有理数的乘除混合运算

合集下载

1.4有理数的乘除法及混合运算(整理)

1.4有理数的乘除法及混合运算(整理)

化简:
72 (1) ; 9
30 (2) (3) 45
0 75
;
计算:(1) 2 1 (1 1 )
3 6 (2) (56) (1.4) 2 (3) (81) (36) (2 ) 3 (4) ( 1 ) 0 ( 3 ) (1 2 ) 2 5 3
归纳总结

1、同号得正,异号得负,并把绝对值相 乘;任何数同0相乘,都得0.

注意、两个符号不能出现在一起,必须用 括号隔开 。比如:7+-1-2=?
有理数乘法法则的 推广及其应用
多个有理数相乘遵循以下法则: (1)几个不等于0的有理数相乘,积的符号 由负因数的个数决定:当负因数的个数是奇 数时,积是负数;当负因数的个数是偶数时, 积是正数。 (2)几个有理数相乘,如果其中有因数为0, 那么积等于0.
1 1 1 (1) ( ) 6 3 2
练习、观察下面两位的解法正确吗?若不正确,你 能发现下面解法问题出在哪里吗?
1 (2) 3 6 ( ) 6
1 (2) 3 6 ( ) 6 3 (1) 3
这个解法 是错误的
1 ( 2) 3 6 ( ) 6 1 1 3 ( ) 6 6 1 1 3 6 6 这个解法 1 是正确的 12
5 4
有理数的加减乘除混合运算
练习、观察下面两位同学的解法正确吗?若不正确, 你能发现下面解法问题出在哪里吗?
1 1 1 1 1 1 解: (1) ( ) 解: (1) ( ) 6 3 2 6 3 2 1 1 1 1 1 1 6 3 6 2 ( ) 6 6 1 1 3 2 6 6 1 ( 6) 1 1 这个解法 6 这个解法 2 3 是正确的 1 是错误的 1 6

有理数加减乘除乘方混合运算相关法则知识整理汇总

有理数加减乘除乘方混合运算相关法则知识整理汇总

有理数加减乘除乘方混合运算相关法则知识整理一、知识整理填空答案符号计算绝对值加法同号取相同的符号绝对值相加异号取绝对值大的符号绝对值相减减法减去一个数等于加上这个数的相反数乘法同号取正绝对值相乘异号取负除法同号取正绝对值相除异号取负除以一个数等于乘以这个数的倒数二、一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.三、运算法则1、有理数的加法法则:1)同号两数的相加,取相同的符号,并把绝对值相加;2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;3)一个数同0相加仍得这个数.2、有理数的减法法则: 减去一个数,等于加上这个数的相反数.3、有理数的乘法法则:1)两数相乘同号得正,异号得负,并把绝对值相乘;2)任何数与0相乘,积仍为0.4、有理数的除法法则: 1)除以一个数就是乘以这个数的倒数;2)两数相除同号得正,异号得负;并把绝对值相除;3)零除以任何非零的数得为零.注:0不能作除数5、有理数的乘方符号法则:1)正数的任何次幂都是正数;2)负数的奇次幂为负,偶次幂为正.四、有理数的运算律1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)3、乘法交换律:ab=ba4、乘法结合律:(ab)c=a(bc)5、乘法分配律:a(b+c)=ab+ac五、有理数混合运算的法则:(1)先算乘方,再算乘除,最后算加减。

(2)如有括号,先进行括号里的运算。

1.先算乘方,再算乘除,最后算加减。

2.同级运算依照从左到右的顺序运算;3.若有括号,先小括号,再中括号,最后大括号,依次运算;。

有理数加减混合运算法则

有理数加减混合运算法则

知识点总结
法则符号计算绝对值
加法同号取相同的符号绝对值相加异号取绝对值大的符号绝对值相减
减法减去一个数等于加上这个数的相反数
乘法同号取正
绝对值相乘异号取负
除法同号取正
绝对值相除异号取负
除以一个数等于乘以这个数的倒数
三、有理数加减乘除混合运算运算法则
1、有理数的加法法则:
1)同号两数的相加,取相同的符号,并把绝对值相加;
2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;
3)一个数同0相加仍得这个数.
2、有理数的减法法则:
减去一个数,等于加上这个数的相反数.
3、有理数的乘法法则:
1)两数相乘同号得正,异号得负,并把绝对值相乘;2)任何数与0相乘,积仍为0.
4、有理数的除法法则:
1)除以一个数就是乘以这个数的倒数;
2)两数相除同号得正,异号得负;并把绝对值相除;3)零除以任何非零的数得为零.
注:0不能作除数
5、有理数的乘方符号法则:
1)正数的任何次幂都是正数;
2)负数的奇次幂为负,偶次幂为正.
四、有理数的运算律
1、加法交换律:a+b=b+a
2、加法结合律:(a+b)+c=a+(b+c)
3、乘法交换律:ab=ba
4、乘法结合律:(ab)c=a(bc)
5、乘法分配律:a(b+c)=ab+ac
五、有理数混合运算的法则:
(1)先算乘方,再算乘除,最后算加减。

(2)如有括号,先进行括号里的运算。

1.先算乘方,再算乘除,最后算加减。

2.同级运算依照从左到右的顺序运算;
3.若有括号,先小括号,再中括号,最后大括号,依次运算;。

专题03有理数的乘除混合运算(计算题专项训练)(苏科版)

专题03有理数的乘除混合运算(计算题专项训练)(苏科版)

专题03 有理数的乘除混合运算1.(2022秋·江苏连云港·七年级统考期中)计算(1)8×(−2)×(−5)(2)(−91)÷13(3)(−12−13+34)×(−60) (4)12×(−3)÷(−4)【思路点拨】(1)根据有理数的乘法运算法则和运算顺序计算即可;(2)根据有理数除法运算法则计算即可;(3)利用乘法分配律进行有理数乘法运算即可;(4)根据有理数乘除法运算法则和运算顺序计算即可.【解题过程】解:(1)8×(−2)×(−5)=8×2×5=80;(2)(−91)÷13=-(91÷13)=-7;(3)(−12−13+34)×(−60)= −12×(−60)−13×(−60)+34×(−60) =30+20−45=5;(4)12×(−3)÷(−4)=(−36)×(−14)=9.2.(2022秋·七年级统考课时练习)计算:(1)−2.25÷118×(−8);(2)(−21316)÷(34×98);(3)(−5)÷(−7)÷(−15);(4)(−0.4)÷0.02×(−5);(5)72÷(−8)÷(−12);(6)(−32)÷54÷(−35)×(−14). 【思路点拨】(1)直接利用有理数的乘除运算法则计算得出答案;(2)先计算括号内的乘法,再把除法转化成乘法进行计算即可;(3)把除法转化成乘法进行计算即可;(4)先算除法,再算乘法即可得解;(5)直接利用有理数的乘除运算法则计算得出答案;(6)把除法转化成乘法进行计算即可.【解题过程】(1)−2.25÷118×(−8) =−94×89×(−8)=2×(8)=16;(2)(−21316)÷(34×98)=−4516÷2732=−4516×3227 =−103;(3)(−5)÷(−7)÷(−15)=−5×17×115=−121;(4)(−0.4)÷0.02×(−5)=20×(5)=100;(5)72÷(−8)÷(−12)=(−9)÷(−12)=34; (6)(−32)÷54÷(−35)×(−14)=−32×45×53×14 =−12.3.(2023·全国·七年级假期作业)计算:(1)−3÷(−34)÷(−34); (2)(−12)÷(−4)÷(−115);(3)(−23)×(−78)÷0.25;(4)(−212)÷(−5)×(−313). 【思路点拨】(1)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(2)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(3)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(4)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案.【解题过程】(1)原式=−3×(−43)×(−43)=−163;(2)原式=(−12)×(−14)×(−56)=−52;(3)原式=(−23)×(−78)×4=73; (4)原式=(−52)×(−15)×(−103)=−53. 4.(2022秋·吉林长春·七年级校考阶段练习)计算.(1)−5÷(−127)×45×(−214)÷7;(2)(512+34−58)÷(−524).【思路点拨】(1)根据有理数的乘除混合运算进行计算即可求解;(2)先将除法转化为乘法,然后根据乘法分配律进行计算即可求解.【解题过程】(1)解:−5÷(−127)×45×(−214)÷7=−5÷(−97)×45×(−94)×17=−5×(−79)×45×(−94)×17=−1(2)解:(512+34−58)÷(−524) =512×(−245)+34×(−245)−58×(−245) =−2−185+3 =−135. 5.(2022秋·全国·七年级专题练习)计算:(1)8×|−6−1|+26 12 ×653.(2)3.2÷ 45×(− 815 )÷(−16). (3)(1 13 + 18 −2.75)×(−24)(4)(−36)×(54−56−712).【思路点拨】(1)去掉绝对值号,再把带分数化为假分数,然后根据有理数的乘法和加法运算法则进行计算即可得解.(2)首先把除法统一化为乘法,再确定结果的符号,再把绝对值相乘即可.(3)首先把括号内的数化成分数,然后利用分配律,最后进行加减计算即可.(4)利用分配律即可转化成有理数的乘法,然后进行有理数的加减运算即可.【解题过程】(1)解: 8×|−6−1|+26 12 ×653=8×|−7|+ 532 ×653=56+3=59.(2)解:原式=165×54×(−815)×(−116) =165×54×815×116 =215;(3)解:原式=(43+18−114)×(−24)=−43×24−18×24+114×24 =−32−3+66=31(4)解:原式=(−36)×54−(−36)×56−(−36)×712=−45+30+21=6.6.(2023·全国·七年级假期作业)计算:(1)(−8)×(−6)×(−1.25)×13; (2)(−81)÷(−214)×49÷(−8).【思路点拨】(1)根据有理数乘法运算法则进行计算即可;(2)根据有理数乘除混合运算法则进行计算即可.【解题过程】(1)解:(−8)×(−6)×(−1.25)×13=−8×1.25×6×13=−10×2=−20;(2)解:(−81)÷(−214)×49÷(−8)=(−81)×(−49)×49×(−18)=−2.7.(2022秋·全国·七年级期末)计算:(1)(−23)×25−6×25+18×25+25;(2)(−12)×(−8)+(−6)÷(−13).【思路点拨】(1)根据逆用乘法分配律进行计算即可求解;(2)根据有理数的四则混合运算进行计算即可求解.【解题过程】(1)解:原式=25×(−23−6+18+1)=25×(−10)=−250;(2)解:原式=12×8+6÷13=4+18=22.8.(2022秋·重庆万州·七年级校联考阶段练习)计算:(1)(−56)×(−1516)÷(−134)×47(2)3.25+(−2.6)+(+534)+(−825)【思路点拨】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的加减混合运算法则计算即可.【解题过程】(1)(−56)×(−1516)÷(−134)×47=(−56)×(−2116)÷(−74)×47 =56×2116×(−47)×47 =7×212×(−47)×47=−24;(2)3.25+(−2.6)+(+534)+(−825) =3.25−2.6+5.75−8.4=(3.25+5.75)−(2.6+8.4)=9−11=−2.9.(2022秋·全国·七年级专题练习)计算:(1)(﹣85)×(﹣25)×(﹣4);(2)﹣215×2311÷(−212);(3)(−124)÷(134−78+712);(4)(79−56+34−718)×36.【思路点拨】(1)先计算(﹣25)×(﹣4),再乘(﹣85)即可得出结果;(2)先将带分数化为假分数,再将除法运算转化为乘法运算;(3)先将括号内通分,再将除法运算转化为乘法运算;(4)利用乘法分配律计算.【解题过程】(1)解:(﹣85)×(﹣25)×(﹣4),=(﹣85)×[(﹣25)×(﹣4)],=﹣85×100,=﹣8500;(2)﹣215×2311÷(﹣212),=﹣115×2511×(﹣25),=2;(3)(﹣124)÷(134﹣78+712),=(﹣124)÷(4224−2124+1424), =(﹣124)÷3524, =(﹣124)×2435,=﹣135;(4)(79−56+34−718)×36,=79×36﹣56×36+34×36﹣718×36,=28﹣30+27﹣14,=55﹣44,=11.10.(2022秋·全国·七年级专题练习)计算(1)−127÷(−156)×138×(−7); (2)(−113+19+512)×36.【思路点拨】(1)先将带分数化为假分数,再利用有理数的乘除法法则计算即可;(2)利用乘法分配律计算即可.【解题过程】解:(1)−127÷(−156)×138×(−7)=−97÷(−116)×118×(−7) =−97×(−611)×118×(−7) =−274;(2)(−113+19+512)×36=−43×36+19×36+512×36 =−48+4+15=−29.11.(2022秋·全国·七年级专题练习)计算:(1)49×1516÷56(2)(12−13+14)×48(3)625÷9+625×89(4)15÷[(23+15)×0.6]【思路点拨】(1)直接根据有理数乘除法法则计算即可得到答案;(2)去括号直接计算即可得到答案;(3)先乘除后加减计算即可得到答案;(4)先去括号在根据法则运算即可得到答案.【解题过程】(1)解:原式=49×1516×65=12;(2)解:原式=12×48−13×48+14×48=24−16+12=20;(3)解:原式=625×19+625×89=625×(19+89)=625(4)解:原式=15÷(23×0.6+15×0.6)=15÷(25+325)=15÷1325=15×2513=513.12.(2022秋·山东青岛·七年级青岛超银中学校考期末)计算下列各题:(1)(−24)×(−34+23+112);(2)(−81)÷214×49÷(−16).【思路点拨】(1)根据分配率进行计算即可求解;(2)先把除法转化为乘法,再进行有理数的乘法运算即可求解.【解题过程】(1)解:(−24)×(−34+23+112)=(−24)×(−34)+(−24)×23+(−24)×112=18−16−2=0;(2)解:(−81)÷214×49÷(−16)=(−81)×49×49×(−116)=1.13.(2022秋·浙江·七年级专题练习)计算(1)34×(−112)÷(−214)(2)(﹣81)÷2.25×49÷(﹣32).(3)−34÷38×(−49)÷(−23)(4)﹣15÷(13−112−3)×68(5)−112÷34×(−0.2)×134÷1.4×(−35).【思路点拨】(1)先统一为乘法运算,再按照有理数乘法法则计算即可;(2)根据除法运算法则除以一个数等于乘以这个数的倒数,进而化简求出即可.(3)先统一为乘法运算,再按照有理数乘法法则计算即可;(4)先算小括号,再按照从左往右的顺序计算即可;(5)先统一为乘法运算,再按照有理数乘法法则计算即可.【解题过程】解:(1)34×(−112)÷(−214) =34×32×49=12. (2)(﹣81)÷2.25×49÷(﹣32)=81×49×49×132=12. (3)−34÷38×(−49)÷(−23) =−(34×83×49×32) =−43. (4)−15÷(13−112−3)×68=−15÷(−256)×68 =15×625×68=244.8.(5)−112÷34×(−0.2)×134÷1.4×(−35)=−(32×43×15×74×57×35) =−0.3.14.(2023春·七年级专题练习)计算:(1)−2.5÷58×(−14); (2)−27÷214×49÷(−24);(3)(−35)×(−312)÷(−114)÷3;(4)−4×12÷(−12)×2;(5)−5÷(−127)×45×(−214)÷7;(6)|−118|÷34×43×|−12|.【思路点拨】(1)把小数化为分数,把除法转化为乘法,再根据乘法法则计算;(2)(3)(5)把带分数化为假分数,把除法转化为乘法,再根据乘法法则计算;(4)把除法转化为乘法,再根据乘法法则计算;(6)先算绝对值,再算乘除法.【解题过程】(1)原式=−52×85×(−14)=1; (2)原式=−27×49×49×(−124)=29; (3)原式=(−35)×(−72)×(−45)×13=-1425;(4)原式=−4×12×(−2)×2=8; (5)原式=−5×(−79)×45×(−94)×17=−1;(6)原式=98×43×43×12=1.15.(2022秋·贵州铜仁·七年级校考阶段练习)乘除计算:(1)(−81)÷214×(−49)÷(−16)(2)1.25÷(−0.5)÷(−212)×1(3)(−2)×32÷(−34)×4;(4)(134−78−712)×(−117)【解题过程】(1)解:(−81)÷214×(−49)÷(−16) =−81×49×(−49)×(−116)=−1;(2)1.25÷(−0.5)÷(−212)×1=54×(−2)×(−25)×1=1;(3)(−2)×32÷(−34)×4 =(−3)×(−43)×4 =16.(4)(134−78−712)×(−117)=74×(−87)+78×87+712×87=−2+1+23 =−13. 16.(2022秋·全国·七年级专题练习)计算:(1)(−3)÷(−134)×0.75÷(−37)×(−6);(2)(−15)×(−0.1)÷125×(−10);(3)[(−72)×(−23)]×[(−35)÷(−815)]. 【思路点拨】(1)首先确定结果的符号,再把除法变为乘法,先约分,后相乘进行计算即可;(2)首先确定结果的符号,再把除法变为乘法,约分后相乘进行计算即可;(3)首先计算括号里面的,再计算括号外面的乘法即可.【解题过程】(1)解:(−3)÷(−134)×0.75÷(−37)×(−6) =3×47×34×73×6 =18;(2)解:(−15)×(−0.1)÷125×(−10)=−(15×110×25×10) =−5;(3)解:[(−72)×(−23)]×[(−35)÷(−815)]=(72×23)×(35×158) =48×98=54.17.(2023·全国·九年级专题练习)计算(1)−25÷(−13)÷(−325)×(523)(2)1÷(−18)+73÷|15−23|【思路点拨】(1)先将带分数化为假分数,再根据有理数乘除法的运算法则按照同级运算从左到右的顺序计算即可得到答案;(2)先算绝对值里面的,再根据乘除互化,将除法转化为乘法,再结合有理数加法运算法则求解即可得到答案.【解题过程】(1)解:−25÷(−13)÷(−325)×(523) =−25÷(−13)÷(−175)×173=−25×(−3)×(−517)×173=−2;(2)解:1÷(−18)+73÷|15−23|=1×(−8)+73÷|315−1015| =1×(−8)+73÷|−715| =1×(−8)+73÷715=1×(−8)+73×157=−8+5=−3.18.(2022秋·全国·七年级专题练习)计算:(1)15×(−5) ÷ (−15)×5(2)2÷(−37)×47÷(−517) (3)(+512)÷(−4425)×(−1315)÷(−3118)(4)(−56)÷(−3)×|−145|×(−2)【思路点拨】(1)原式先把除法转换为乘法后,再进行乘法运算即可;(2)原式先把除法转换为乘法后,再进行乘法运算即可;(3)原式先把除法转换为乘法后,再进行乘法运算即可;(4)原式先把除法转换为乘法后,再进行乘法运算即可.【解题过程】(1)解:15×(−5)÷(−15)×5 =15×(−5)×(−5)×5 =(−1)×(−5)×5=25;(2)解:2÷(−37)×47÷(−517) =2×(−73)×47×(−736) =1427;(3)解:(+512)÷(−4425)×(−1315)÷(−3118) =112÷(−10425)×(−1315)÷(−5518) =−112×25104×1315×1855 =38;(4)解:(−56)÷(−3)×|−145|×(−2)=56×13×95×(−2)=−1.19.(2023·全国·七年级假期作业)计算:(1)(−3)÷(−134)×0.75÷(−37)×(−6);(2)(−15)×(−0.1)÷125×(−10); (3)[(−72)×(−23)]×[(−35)÷(−815)]. 【思路点拨】根据有理数的加减乘除混合运算法则及运算顺序计算即可得到答案.【解题过程】(1)解:(−3)÷(−134)×0.75÷(−37)×(−6)=3×47×34×73×6 =18;(2)解:(−15)×(−0.1)÷125×(−10)=−(15×110×25×10) =−5;(3)解:[(−72)×(−23)]×[(−35)÷(−815)] =(72×23)×(35×158) =48×98=54.20.(2022秋·山东济宁·七年级统考期中)请你先认真阅读材料:计算(﹣130)÷(23﹣110+16﹣25) 解法1:(﹣130)÷(23﹣110+16﹣25) =(﹣130)÷[(23+16)﹣(110+25)]=(﹣130)÷(56−12)=(﹣130)÷13=﹣130×3=﹣110 解法2:原式的倒数为:(23﹣110+16﹣25)÷(﹣130) =(23﹣110+16﹣25)×(﹣30)=﹣20+3﹣5+12=(﹣20﹣5)+(3+12)=﹣10再根据你对所提供材料的理解,选择合适的方法计算:(﹣142)÷(16−314+23−27). 【思路点拨】观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.【解题过程】解:原式的倒数为:(16−314+23−27)÷(−142) =(16−314+23−27)×(−42)=−7+9-28+12=−14∴原式=−114.。

有理数的四则混合运算

有理数的四则混合运算

第2课时 有理数的四则混合运算1.能熟练地进行有理数的乘除混合运算,能用简便方法计算.2.能熟练地掌握有理数加减乘除混合运算的顺序,并能准确计算.3.能解决有理数加减乘除混合运算应用题.4.了解用计算器进行有理数的加减乘除运算.自学指导看书学习第37、38页的内容,掌握有理数乘除混合运算法则,能够解决具体问题.知识探究 有理数加减乘除混合运算法则:先乘除,后加减,有括号的先算括号内的. 自学反馈 计算: (1)6-(-12)÷(-3); (2)3×(-4)+(-28)÷7;(3)(-48)÷8-(-25)×(-6); (4)42×(-32)+(-43)÷. 解:(1)2;(2)-16;(3)-156;(4)-25.在做有理数的乘除混合运算时:①先将除法转化为乘法;②确定积(或商)的符号;③适时运用运算律;④若出现带分数可化为假分数,小数可化为分数计算;⑤注意运算顺序.活动1:小组讨论1.计算:-54×(-241)÷(-421)×92=-6. 2.(-7)×(-5)-90÷(-15)=41.3.一架直升机从高度450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,这时直升机所在高度是多少?解:210米活动2:活学活用1.计算:(1)(-6)÷(-23); (2)(-2476)÷(-6); (3)-141÷÷(-16); (4)(-54)÷(-34)×0; (5)(-3)×(-21)-(-5)÷(-2); (6)|-521|÷(31-21)×(-111). 解:(1)4;(2)729;(3)165;(4)0;(5)-1;(6)3. 2.高度每增加1千米,气温大约降低6℃,今测量高空气球所在高度的温度为-7℃,地面温度为17℃,求气球的大约高度.解:4千米3.某探险队利用温度测量湖水的深度,他们利用仪器侧得湖面的温度是12℃,湖底的温度是5℃,已知该湖水温度每降低℃,深度就增加30米,求该湖的深度.解:300米有理数加减乘除混合运算法则:无括号,先算乘除,后算加减;有括号先算括号里面的.教学至此,敬请使用学案当堂训练部分.。

有理数的乘除混合运算

有理数的乘除混合运算

=2
自我·检测
例2 计算:
(1)(-10)÷(-5) ×(-2);
(2)

8Biblioteka 5
1 4






2 3



(3)
2.4

43

1 4


.
先算前两位数,同号相除为正
再算乘法
(1)(-10)÷(-5) ×(-2)
解: 原式= 2 ×(-2)
(2)(-6)÷(-2)÷3 = 3÷3 = 1 ;
(3)2÷(-7)×(-4)
=



2 7

×
(-4)
=
8 7

(4)18 ÷6 ÷(-2) = 3× (-2)= -6 .
反思小结,巩固提高
有理数乘法除法混合运算的顺序是什么?
有理数的运算中既有乘法运算又有除法运算, 称为有理数的乘除混合运算。
请叙述有理数乘法的法则 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同 0 相乘,都得 0.
几个不是零的数相乘,负因数的个数是偶数时,积 是正数;负因数的个数是奇数时,积是负数.
几个数相乘,如果其中有一个因数为0,积等于 0.
请叙述有理数除法的法则 除以一个不为 0 的数,等于乘这个数的倒数.
异号相除为负
=

7 2
可以依次计算
(2)(-3.2)÷ 0.8 ÷(-2) 解:原式=(-4)÷(-2) 同号相除为正
=2
先算前两位数
可以依次计算
(1)(-56)÷(-2) ÷(-8) 解:原式= 28 ÷(-8) 异号相除,结果为负

有理数 乘除混合运算

有理数 乘除混合运算
10
(7) (5) 90 (15)
解:原式
1 7 35 (6)
41
总结:先乘除,后加减。
四、练习巩固: 完成讲学稿课堂练习4、5、6
谢谢!
解:原式
5 1 2 .5 ( ) 8 4 8 1 2.5 ( ) 5 4 8 1 2 .5 5 4 5 8 1 2 5 4
1
问题:前面的例题只含有乘除法,如 果还含有加减法,应该怎么算呢?
例 8 计算:
解:原式
8 4 (2) 1 8 4 ( ) 2 8 (2)
1
2 8 4 3 5
64 15
步骤:1、把除法转变为乘法, 2、看负因子个数,决定符号, 3、算出乘积。
同学们,根据刚才的总结步骤,你 能完成以下练习吗?
例7 计算:
解:原式
5 ( 125 ) ( 5) 7 5 1 ( 125 ) ( ) 7 5 5 1 (125 ) 7 5 1 5 1 125 5 7 5 1 25 7 1 25 7
有理数乘除混合运算
一、有理数乘法法则:
1、两数相乘,同号得正,异号得负,并把绝对值相乘; 2、任何数同0相乘,都得0; 3、乘积为1的两个数互为倒数; 4、奇数个负因子相乘,积为负,
偶数个负因子相乘,积为正。
二、有理数除法法则:
1、除以一个不等于0的数,等于乘这个数的倒数; 2、两数相除,同号得正,异号得负,并把绝对值相除; 3、0除以任何不等于0的数,都得0;
三、乘除混合运算步骤:
2 8 ( ) ( ) ( 0.25) 3 5 2 8 8 1 2.5 ( ) 解:原式 ( ) ( ) ( 4) 3 5 5 4

有理数的加减乘除的混合运算技巧

有理数的加减乘除的混合运算技巧

有理数的加减乘除是数学中非常基础的运算,它们在解决实际问题和其他数学运算中起着重要的作用。

它们的混合运算在解决复杂问题时尤为重要。

下面将介绍有理数的加减乘除的混合运算技巧。

一、有理数的加法运算1.1 正数加正数:两个正数相加的结果仍然是正数,例如3+5=8。

1.2 负数加负数:两个负数相加的结果仍然是负数,例如-4+(-6)=-10。

1.3 正数加负数:两个数符不其绝对值相减,结果的符号取较大绝对值的符号,例如5+(-3)=2。

二、有理数的减法运算2.1 减去一个数相当于加上这个数的相反数,即a-b=a+(-b)。

2.2 减法运算可以看作加法运算,例如5-3=5+(-3)=2。

2.3 减法运算中,正数减去一个较大的负数,结果为正数,例如7-(-4)=7+4=11。

三、有理数的乘法运算3.1 同号相乘:两个数符相它们的积为正数,例如3×4=12。

3.2 异号相乘:两个数符不它们的积为负数,例如-5×6=-30。

3.3 有理数乘法的结合律和交换律:对有理数a、b、c来说,a×(b×c)=(a×b)×c,a×b=b×a。

四、有理数的除法运算4.1 有理数的除法运算可以看作是乘法运算的倒数,即a÷b=a×(1/b)。

4.2 除法运算中,同号相除结果为正数,异号相除结果为负数。

4.3 有理数除法的分配率:对有理数a、b、c来说,a÷(b÷c)=(a×c)÷b。

五、有理数的混合运算5.1 有理数的混合运算要遵循先乘除后加减的原则,进行括号内的运算。

5.2 混合运算中,可以通过加减号的顺序调整运算的优先级,例如先进行加法运算,再进行减法运算。

5.3 在进行混合运算时,可以通过绝对值大小或符号来判断计算的顺序,避免混合运算时出现混淆。

六、总结有理数的加减乘除的混合运算需要熟练掌握各种运算规则,尤其是混合运算的顺序和优先级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:
乘除是同级运算,在转化为乘法前,必须遵 循24÷(-3) ÷(-4) 2、(-6)÷(-2) ÷3 3、2÷(-7) ×(-4) 4、18÷6 ×(-2)
计算:
(5) ( 3) 1 1 (2 1 ) 4 2 4
(
6
)
3 2
解:
= (-30) ÷(-2)
= 15
有理数的乘除混合运算,如无括号,应按 从左到右的顺序依次计算。
(1) (-10)÷[(-5) ×(-2)]
解:
= (-10) ÷10
= -1
有括号,先算括号内的,按从左到右的顺 序依次计算。
(1)
(-5)×6
÷(-
1 3

解:
= (-30) ×(-3)
= 90
(2)
(-2.4)
÷
3 4
×
(-
1 4

解:
=
(-2.4)
×
4 3
×(-
1 4

=0.8
也可以先将除法转化为乘法,再利用乘法 运算律计算。
有理数的乘除混合运算法则 运算顺序:
有理数的乘除混合运算,有括号,先算括号内 的,无括号,按从左到右的顺序依次计算。
运算步骤:
先将除法转化为乘法,然后确定积的符号, 最后确定积的绝对值。
(2) 3 6( 1) 6
(2) 3 6 ( 1 ) 6
3 (1) 3
这个解法 是错误的
(2) 3 6 ( 1 ) 6
3 1 ( 1 )
6
6
3 1 1
6 6 这个解法
1
是正确的
12
(1) (-56)÷(-2) ÷(-8)
解:
= 28 ÷(-8)
=
-
7 2
(2) (-5) ×6÷(-2)
÷(
7 )×(
7) 5
(7) ( 1) 1 3 2 3 4
计算:
(8) (3.5) ( 1) 1 8 7
(9) 24 1 1 6 3
练习、观察下面两位同学的解法正确吗?若不正确, 你能发现下面解法问题出在哪里吗?
(1) 1 (1 1 )
6
解: (1)
32
1 (1 63
1 2
)解
: (1)
1 6
( 1 3
1) 2
1111 6362
1 ( 1 )
1 3 1 2
6
6
11 23
1
这个解法 是错误的
6
6
1 6
( 6)这个解法
1
是正确的
6
混合运算的顺序
先算乘除,再算加减,同级运算 从左往右依次计算,如有括号, 先算括号内的.
计算器的使用
练习:用计算器计算(精确到0.001):
(3) 3 (4) (28) 7
(4) 42 ( 32) ( 43) (0.25)
练习
P40,第9题
-1840×0.28÷(-375)=1.374
计算器的使用方法: 1、输入数据时,按键顺序与书写顺序基本相同。 2、数据输入完成后,要按等于键。
• 计算:
练习
(1)8 4 (2)
(2)(7)(5) 90 (15)
跟踪练习
计算:
(1) 6 (12) (3)
(2) (48) 8 (25) (6)
2
计算:
(-12)÷( 112)÷(-100) 解: 原式= +(12÷1/12 )÷(-100)
=+(12×12 )÷(-100)
=144÷(-100)
=-1.44 方法提示: 常利用“除以一个数等于乘以这
个数的倒数”把除法运算改写成 乘法运算, 再利用乘法法则来计 算.
想一想
对于例1:
(-12)÷(
有理数的乘除混合运算
有理数的除法法则
有理数除法法则一:两数相除,同号得 _正__,异号得_负_,并把绝对值相_除_。 0除以任何一个不等于0的数,都得_0 .
有理数除法法则二:除以一个不等于0的 数,等于乘以这个数_的_倒_数.
计算:
(1) (
3
) ( 3)
(2)
10
(2)
2
5
5
(3) (10) 5
1 12
)÷(-100)
下面两种计算正确吗?请说明理由: (1)解:原式=(-12) ÷(1/12 ÷100)
=(-12)÷1/1200
=-14400
(2)解:原式=(-1/12)÷(-12)÷(-100)
=1/144÷(-100)
=-1/14400
因为除法不适合交换律与结合律,所以 不正确.
练习、观察下面两位的解法正确吗?若不正确,你 能发现下面解法问题出在哪里吗?
相关文档
最新文档