英语试题答案解析(40页)

北京市海淀区2020届高三一模考试英语试题英语试题第一部分:知识运用(共两节,45 分)第一节语法填空(共10 小题;每小题1.5 分,共15 分)阅读下列短文,根据短文内容填空。
在未给提示词的空白处仅填写1 个适当的单词,在给出提示词的空白处用括号内所给词的正确形式填空。
AAt 8, I started taking art lessons (1) (improve) my painting skills. However, later, I found that I focused too much on mastering different techniques. Eventually, I became more distressed when my expectations weren’t matched.So, in the 11th Grade, I returned to the basics. On (2) sketchbook I forced myself to draw whatever interested me. Over time, I have been released from the tight control. I have learned that a good painting is not about having perfect technique. In fact, all I need to do is trust my (3)(create) talents and find moments of joy in life.1.【答案】to improve【解析】本题考查非谓语做状语;提示词improve 为动词,句子中,前面的代词I 与名词lessons,都不能充当improve 的主语,所以improve 需要做非谓语。
按照三步式解题:1)其逻辑主语是I;2)improve 与逻辑主语之间是主动关系;3)且improve 动作发生在start taking 之后,故使用不定式。
2020 年北京市海淀区高三一模 英语试卷(带答案)

2020 年北京市海淀区高三一模英语考试逐题解析第一部分:知识运用(共两节,5 45 分)第一节语法填空(共10 小题;每小题 1.5 分,共15 分)阅读下列短文,根据短文内容填空。
在未给提示词的空白处仅填写1个适当的单词,在给出提示词的空白处用括号内所给词的正确形式填空。
AAt 8, I started taking art lessons (1) ________ (improve) my painting skills. However, later, I found that I focused too much on mastering different techniques. Eventually, I became more distressed when my expectations wer en’t matched.So, in the 11 th Grade, I returned to the basics. On (2) ________ sketchbook I forced myself to draw whatever interested me. Over time, I have been released from the tight control. I have learned that a good painting is not about having perfect technique. In fact, all I need to do is trust my (3) ________ (create) talents and find moments of joy in life.1.【答案】to improve【解析】本题考查非谓语做状语;提示词improve 为动词,句子中,前面的代词I 与名词lessons,都不能充当improve 的主语,所以improve 需要做非谓语。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届海淀区高三一模语文试题及答案2020.05.06一、本大题共5小题,共18分。
阅读下面的材料,完成1-5题。
材料一寒风凛冽的严冬,生活在北京的鸟类多是麻雀、喜鹊等留鸟。
到了春暖花开、草长莺飞的季节,京城的鸟会多起来,因为夏候鸟来了。
在众多的夏候鸟中,最著名的要数北京雨燕。
1870年,英国著名鸟类学家罗伯特•斯温侯在北京采集到了这种鸟的标本,并将其命名为“北京雨燕”。
北京雨燕翅膀呈细长而尖的镰刀形,尾羽有分叉,体重只有31-41克,体长169-184毫米。
成鸟的体羽多为黑褐色,喉部呈灰白色,胸腹部有白色细纵纹。
喙呈短三角形,口裂非常宽大,能够使它们在飞行中兜捕到大量农林害虫,包括蚊、蝇、虻等。
北京雨燕是典型的夏候鸟。
每年4月底,它们飞抵北京,繁殖、育雏,再于当年8月离开,飞往远方过冬。
它们具有超强的导航定向能力,常多年返回同一地点,有延用旧巢的习性。
北京雨燕具有高超的飞行本领,飞行速度可达每小时110-200公里。
在风雨到来之前,它们常常作超低空飞行表演,流矢一般掠地而过,成为天气变化的一种标志。
雨燕身形小巧,在高空飞行时很少扇翅,尖长的翅膀能提供强大的升力。
展开双翅时,雨燕能够长距离地滑翔;向内收起翅膀时,又能够高速冲刺追捕飞虫。
它们飞行技术高超,可是脚爪却很细弱,四趾向前,无法握住树枝,也就无法借此腾跃,要想飞起来,就只能在从高处向下落的过程中展翅飞翔。
这种生理结构特性决定了其迁徙到京城之后,会选择在高耸的城楼、高大的皇城建筑和古塔筑巢。
这些建筑飞檐翘角,梁、標、椽纵横交错,形成一个个“人造洞穴”,为雨燕提供了理想的集群繁殖之所和起飞滑翔的平台。
北京雨燕,是极少数以“北京"命名的野生动物之一。
春夏季节的黄昏,从太庙到雍和宫,从天安门到内外城的城门楼、箭楼,从天坛到十三陵,从通州的燃灯塔到海淀的慈寿寺塔,以及景山、颐和园等处的楼台亭阁,雨燕倾巢而出,伴随着此起彼伏的尖锐叫声,一道道黑色的剪影划过天空,成为古都北京引人注目的景观。
春燕衔泥、老燕哺雏的情景,沙燕风筝、2008年北京奥运会吉祥物之一“妮妮”的形象,也早已融入北京人的日常生活,融入北京文化之中了。
(取材于张正旺、王宁、崔爽等的相关文章)1. 根据材料一,下列表述不符合文意的一项是(3分)A. 口裂非常宽大、飞行技术高超,使得北京雨燕能够在空中飞行时捕食大量的害虫。
B. 导航定向能力强、能够预报天气变化,是以北京雨燕为代表的夏候鸟的典型特征。
C. 北京雨燕飞行本领强,与其体重较小且翅膀呈细长而尖的镰刀形等形体特点有关。
D. 北京雨燕选择在城楼、古塔等处筑巢,这些建筑物为其提供了居住、起飞的条件。
材料二要弄清迁徙的鸟都飞到哪里去了,来年飞回来的是不是同一群鸟等问题,就需要对其进行追踪。
通过了解它们的中转地、繁殖地和越冬地,我们就可以进一步研究候鸟的活动范围和迁徙规律,探明沿线有哪些不利因素,以便有针对性地采取保护措施。
鸟迁徙时常常经过一些固定地点,人们可以在这些地方集中观测鸟的种类、数量和迁徙方向,这就是定点调查法。
但这种方法只能预测鸟类可能的迁徙路线,无法准确获取相关信息,于是科学家研发了为鸟佩戴环志的追踪方法。
环志由金属材料制成,上有编码。
佩戴了环志的鸟再次被观察到时,研究人员根据编号就能识别出个体,通过比较同一只鸟两次或多次被观察到的时间、地点等信息,就能大致判断岀它迁徙的路线和飞行速度。
这种方法简单易行,成本低,应用比较广泛。
其缺点是需要积累的数据量大,两次甚至多次观察到同一只鸟有难度,开展跨地区、跨国界研究较为困难。
从20世纪80年代开始,随着卫星技术的发展,人们开始给鸟类佩戴信号发射器,从而实现了对鸟类全球范围的实时追踪。
现在,这种技术已普遍应用在对大中型鸟类的追踪上。
最小的GPS卫星定位仪重量约为5克,已经很轻了,但这对体重本来就小、还要动辄飞成千上万公里的候鸟来说,仍然是个大包袱,过重的负担会让鸟类的死亡率显著上升,目前科学界以物种平均体重的4%—5%来限制定位器的重量。
直到近年,光敏地理定位仪的出现,才使得对小型鸟类迁徙的精确定位和研究成为可能。
光敏定位仪具有重量轻、续航时间长、记录数据多等特性。
小的光敏定位仪重量不到1克,可以持续运行两年左右。
光敏定位仪佩戴在候鸟身上,可以记录周围环境光照强度的周期性变化。
待鸟迁徙结束,科学家回收定位仪,利用软件读取信息,来估测鸟类的地理位置。
经度值由日岀和日落时间的中间点确定,纬度值则由当天的日照时长计算得出。
这样便可计算出鸟迁徙的准确路线、飞行速度和确切越冬地。
这种方法的短板是没有卫星定位准确,无法实时反馈信息,而且只能通过回收同一个体的追踪器来获取被记录的数据。
(取材于付建平、金子兴、赵天昊等的相关文章)2.根据材料二,下列对追踪鸟类迁徙所用方法的分析与推断,不正确的一项是(3分)A. 运用定点调查的方法,即使投入大量的人力、物力,也很难保证调查效果。
B. 制作用于追踪候鸟迁徙的环志应选用耐磨损、耐腐蚀、质量轻的金属材料。
C. 卫星定位技术能对鸟类做全球实时追踪,却导致了鸟类死亡率的显著上升。
D. 光敏地理定位仪能够记录鸟迁徙时周围光照强度周期性变化的一系列数据。
3.如果要对北京雨燕的迁徙进行追踪,最有效的方法是什么?请根据材料一、材料二简要分析。
(4分)材料三监测数据显示,雨燕的迁飞路线几乎和“一带一路”重叠。
每年8月它们以北京为起点,经内蒙古方向往西北迁飞,从天山北部到达中亚地区,然后向南穿过阿拉伯半岛,于11月上旬到达非洲南部越冬。
北京雨燕迁徙路线的单程距离超过1.6万公里,全年迁徙距离在3.2万公里以上。
20世纪前期,北京雨燕数量曾达到鼎盛,有5万只之多。
从1950年开始,随着旧城改造和地铁修建,城门、城墙等先后被拆,北京雨燕栖息地迅速减少。
改革开放后,随着经济建设飞速发展,北京新建起许多以玻璃和钢筋水泥为材料的高楼大厦。
这些现代建筑没有给北京雨燕留下居住空间,而玻璃幕墙镜面反射天空,又会让雨燕迁飞时误认为前方开阔,撞向玻璃,每年都有不少雨燕因此伤亡。
同时北京湿地迅速减少,海淀多处稻田逐渐消失,南郊三海子等处的池塘面积大大缩小,雨燕的食物来源受到极大影响。
2014年7月,据中国观鸟会统计,北京雨燕数量锐减,仅剩2700多只。
近年来,市委、市政府领导一再强调要抓好生态修复,用生态的办法解决生态问题,把营造完整生态链作为北京生态建设高质量发展的重要部分,“要讲好雨燕的故事”“让城市能留得住雨燕、长耳号鸟等野生动物”。
2016年,北京市启动每年2200公顷的湿地恢复、新建项目,至2018年底,全市累计恢复、新建湿地6674公顷,预计“十三五"期间,要累计恢复、新建湿地1.1万公顷。
一批批萎缩湿地被唤醒,滋润了北京城乡,同时也保证了候鸟等野生动物生存的需要。
于2018年启动的新一轮百万亩造林工程,通过种乡土树、混交林、食源植物,让野花野草在林下扎根,为野生动物营造觅食地和“安居房”,进而保护生物多样性。
新造林和原有林有机连接,.形成了大尺度的森林湿地和相互联通的绿色廊道,为野生动物迁徙建好“高速路”和“休息区"。
2019 年春季,市政府启动野生动植物栖息地调查,对生物生态环境进行综合考量。
根据调查情况, 市园林绿化局建立了城区动植物栖息地保护名录,并划分保护地,划出保育区,让野生动植物自由栖息。
又见雨燕归来,北京已在探索的路上。
(取材于高武、石河等的相关文章)4.根据材料三,下列不属于导致北京雨燕数量减少原因的一项是(2分)A.北京雨燕迁徙路线距离过长B.古建筑的大量拆除C.现代建筑物玻璃幕墙光污染D.湿地面积迅速减少5.保护北京雨燕有哪些意义?为保护北京雨燕,应该做好哪些方面的工作?请根据上面三则材料概括回答。
(6分)二、本大题共6小题,共26分。
(一)阅读下面的文言文,完成6-10题。
(共19分)吾尝谓医之在天下,其资生民之用,盖与谷帛等,窃怪世之工其道者何少也。
自三代以来,以医名世者多矣,其为论说方术大备矣。
又尝怪夫世之医者,皆忽而不学。
使孝子慈孙不能无恨于疾苦之际者以此也,可不悲哉!予少多病,世之医往往与之游,率按前人成说而用之,未有心得而能原其所以说者也。
而世医不以术易衣食者鲜矣,何暇及此哉!宜工之者寡,而古学之废也。
意必有聪明微妙之君子,悯兹学之不振,悼生人之疾疠,独治其道,修其术,而莫或知之者焉。
绍圣丁丑,予得罪谪官齐安,而得蕲水庞君焉。
其于医,殆所谓聪明微妙者也。
君讳安时,字安常,蕲州蕲水人。
儿时读书,尝问医于父,父授以《脉诀》,君曰:“是不足为也。
”独取黄帝、扁鹊之脉书治之。
未久,已能通其说,时出新意,辨诘不可屈,父大惊,君时未冠也。
已而病聋,君曰:“天使我隐于医欤!"乃益读《灵枢》《太素》诸秘书,凡经传百家之涉其道者,靡不贯通。
时时为人治病,率十愈八九。
有舆疾自千里踵门求治者,君为辟第舍居之,亲视膳粥、药物,既愈而后遣之,如是常数十百人不绝也。
其不可为者,必实告之,亦不复为治。
活人无数,病家持金帛来谢,不尽取也。
戊寅之春,予见君于蕲水山中。
视其貌伟然,听其议博而不繁,妙而易晓。
告予曰:“世所谓医书,予皆见之,惟扁鹊之言深矣,盖所谓《难经》者也。
予欲以其术告后世,故著《难经解》数万言。
观草木之性与五脏之宜,秩其职任,官其寒热,班其奇偶,以疗百疾,著《主对集》一卷。
古今异宜,方术脱遗,备伤寒之变,补仲景《伤寒论》。
药有后出,古所未知,今不能辨,尝试有功,不可遗也,作《本草补遗》一卷。
"吁!其备矣。
予问以华佗之事,君曰:“术若是,非人所能为也,苦史之妄乎!"是冬而君痼疾作。
明年春而剧。
门人请自视脉,君笑曰:“予察之审矣,胃气已绝,死矣。
” 因尽屏药饵,忽焉韵语数句,授其婿,盖超然达者语也。
后数日,与客坐语而卒,年五十八,时二月初六也。
(取材于张耒《庞安常墓志铭》)6.下列对句中加点词语的解释,不正确的一项是(3分)①而世医不以术易衣食者鲜矣易:改变②悼生人之疾疠悼:为……担心③独取黄帝、扁鹊之脉书治之治:研究④乃益读《灵枢》《太素》诸秘书乃:于是⑤靡不贯通靡:没有⑥亦不复为治为:因为⑦其史之妄乎其:恐怕、大概⑧予察之审矣审:清楚A.①⑥B.②⑦C.③⑤D.④⑧7.下列对文中语句的理解,不正确的一项是(3分)A.盖与谷帛等大概是和谷物布帛相同的B.天使我隐于医欤这是上天让我无法行医了C.秩其职任整编排列它们功用的次序D.因尽屏药饵于是完全不服用任何药物8.下列对文意的理解,不正确的一项是(3分)A.作者在第一段表达了对当时部分从医者的不满,但也相信有“治其道,修其术”的良医存在。
B.庞安时医术高明,有仁爱之心,为求医者提供居所,调理饮食,事必躬亲,不取分文。