广东省龙门县龙城一中九年级数学《正多边形和圆》学案(无答案)
九年级数学下册274《正多边形和圆》学案1(无答案)(新版)华东师大版.docx

27.4正多边形和圆学习目标:1•了解正多边形和圆的关系。
2.了解正多边形的中心、半径、边心距、屮心角等概念。
3.能运用正多边形的知识解决圆的有关计算问题。
3.会利用正多边形的特征,画出简单常见的正多边形。
.学习重点:1.探索正多边形与圆的关系2..运用正多边形的半径、中心角、弦心距、边长之间的关系进行计算.3.正多边形的画法学习难点:探索正多边形与圆的关系。
学习过程:一.知识频道(交流与发现)1.忆一忆(知识回顾)请同学们思考下面两个问题.(1)什么叫正多边形?(2)从你身边举出两三个正多边形的实例,正多边形是轴对称图形、中心对称图形吗?其对称轴有几条, 对称中心是哪一点?归纳点评(1)正多边形的概念屮,强调了两个条件:①是________ 相等,②是__________ 相等。
(2)实例略.正多边形是_________ 图形,对称轴有 ________ ;当___________ 时,正多边形也是_____ 对称图形,对称中心是 ___________________________2.做一做(1)以正多边形任意两边垂直平分线的交点作为圆心,圆心到顶点的连线为半径,能够作一个圆,观察这个正多边形的各个顶点是否都在该圆上?试举一例做做看。
.(2)将一个圆分成五等份,依次连接各分点得到一个五边形,这个五边形是正五边形吗?如果是请你证明这个结论。
(3)如果将一个圆分成n等份,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?3.总一总:正多边形的有关概念(1)中心:一个正多边形的__________________ 叫做正多边形的中心.(2)半径:正多边形____________________ 叫做正多边形的半径.(3)中心角:正多边形_•_______________________ 叫做正多边形的中心角.(4)边心距:__________ 到. ____________ 的距离叫做正多边形的边心距.正多边形和圆的关系(5) 只要把一个圆分成相等的一些弧,就可以作出这个圆的 _______________ ,这个圆就是这个正多边形的 (6) 正多边形都有 ________ 个外接圆,反之,圆有 _____________ 个内接正多边形.正多边形的计算:(7) 正n 边形的半径和边心距把正n 边形分成 _________ 个全等的直角三角形由正多边形和圆的关系可知,正n 边形的中心角为 ___________ 度;它的每个内角是 _________ 度;每个外 角是 __________ 度。
24.3正多边形和圆(教案)-2023-2024学年九年级上册初三数学同步备课(人教版)

在本次教学过程中,我发现学生们对于正多边形和圆的性质和应用表现出浓厚的兴趣。他们通过实践活动和小组讨论,积极投入到学习中,这让我感到很欣慰。但同时,我也注意到一些需要改进的地方。
首先,关于正多边形的定义和性质,大多数学生能够理解和掌握,但在具体应用时,部分学生仍然存在困难。尤其是在计算正多边形的周长和面积时,他们对于如何运用半径和边长之间的关系不够熟练。在今后的教学中,我需要加强这方面的讲解和练习,帮助学生更好地将理论知识运用到实际问题中。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正多边形和圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对正多边形和圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
其次,正多边形的对称性是一个重点,也是学生们的兴趣所在。但在案例分析环节,我发现有些学生在分析正多边形的对称轴和对称中心时,容易混淆。为了帮助学生更好地理解,我尝试通过实际操作和动态演示,让学生更直观地感受正多边形的对称性。在今后的教学中,我将继续采用这种方法,并加强个别辅导,让学生真正掌握这一概念。
24.3正多边形和圆(教案)-2023-2024学年九年级上册初三数学同步备课(人教版)
一、教学内容
本节课选自人教版九年级上册数学教材第24章第3节“正多边形和圆”。教学内容主要包括以下几部分:
1.正多边形的定义及性质:掌握正多边形的定义,了解正多边形的内角、外角、对角线等性质。
2.正多边形的对称性:探讨正多边形的轴对称和中心对称特点,理解正多边形对称性的应用。
九年级数学上册《正多边形和圆》教案、教学设计

a.提问:同学们,你们在生活中都见过哪些正多边形和圆形的物体呢?
b.学生回答后,教师总结:正多边形和圆在我们的生活中无处不在,它们具有很多独特的性质和美感。今天我们就来学习正多边形和圆的相关知识。
2.学生在解决实际问题时,可能难以将正多边形的性质与实际问题相结合,需要教师通过举例、引导,帮助学生建立知识间的联系。
3.部分学生对数学学习存在恐惧心理,需要教师关注学生的情感态度,激发学生的学习兴趣,增强他们的自信心。
4.学生在团队合作、交流表达方面有待提高,教师应创造更多机会让学生进行讨论交流,培养他们的沟通能力。
a.设计一道具有实际背景的问题,运用正多边形和圆的知识进行解决,要求学生将解题过程和答案以书面形式提交。
b.学生以小组为单位,共同探讨生活中的正多边形和圆的应用,完成一份小报告,内容包括:应用实例、性质分析、解题方法等。
3.拓展与思考:
a.阅读相关资料,了解正多边形和圆在历史、文化、艺术等领域的应用,撰写一篇心得体会。
b.探究正多边形与圆在建筑设计中的应用,结合实际案例进行分析,提出自己的看法。
4.口头作业:
a.与家人分享本节课所学知识,讲解正多边形和圆的性质,以及它们在生活中的应用。
b.与同学进行交流,讨论解决正多边形和圆相关问题时的策略和方法。
5.预习作业:
a.预习下一节课内容,提前了解与正多边形和圆相关的其他几何知识。
b.采用问题驱动法,设计具有启发性的问题,引导学生主动探究正多边形的性质及其与圆的关系。
c.以小组合作的形式,让学生共同解决正多边形与圆的实际问题,培养学生的团队合作意识和问题解决能力。
九年级数学上册学案:24.3正多边形和圆

课题24.3正多边形和圆学习过程学习内容时间预设课时1拟授课日期11月15日设计者马雪3.合作学习1.正五边形的中心角的度数是________;正五边形的一个内角的度数是________;正五边形的一个外角是________2.正六边形的中心角的度数是________;正六边形的一个内角的度数是________;正六边形的一个外角是________3.正n边形的一个内角的度数是______________;中心角的度数是______,正多边形的中心角_______它的一个外角的.4.如何利用等分圆弧的方法来作正n边形?方法一、用量角器作一个等于的圆心角.方法二、正方形、正三角形、正六边形、正十二边形等特殊正多边形的作法.4.自学检测有一个亭子(如图),它的地基是半径为4cm的正六边形,求地基的周长和面积。
(结果保留小数点后一位,3≈1.732)学习目标正多边形和圆的有关概念;正多边形的半径、边长、中心角、边心距学习重点正多边形中心、半径、中心角、弦心距、•边长之间的关系学习过程学习内容时间预设自主与合作1.导言阅读:本节课我们将了解正多边形和圆的有关概念.4.正多边形的________________叫做正多边形的中心;________________叫做正多边形的半径;正多边形每一边__________叫做正多边形的中心角;______到_______________的距离叫做正多边形的边心距.20‘精讲与板书分别计算半径为R的圆内接正三角形、正方形、正六边形的边长、边心距和面积。
并求出它们边长的比值.5‘过程预设过程预设巩固与提高1.边长为4的正三角形,则它的半径是_______,边心距是_______,中心角是_______.2.若一个正多边形每个内角的度数是中心角的3倍,则正多边形的边数是__________.3.有一个边长为3cm的正六边形,如果要剪一张圆形纸片完全覆盖住这个图形,那么这张纸片的最小半径是____________.4.如图1,正三角形ABC内接于⊙O,AD是⊙O的正十二边形的一边,连接CD,若CD=12,则⊙O的半径是________________.5.下列说法:①各边相等的圆内接多边形是正多边形;②各内角相等的圆内接多边形是正多边形;③正多边形的中心角等于它的一个外角;④正多边形既是中心对称图形又是轴对称图形。
24.3正多边形和圆(教案)-2023-2024学年人教版数学九年级上册

1.理论介绍:首先,我们要了解正多边形和圆的基本概念。正多边形是各边相等、各角相等的多边形,圆是平面上所有与某一点距离相等的点的集合。它们在几何学中具有重要地位,广泛应用于日常生活和各类工程设计。
2.案例分析:接下来,我们来看一个具体的案例。以正六边形为例,分析其与内切圆、外接圆的关系,以及如何计算其边长、面积等。
举例解释:
-正多边形的性质:通过具体的正三角形、正四边形等图形,让学生理解正多边形各部分之间的关系,如正四边形的对角线互相垂直且平分,四条边相等。
-正多边形与圆的关系:以正边长、中心角之间的关系,以及内切圆半径与边心距的关系。
-实际应用:给出一个正六边形,让学生计算其周长、面积以及内切圆和外接圆的半径,培养学生运用知识解决实际问题的能力。
举例解释:
-对称性:以正三角形为例,解释正多边形如何通过旋转和轴对称来保持不变,使学生理解对称性的概念。
-计算半径:对于正五边形,教师可以引导学生利用中心角和边长计算外接圆半径,通过勾股定理和三角函数计算内切圆半径。
-实际应用:在解决正六边形的问题时,教师可以指导学生先确定正多边形与圆的关系,然后选择合适的公式进行计算,培养学生解题的思路和方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《正多边形和圆》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过正多边形和圆的组合形状?”(如硬币、花朵等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索正多边形和圆的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调正多边形的性质、正多边形与圆的关系这两个重点。对于难点部分,如计算内切圆、外接圆的半径,我会通过举例和步骤讲解来帮助大家理解。
九年级数学上册 第二十四章 圆 24.3 正多边形和圆(第1课时)学案设计 (新版)新人教版-(新版

第二十四章圆24.3 正多边形和圆24.3 正多边形和圆(第1课时)学习目标1.了解正多边形和圆的有关概念.2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系.学习过程设计一、设计问题,创设情境1.这些美丽的图案,都是在日常生活中我们经常能看到的.你能从这些图案中找出正多边形来吗?2.正多边形的定义:叫做正多边形.3.菱形是正多边形吗?矩形是正多边形吗?为什么?4.你知道正多边形有哪些性质吗?二、信息交流,揭示规律1.正多边形和圆有什么关系?你能借助圆作出一个正多边形吗?2.将上面的圆五等分,依次连接各分点得到一个五边形,这个五边形一定是正五边形吗?如果是,请你证明这个结论.小结:将圆n等分,依次连接各分点得到一个n边形,这n边形一定是.3.正多边形的中心、半径、中心角、边心距我们把一个正多边形的外接圆的圆心叫做正多边形的.外接圆的半径叫做正多边形的.正多边形每一边所对的圆心角叫做正多边形的.中心到正多边形的一边的距离叫做正多边形的.三、运用规律,解决问题【例1】有一个亭子(如图)它的地基是半径为4 m的正六边形,求地基的周长和面积(精确到0.1 m2).四、变式训练,深化提高【例2】如图,分别求半径为R的圆的内接正三角形、正方形的边长、边心距和面积.图①图②五、反思小结,观点提炼参考答案一、设计问题,创设情境1.正三角形、正方形、正五边形、正六边形.2.各边相等、各角也相等的多边形3.不是.菱形各角不都相等;矩形各边不都相等.4.各边相等,各角相等.二、信息交流,揭示规律1.正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.⏜=AA⏜⏜=AA⏜=AA2.证明:∵AA⏜=AA∴AB=BC=CD=DE=EA.∵AAA⏜ =3AA⏜,∴∠1=∠2.⏜ =AAA同理得∠2=∠3=∠4=∠5.又∵顶点A,B,C,D,E都在☉O上,∴五边形ABCDE是☉O的内接五边形.小结:正n边形3.中心半径中心角边心距三、运用规律,解决问题【例1】解:连接OB,OC.=60°,△OBC是等边三角形,从而正因为ABCDEF是正六边形,所以它的中心角等于360°6六边形的边长等于它的半径.因此亭子地基的周长l=6×4=24(m).过点O 作OP ⊥BC ,垂足为P. 在Rt△OPC 中,OC=4 m,PC=AA 2=42=2(m),利用勾股定理,可得边心距r=√42-22=2√3(m), 亭子地基的面积S=12lr=12×24×2√3≈41.6(m 2). 四、变式训练,深化提高【例2】 解:(1)在Rt△OBD 中,∠OBD=30°,OB=R ,BD=√32R , 边心距OD=12R.∵OD ⊥BC , ∴BC=2BD=√3R ,∴S △ABC =3×12BC ·OD=3×12·√3R ·12R=3√34R 2.(2)在Rt△OBE 中,∠OBE=45°,OB=R ,∴边心距OE=BE=√22R. ∵OE ⊥BC , ∴BC=2BE=√2R ,∴S=4×12BC ·OE=4×12·√2R ·√22R=2R 2.五、反思小结,观点提炼 略。
九年级数学下册《正多边形与圆》教案、教学设计
2.强调正多边形在实际问题中的应用,激发学生学习数学的兴趣。
-总结:“通过今天的学习,我们知道了正多边形与圆之间有很多有趣的关系。这些知识不仅可以解决数学问题,还可以应用于我们的日常生活。”
3.鼓励学生继续探索正多边形与圆的奥秘,为下一节课的学习打下基础。
4.培养学生的空间想象能力,通过观察正多边形与圆的关系,提高学生的图形感知能力。
(二)过程与方法
在本章节的教学过程中,采用以下方法与过程:
1.采用问题驱动的教学方法,引导学生从实际问题中发现并提出问题,激发学生的学习兴趣。
2.通过小组合作、讨论交流等形式,让学生在自主探究、合作学习中发现正多边形的性质,培养学生的团队协作能力和沟通能力。
(二)讲授新知
在讲授新知环节,我将通过以下步骤帮助学生掌握正多边形与圆的关系:
1.通过动态演示,引导学生观察正多边形与圆的相互关系,发现正多边形的半径、边长、中心角之间的关系。
-解释:“正多边形的每个内角都相等,外角也相等。当我们把正多边形的外接圆画出来时,可以发现圆的半径与正多边形的边长有一定的关系。”
-设计与生活相关的题目,如城市规划中的正多边形地砖铺设,让学生在解决问题的过程中应用所学知识。
4.设计分层练习,针对不同水平的学生提供不同难度的题目,使每个学生都能在原有基础上得到提高。
-基础题:主要针对正多边形的基本性质和简单计算。
-提高题:涉及正多边形与圆的综合应用,以及解决实际问题的能力。
5.开展课堂讨论和分享,鼓励学生表达自己的思考过程和解题策略,促进知识的内化和深化。
3.培养学生的审美情趣,让学生感受正多边形与圆的和谐美,激发学生对美的追求。
人教版数学九年级上册24.3 正多边形和圆教案
教学过程
1.导入新课
“同学们,我们今天要学习的内容是关于正多边形和圆的相关知识。在正式开始学习之前,我想请大家观察一下我们周围的物体,看看是否有圆和正多边形的影子。”
(4)让学生利用教具模型进行观察和操作,加深对正多边形和圆的理解。
(5)鼓励学生参加数学竞赛和相关活动,提高学生的数学素养。
(6)建议学生在课后进行小组讨论,共同探讨正多边形和圆在现实生活中的应用,提高合作能力。
教学反思
今天讲授的是人教版数学九年级上册第24章《正多边形和圆》,这节课是九年级数学的重要内容,也是学生对几何图形认识的一次质的飞跃。在课后,我对本节课的教学进行了深刻的反思,有以下几点体会:
然而,我也发现了一些不足之处。在教学过程中,我发现部分学生在理解圆的定义和性质时存在一定的困难。对于这部分学生,我需要采取更加直观的教学方法,如利用实物模型、几何画板等教学媒体,帮助他们更好地理解圆的相关概念。此外,在课堂互动环节,我也要注意调动每一个学生的积极性,让每一个学生都能参与到课堂讨论中来,提高他们的合作能力。
5.课堂小结
“通过本节课的学习,我们了解了正多边形和圆的定义、性质和关系。希望大家能够将这些知识运用到实际生活中,不断提高自己的数学素养。”
(教师引导学生总结本节课6.课后作业
“请大家完成课后练习第2、3题,并预习下一节课的内容。”
(教师布置课后作业,为下一节课的学习做好铺垫。)
教学方法与策略
1.选择适合教学目标和学习者特点的教学方法:本节课的教学方法主要包括讲授法、直观演示法、小组合作探究法和实践活动法。通过讲授法向学生传授圆和正多边形的基本性质,直观演示法帮助学生形成清晰的表象,小组合作探究法鼓励学生共同探讨问题,实践活动法让学生动手操作,加深对知识的理解。
九年级数学上册24.3正多边形和圆学案(无答案)新人教版
24.3 正多边形和圆姓名:班级:组别:评定等级【自主学习】(一)复习巩固1。
等边三角形的边、角各有什么性质?2. 正方形的边、角各有什么性质?(二)新知导学1。
各边,各角的多边形是正多边形.2.正多边形的外接圆(或内切圆)的圆心叫做 ,外接圆的半径叫做,内切圆的半径做.正多边形各边所对的外接圆的圆心角都.正多边形每一边所对的外接圆的圆心角叫做.正n边形的每个中心角都等于.3. 正多边形都是对称图形,正n边形有条对称轴;正数边形是中心对称图形,对称中心就是正多边形的,正数边形既是中心对称图形,又是轴对称图形。
【合作探究】1。
问题:用直尺和圆规作出正方形,正六边形。
【自我检测】1.正方形ABC D的外接圆圆心O叫做正方形ABCD的______.2.正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______.3.若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.4.正n 边形的一个外角度数与它的______角的度数相等.5.已知三角形的两边长分别是方程0232=+-x x 的两根,第三边的长是方程03522=+-x x 的根,求这个三角形的周长.6.如图,PA 和PB 分别与⊙O 相切于A ,B 两点,作直径AC,并延长交PB 于点D .连结OP ,CB .求证:OP ∥CB ;尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be someunsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
2019-2020学年九年级数学《正多边形和圆》教案.doc
2019-2020学年九年级数学《正多边形和圆》教案主备人课时一课时分管领导验收结果教学目标知识与技能1、了解正多边形和圆的关系,了解正多边形的中心、半径、边心距、中心角等概念。
2.能运用正多边形的知识解决圆的有关计算问题。
重点:探索正多边形与圆的关系,了解正多边形的有关概念,并能进行计算。
难点:探索正多边形与圆的关系。
教学过程教师活动学生活动一.创设情境,导入新课:观察下列美丽图案(课本图24.3—1)回答问题:(1)这些美丽的图案,都是在日常生活中我们经常看到的得用正多边形得到的物体,你能从这些图案中找出正多边形来吗?(2)你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?二.自主探究问题1:将一个圆分成五等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是请你证明这个结论。
问题2:如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?学生观察图案,思考并指出找到的正多边形学生讨论、交流、发表各自见解。
学生完成证明过程。
学生思考,同学间交流,回答问题。
问题3:各边相等的圆内接多边形是正多边形吗?各角相等的圆内接正多边形呢?如果是,说明为什么,如果不是,举出反例。
归纳总结一个正多边形的外接圆的圆心叫做这个多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.中心到正多边形的一边的距离叫做正多边形的边心距.三.尝试应用1.课本例题,有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(精确到0.1m)2.完成下表中有关正多边形的计算:正多边形边数内角中心角半径边长边心距周长面积3 234 16 3四.补偿提高3.课本练习1、2、31.同步学习P70开放性作业:1、2、3、4、6、7、8题学生讨论,思考回答学生看图(课本图24.3—3)理解概念学生画出正六边形图形,完成例题1的解答,总结这一类问题的求解方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、示标:了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形.
重(难)点预见:应用多边形和圆的有关知识计算及画多边形
二、自学P104-106
三、互学
1.复习
(1)什么叫正多边形?
(2)从你身边举出两三个正多边形的实例,正多边形具有轴对称、•中心对称吗?其对称轴有几条,对称中心是哪一点?
2、自主学习:自学教材104--- 105页思考下列问题:
1、正多边形和圆有什么关系?
只要把一个圆分成的一些弧,就可以作出这个圆的,这个圆就是这个正多边形的。
2、通过教材图形,识别什么叫正多边形的中心、正多边形的中心角、正多边形的边心距?
3、计算一下正五边形的中心角时多少?正五边形的一个内角是多少?正五边形的一个外角是多少?正六边形呢?
四、导学
1、通过上述计算,说明正n边形的一个内角的度数是多少?中心角呢?正多边形的中心角与外角的大小有什么关系?
2、如何利用等分圆弧的方法来作正n边形?
方法一、用量角器作一个等于的圆心角。
方法二、正六边形、正三角形、正十二边形等特殊正多边形的作法?
五、测标:
1.如图1所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().
A.60° B.45° C.30° D.22.5°
D
C A
B
(1) (2) (3)
2.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是().
A.36° B.60° C.72° D.108°
3.若半径为5cm的一段弧长等于半径为2cm的圆的周长,•则这段弧所对的圆心角为()
A.18° B.36°C.72° D.144°
4.已知正六边形边长为a,则它的内切圆面积为_______.
5.如图2,在△ABC中,∠ACB=90°,∠B=15°,以C为圆心,CA长为半径的圆交AB于D,若AC=6,则AD 的长为________.
六、小结
1.正多边和圆的有关概念:正多边形的中心,正多边形的半径,•正多边形的中心角,正多边的边心距.2.正多边形的半径、正多边形的中心角、边长、•正多边的边心距之间的等量关系.
七、补标:
1.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,•求正六边形的周长和面积.
(分析:要求正六边形的周长,只要求AB的长,已知条件是外接圆半径,因此
自然
而然,边长应与半径挂上钩,很自然应连接OA,过O点作OM⊥AB垂于M,在Rt △AOM•中便可求得AM,又应用垂径定理可求得AB的长.正六边形的面积是由六块正三角形面积组成的)
2.利用你手中的工具画一个边长为3cm的正五边形.
八、作业
D E
B A
O
M
用心爱心专心 1
1.四边形ABCD为⊙O的内接梯形,如图3所示,AB∥CD,且CD为直径,•如果⊙O的半径等于r,∠C=60°,那图中△OAB的边长AB是______;△ODA的周长是_______;∠BOC的度数是________.
2、.如图所示,•已知⊙O•的周长等于6 cm,•求以它的半径为边长的正六边形ABCDEF的
面积.
九、预习:下一节内容
教学反思:
用心爱心专心 2。