(完整版)VOLTERTP丢包率参数实验专项报告
VOLTE TA调整优化RTP丢包率

VOLTE TA调整优化RTP丢包率2019年9月目录一、问题描述 (2)二、分析过程 (2)三、解决措施 (7)四、经验总结 (8)【摘要】广州中兴区域某宏站小区RTP严重丢包,UE在较短的一段时间内多次成功收到大小相近的TA调整命令,最终导致UE的上行TA调整出错,上行链路性能恶化,基站收不到UE发来的PUSCH上的语音数据,使得语音数据RTP丢包严重。
通过修改TA调整维护代码,对下行PDSCH的HARQfail做进一步判断,当该HARQfail属于上述“假HARQfail”时,需要将历史值清空为初始值,来保证实际上已经传输成功的TA调整值不在参与TA值计算。
通过这种保护,可以解决该问题。
【关键字】RTP丢包、TA调整、【业务类别】丢包率优化一、问题描述广州中兴区域某宏站小区RTP严重丢包,分析UE LOG时发现,UE在较短的一段时间内多次成功收到大小相近的TA调整命令,最终导致UE的上行TA调整出错,上行链路性能恶化,基站收不到UE发来的PUSCH上的语音数据,使得语音数据RTP丢包严重。
上行链路NI 高(如达到-90dBm)会较容易导致该问题发生,UE反馈的带TA的PDSCH的ACK基站没有解对,且对应的所有重传的PDSCH的ACK基站也没有解对。
一旦进入TA调偏,就进入了一个恶性循环,这个问题就会出现。
二、分析过程广州VoLTE定点测试中,发现终端在某宏站小区下,RTP严重丢包。
问题复现:为了排查问题,用MATE 10终端连接QXDM按三方测试规范进行测试抓LOG,再次复现了UE的RTP丢包问题,情况说明如下:1.4_0414-144954896_source_1.MDM:source1有TA连续下发,source2接收端看丢包率69%2.4_0414-144954896_source_2.MDM:source2有TA连续下发,source1接收端看丢包率48%3.2_0414-141339280_source_1.MDM:source1有TA连续下发,source2接收端看丢包率74%进一步分析UE log发现UE在较短的一段时间内多次成功收到大小相近的TA调整命令,最终导致UE的上行TA调整出错,上行链路性能恶化,但是此时TAT定时器没有超时,导致上行链路的PUSCH、PUCCH和SRS发射时间调整出错。
VOLTE问题分析RTP丢包率

RTP丢包率问题分析一、问题分析1、弱覆盖:主要由于道路弱覆盖RSRP持续偏低,导致RTP丢包率偏高;现网部分路段由于覆盖较差,导致SINR值较高,无线环境不良,UE在此路段建立通话时,存在一定程度丢包现象。
●网格6被叫UE京杭运河A1路段时,由于该道路缺少站点覆盖,UE占用Z730046中山大厦_2小区,RSRP在-116左右SINR在-9左右属于弱覆盖路段,UE不断发送测量报告触发A3事件。
在此期间对RTP丢包率影响较大,该路段丢包率为24.13%。
优化建议:该区域缺少基站覆盖,需要新建站点解决弱覆盖问题。
●网格6被叫UE在进过纵一路由南往北行驶途中,UE占用Z736782嘉兴梁林帆影庄南_1小区,随着UE与该小区距离不断增加,UE最终在13:34:17.014重选到G网,此时UE的RSRP为-116.18,SINR为-7.8。
在此期间对RTP丢包率影响较大,该路段丢包率为6.6%。
优化建议:该区域缺少基站覆盖,需要新建站点解决弱覆盖问题,结合北边A1路段的弱覆盖情况,可以再紫色区域新建站点解决此路段弱覆盖问题。
网格4被叫UE在中港路由东往西行驶过程中,经过与云东路交叉的十字路口后信号变差,此时UE占用Z730391嘉兴中港城东区_2小区,信号不断衰弱到RSRP位-109.87,邻区列表中也无较强信号小区。
在此期间对RTP丢包率影响较大,该路段丢包率为4.84%。
优化建议:该路段可能存在遮挡情况,可以通过现场核实后进行天馈调整来增强该路段的信号覆盖。
DCP分析:扫频此段路Z730391嘉兴中港城东区_2小区最低-99(个别点),基本在-89至-93只能。
建议从切换重选门限值去考虑。
2、Mod3干扰:问题路段,进行无线干扰优化提升指标。
网格4 Mod3干扰问题:由于MOD3干扰,被叫UE行驶至该路段时,Z730261嘉兴江淮汽车_1 PCI 44与Z730127嘉兴国际电器城_3 PCI 395,存在Mod3干扰影响UE正常切换,在此期间RTP丢包率达到40%较为严重,影响整体指标。
(完整版)VOLTERTP丢包率参数实验专项报告

RTP丢包率参数实验专项报告目录1、实验背景 (3)2、参数介绍及实验思路 (3)2.1参数介绍 (3)2.2实验思路 (3)3、参数实验准备工作及调整情况 (4)3.1实验路线及方法 (4)3.2测试规范及要求 (4)3.3涉及相关参数调整实验方案 (4)4、实验效果统计对比 (5)4.1DT语音业务测试效果验证对比 (5)4.2KPI统计指标对比 (8)5、参数实验总结及建议 (9)5.1实验总结 (9)5.2调整建议 (9)1、实验背景根据VoLTE网络质量提升百日会战的要求,为提升VoLTE语音DT测试指标,提升用户感知,对可能与测试指标相关联的参数进行分析研究,通过对相应参数的调整实验寻找合适于网络需求的参数优化值,提升DT测试中各项指标;此次参数实验主要是针对VoLTE语音DT测试指标中的RTP丢包率相关的参数PDCPPROF101TDISCARD,期望通过对该参数的调整试验,同时观察对其他指标的影响,找到有益于指标和感知的实验值。
2、参数介绍及实验思路2.1参数介绍参数ID:PDCPPROF101TDISCARD含义:该参数表示PDCP丢弃定时器的大小界面取值范围:100ms(0),150ms(1),300ms(2),500ms(3),750ms(4),1500ms(5),infinity(6)缺省值:QCI 1取值100现网值: QCI 1现网取值为100影响范围:基站级,该参数修改不需要闭站,操作不影响业务。
附RTP丢包率公式:RTP丢包率=(发送RTP数-接收到RTP数)/发送RTP数×100%;2.2实验思路在无线质量较好的情况下基本无丢包,而在无线质量较差的情况下上行丢包现象较为严重,PDCP重传时间超时,数据包将被丢弃,从而影响RTP丢包率指标和用户感知;若将PDCP丢弃定时器调整增大,则可使在无线质量差的环境中一定程度概率上改善丢包情况,但若PDCP丢弃定时器调整增大可能存在影响RTP抖动指标变大,而RTP抖动过大会影响用户感知;因此需对该参数进行各种实验调整统计对比,各种设置下RTP丢包率、RTP抖动等指标的变化情况。
VOLTE问题分析RTP丢包率

RTP丢包率问题分析一、问题描述第一轮VOLTE测试工作已完成,通过后台指标统计发现全网RTP丢包率为1.98%,导致该指标的原因主要有4点:基站故障、弱覆盖、无线干扰、重叠覆盖;为此对全网丢包率较高的路段、小区进行问题分析及处理。
二、问题分析1、基站故障:主要由于基站退服导致主被叫呼叫建立时延较久或建立失败,导致RTP丢包率偏高;●主叫UE在集宁朗庭洗浴中心附近时,由于集宁朗庭洗浴-ZLHF退服导致UE占用集宁多经办-2小区,RSRP为-120.56dbm,SINR为-1.6,集宁多经办-2小区信号达到-110dbm以下,开始启动Event A2系统测量,进行B2切换,集宁多经办-2小区切换至2G小区,但是通过层3信令提示“cs-FallbackIndicator= false“说明重选2G失败,导致被叫脱网,在此期间对RTP丢包率影响较大,该路段丢包率为3.455%。
2、弱覆盖:现网部分路段由于覆盖较差,导致SINR值较高,无线环境不良,UE在此路段建立通话时,存在一定程度丢包现象。
●现网弱覆盖主要问题区域集中在4个地方,现已有规划街道站、新建站,目前尚未正式开通,具体区域及覆盖情况如下:3、无线干扰:本次VOLTE测试的主要受2方面影响,一是内部(MOD3)干扰;二是外部干扰器;导致呼叫建立时延较久,RTP丢包率较大;通过对主要路段进行分析确定问题路段,进行无线干扰优化提升指标。
●内部Mod3干扰问题:由于MOD3干扰,主叫UE行驶至该路段时,由集宁联通-3小区切换至集宁博物馆-3小区,并在完成RRC建立、ERAB建立及EPS 承载建立后,开始频繁切换2次(集宁博物馆-3→集宁联通-3→集宁教育局2),在此期间RTP丢包率较差,影响整体指标。
●外部干扰问题:由于外部干扰导致RTP丢包率较大路段一处;位于杜尔伯特路与迎宾路交叉口(集宁一中校区)时,由于上行干扰主叫UE未能正常切换至2G网络,引起掉话;在此期间RTP丢包率较大,主叫被迫脱网。
精品案例-关于高铁VoLTE RTP丢包率问题处理总结

关于高铁VoLTE RTP丢包率问题处理总结一、问题描述在针对上海的高铁VOLTE测试中,发现高铁的VOLTE的RTP丢包率异常高,尤其是在B1/B3的频段下,RTP丢包率高达16%以上,及其不正常。
B5的丢包率也在13%以上。
二、分析处理过程2.1原理分析从原理上分析,造成RTP丢包率高的原因主要有以下几个:2.2t-discarding timer分析分析发现网络设置的t-discarding timer为100ms,综合丢包率这么高,建议将t-discarding timer设置为300ms,用来减少RTP的丢包问题。
t-discarding timer主要作用是用于限定业务包的传输时间,当传输时间超过该定时器长度,将丢弃超时的业务包,造成RTP丢包率高。
2.3无限链路失败分析无线链路失败容易造成RTP的高丢包率,通过分析RSRP、SINR和RTP丢包率之间的关系,可以发现:当RSRP、SINR交差,很容易造成无线链路失败,造成RTP 丢包率高。
2.4低速场景下的RTP丢包率分析由于上海高铁的RTP丢包率异常高,怀疑除无线原因以外,应该还有更加主要的原因,因此我们在低速场景下进行测试,验证其RTP丢包率异常高与无线环境关系不大。
在高铁站台进行徒步测试,发现在站点区域RTP丢包率依然比较高,达到了8%左右。
统计分析站台的测试log,发现RTP丢包的规律如下:在本次测试中,共丢失了1770个RTP包,但是只有50个RTP丢包是连续发生的,1720个丢包都是只丢弃了1个包的情况,因此可以明确造成RTP丢包率异常高的原因并非无线环境。
原因有二:1)无线环境造成的丢包一般都是连续丢包,2)站台测试无线环境相对稳定。
2.5 RTP丢包空口详细分析由于本次测试未能跟踪eNodeB的log,因此采用无线的TX端和RX端两端进行联合分析。
TX端:分析发现,在RTP丢包的时候,TX端上发的包都是连续的,并且有ACK 的应答消息,因此可以判断,TX到eNodeB之间的链路没有问题,消息没有在上行的空口丢失。
VOLTE专项优化总结材料报告材料_瞿州

衢州VOLTE专项优化总结报告1.VoLTE网络规模概述2.VoLTE网络优化总体情况3.VoLTE专项优化专题1:丢包率优化1、丢包率修改参数prohibitPHRti mer sf0 sf100该参数控制周期性发送PHR的禁止周期PHR上报不需要这么短时间,功控没有这么频繁,同时可以节省上行资源,给VOIP数据提供更多的资源,减少由于资源不足而丢包的概率macHARQMaxNumberOfTransmis sionDl 2 5该参数控制下行Harq层的重传次数默认模板里对应QCI1承载的下行Harq重传配置的过于保守,导致一次重传失败后就会harq failure导致丢包,适当增大这个参数,可以增强在中差点的鲁棒性logicalChannelPrioritizedB itRateUL kBps8 kBps16该参数控制上行逻辑信道的PrioritizedBitRate适当增大QCI1承载上行逻辑信道的优先级,使QCI1 bear的传输得到更好的保障,降低丢包率logicalChannelbucketSizeDu rationUL ms50 ms100该参数控制上行逻辑信道的bucketSizeDuration适当增大QCI1承载上行逻辑信道的缓冲区大小,使QCI1 bear的传输得到更好的保障,降低丢包率filterCoeffic ient <unset>FC6该参数控制UE计算RSRP采用的滤波因子值每个场景该值都可以不同,为了更好的平滑计算出UE的路损,通过测试调整该值。
如果估计出的路损越接近实际值,丢包率越小xtable {0,8000,10000,20000,…}{0,500,10000,20000,…}该参数定义系统中FnFunction的x轴默认定义没有针对volte的小包业务进行优化,采用普通数据业务模型参数,需要修改ytable {1,100,400,400,…}{0,400,400,400}该参数定义系统中FnFunction的Y轴默认定义没有针对volte的小包业务进行优化,采用普通数据业务模型参数,需要修改activeToInactiveSpeechThre sholdUl 3 5该参数控制UE从“SpeechActive”到“SpeechInactive”状态的转换阈值优化系统内部对于UE volte状态判断speechActivityObservationW indow Ms60 Ms100该参数控制决定UE是“SpeechActive”还是“SpeechInactive”的观察窗口大小优化系统内部对于UE volte状态判断V O LTE丢包率优化参数.xl sx2、下表是衢州东港区域参数修改前后的丢包率指标统计,数据显示丢包率降低一倍。
0710VoLTE通话过程中丢包分析

VoLTE通话过程中丢包问题分析一、数据统计1.丢包总数根据QXDM统计,全过程丢包数为:主叫终端发出总包数-被叫终端接收总包数+被叫终端统计丢包数。
将计算结果统计后汇总如图所示:2.炎强平台统计主叫上行SGI总包数,上行SGI丢包数;被叫下行SGI总包数,下行SGI丢包数,如图所示:3.网管统计基站侧被叫下行S1-u丢包数统计,如下图所示 :4.根据网管统计主叫上行空口丢包数;被叫下行空口丢包数如下图所示:二、问题分析如上图所示,终端在进行VoLTE 通话时,数据包经过空口传输到主叫侧基站,经过传输到核心网SGW,PGW,IMS,再经过传输到被叫侧基站,经过空口被被叫终端接收。
对测试的5通电话进行分析: 第一通:通话过程中总丢包数为1个,QXDM统计主叫终端共发出2171个包;被叫下行SGI统计总包数为2171,丢包数为0个。
由此可知丢包发生在被叫SGI口之后。
QXDM统计被叫终端接收到2170个包,丢包数为0,被叫空口统计丢包为0,S1-u统计丢包为0,可知丢包发生在下行IMS到基站过程中,丢了1个包。
第二通:通话过程中总包数为5个,QXDM统计主叫发出3076个包,SGI上行统计总包数为3076个,丢包4个,上行空口统计丢包为2个,由此可知主叫终端到IMS过程中丢包数为2个;QXDM统计被叫终端下行被叫共收到3075个包,丢包为4个,SGI下行统计总包数为3076,丢包为4个,可知由IMS至下行终端过程中丢了1个包,根据空口统计丢包数为0个,S1-u口统计丢包数为4个,可知丢包发生在被叫IMS至基站侧过程中,丢包数为1个。
第三通:根据QXDM显示主叫上行ACK后共发包1836个包,上行SGI统计收到1836个包,丢包1个。
上行空口统计丢包0个,由此可知主叫终端到IMS SGI口过程中发生丢包,丢包为1个。
下行SGI统计发出1836个包,QXDM统计被叫终端下行收到1835个包,下行SGI口到终端发生丢包为1个,由于下行空口统计丢包数为0,由此可知丢包发生在下行SGI 口到基站的过程中。
完整word版,volte丢包率TOP小区处理

volte丢包率TOP小区处理2016年7月目录一、概述 (3)二、volte丢包率高TOP小区处理流程 (8)三、丢包率高TOP小区处理案例 (8)1.选择丢包率高TOP小区 (8)2.提取相关联指标项 (9)3. 实施处理 (9)3.1 下行丢包率高TOP小区处理 (9)3.2 上行丢包率高TOP小区处理 (11)四、TOP小区处理总结 (12)一、概述上下行语音丢包率是是表征VoLTE业务的一个重要指标,与时延,抖动是影响VOLTE 语音质量的三大因素之一。
监控,优化,提升上下行语音丢包率可以辅助VOLTE用户语音感知质量的提升。
PDCP层丢包对语音感知影响VOLTE业务与GU业务不同,LTE走PS域,通过不同QCI承载来进行QoS保障,影响其VOLTE 语音质量的关键指标为丢包,时延,抖动,其中丢包对MOS值基本是线性分布,一般丢包率在1%以内,MOS分都比较好;一旦丢包率大于1%后,MOS分明显下降,语音质量将会受到影响。
丢包率定义和影响因素指标定义:VOLTE语音包关联指标分析举例如下:若出现PUSCH MCS0阶占比和PDSCH MCS0阶占比同时恶化,弱覆盖导致的可能性较大。
根据关键指标关联,分析用户数问题根据如下话统信息,判断终端所处小区的负载情况,判断是否小区语音负载大,导致不能及时调度用户,带来PDCP层丢包;空口丢包原理上行空口丢包统计原理:主要影响因素:上行调度不及时,如图中的1,会导致UE PDCP层的丢弃定时器超时,但现网值是集团规范值,不存在该问题。
空口传输质量差,如图中2,MAC层多次传输错误导致丢包。
上行空口丢包统计原理:主要影响因素:下行丢包基本上是用户处于小区弱覆盖区域。
常见PDCP层丢包原因总结常见PDCP层丢包处理总体思路VOLTE语音包分析常规动作1.KPI定义以及公式核查2.问题范围,KPI趋势和话统原因分析:通过话统排查丢包区域,确认是全网问题还是TOP小区问题,如果是TOP小区问题就需要进一步排查该小区的配置,操作记录和参数差异等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RTP丢包率参数实验专项报告目录1、实验背景 (3)2、参数介绍及实验思路 (3)2.1参数介绍 (3)2.2实验思路 (3)3、参数实验准备工作及调整情况 (4)3.1实验路线及方法 (4)3.2测试规范及要求 (4)3.3涉及相关参数调整实验方案 (4)4、实验效果统计对比 (5)4.1DT语音业务测试效果验证对比 (5)4.2KPI统计指标对比 (8)5、参数实验总结及建议 (9)5.1实验总结 (9)5.2调整建议 (9)1、实验背景根据VoLTE网络质量提升百日会战的要求,为提升VoLTE语音DT测试指标,提升用户感知,对可能与测试指标相关联的参数进行分析研究,通过对相应参数的调整实验寻找合适于网络需求的参数优化值,提升DT测试中各项指标;此次参数实验主要是针对VoLTE语音DT测试指标中的RTP丢包率相关的参数PDCPPROF101TDISCARD,期望通过对该参数的调整试验,同时观察对其他指标的影响,找到有益于指标和感知的实验值。
2、参数介绍及实验思路2.1参数介绍参数ID:PDCPPROF101TDISCARD含义:该参数表示PDCP丢弃定时器的大小界面取值范围:100ms(0),150ms(1),300ms(2),500ms(3),750ms(4),1500ms(5),infinity(6)缺省值:QCI 1取值100现网值: QCI 1现网取值为100影响范围:基站级,该参数修改不需要闭站,操作不影响业务。
附RTP丢包率公式:RTP丢包率=(发送RTP数-接收到RTP数)/发送RTP数×100%;2.2实验思路在无线质量较好的情况下基本无丢包,而在无线质量较差的情况下上行丢包现象较为严重,PDCP重传时间超时,数据包将被丢弃,从而影响RTP丢包率指标和用户感知;若将PDCP丢弃定时器调整增大,则可使在无线质量差的环境中一定程度概率上改善丢包情况,但若PDCP丢弃定时器调整增大可能存在影响RTP抖动指标变大,而RTP抖动过大会影响用户感知;因此需对该参数进行各种实验调整统计对比,各种设置下RTP丢包率、RTP抖动等指标的变化情况。
3、参数实验准备工作及调整情况3.1实验路线及方法参数实验区域选择在分公司网格2内,实验路线约38km,进行区域内道路DT测试(测试时间约1小时),减少指标波动几率。
验证区域道路共涉及小区62个,全部F频段。
3.2测试规范及要求在集团平台配置、下发测试计划,测试VoLTE,分析不同参数下volte业务情况,进行对比分析。
➢VoLTE:集团要求的测试方法,每次通话时长180秒,呼叫间隔30秒。
3.3涉及相关参数调整实验方案此次参数实验主要针对VoLTE业务专载QCI的pdcpProf101tDiscard等相关参数参数进行调整验证。
pdcpProf101tDiscard LNBTS计划验证参数配置如下:参数配置1 配置2 配置3 配置4 配置5 pdcpProf101tDiscard 100ms 300ms 500ms 750ms infinity 根据验证情况进行参数微调、增减参数配置并验证效果。
4、实验效果统计对比本次实验从DT测试和KPI统计两个方面验证参数修改的效果,从验证结果来看,增大pdcpProf101tDiscard参数设置对RTP丢包率改善明显,RTP抖动等指标无明显变化,并且对KPI统计指标无影响;测试效果对比1、P dcpProf101tDiscard参数设置修改实验测试验证结果显示,随着参数设置增大VoLTE丢包率提升明显,相比现网设置丢包率从1.15%(参数设置为100ms),到0.59%(参数设置为750ms),提升到0.4%(参数设置为infinity);2、RTP抖动指标在PdcpProf101tDiscard参数实验前后无明显变化,参数设置为100ms时RTP抖动为16.35,参数设置为750ms时RTP抖动为16.54,参数设置为infinity时RTP抖动为16.39,一直在16—17之间正常范围内波动;3、参数实验前后VoLTE接通率、IMS注册成功率等指标一直比较好均为100%,VoLTE掉话率指标因无线环境原因前后有所波动,MOS3.0以上占比受掉话影响有所波动, MOS均值指标虽受掉话影响但随着随着参数增大调整实验指标仍然得到提升,从3.18提升至3.25。
KPI指标对比:PdcpProf101tDiscard参数修改前后各项指标均保持平稳,E_RAB建立成功率QCI1保持100%不变,QCI1无线接通率维持在99.8%以上。
详细统计分析情况如下:4.1DT语音业务测试效果验证对比测试各项统计指标情况如下表:pdcpProf101tDi scard参数设置接通率(%)掉话率(%)eSRVCC成功率(%)eSRVCC切换时延-用户面(ms)呼叫建立时延(s)IMS注册成功率(%)MOS3.0以上占比RTP丢包率(%)MOS均值RTP抖动(ms)目标值>97 <1 >97 350 4 98 85 0.7 - -备注:本次测试中未出现eSRVCC切换,故eSRVCC相关统计为空。
从表中的各项DT测试指标来看,调整pdcpProf101tDiscard参数对呼叫建立时延、RTP抖动无明显影响,对MOS均值略有改善,但对RTP丢包率改善明显,RTP丢包率从1.15%提升至0.4%,提升幅度达到65.22%。
测试各项统计指标情况图形化对比如下图:RTP丢包率与RTP抖动指标统计对比从图中可以看出,pdcpProf101tDiscard参数设置对RTP抖动影响并不大,RTP抖动指标有波动,其中pdcpProf101tDiscard参数设置为100ms时RTP抖动为16.35,在参数设置为300ms时RTP抖动为16.53,在参数设置为500ms时RTP 抖动为16.85,在参数设置为750时RTP抖动为16.54,在参数设置为infinity 时RTP抖动为16.39,RTP抖动指标正常波动,和pdcpProf101tDiscard参数增大并未出现一致性,可以判断pdcpProf101tDiscard参数设置对DT测试指标RTP 抖动影响不明显。
RTP丢包与MOS均值统计对比从上图可以看出不同pdcpProf101tDiscard参数设置情况下,MOS均值走势平稳并稍有改善,从 3.18逐渐改善至 3.25,RTP丢包率改善趋势明显,pdcpProf101tDiscard参数设置为100ms时RTP丢包率为1.15%,设置为300ms 时丢包率为0.75%,设置为500ms时丢包率为0.62%,设置为750ms时丢包率为0.59%,设置为infinity时丢包率为0.4%,从1.15%至0.4%提升幅度超过了60%,由此可以确定增大pdcpProf101tDiscard参数设置对DT测试指标RTP丢包率提升很大。
其他各项测试指标情况从上图可以看出,参数实验前后VoLTE接通率、IMS注册成功率等指标一直比较好均为100%,VoLTE掉话率指标因无线环境原因前后有所波动,MOS3.0以上占比受掉话影响有所波动, MOS均值指标虽受掉话影响但随着随着参数增大调整实验指标仍然得到提升,从3.18提升至3.25。
测试指标统计对比结论:pdcpProf101tDiscard参数设置修改实验测试验证结果显示,随着参数设置增大VoLTE丢包率提升明显,相比现网设置丢包率从1.15%提升到0.4%,参数设置的变动对测试MOS均值略有改善,并且对RTP抖动指标影响不明显,其他测试指标随无线环境变化正常波动。
4.2KPI统计指标对比从表中指标对比来看,参数修改前后各项指标均保持平稳,E_RAB建立成功率QCI1保持100%不变,QCI1无线接通率维持在99.8%以上。
从图中可以看出,不同参数设置下E_RAB建立成功率QCI1保持100%不变,QCI1无线接通率维持在99.8%以上。
KPI指标对比结论:参数修改前后各项KPI统计指标保持稳定;5、参数实验总结及建议5.1实验总结通过本次PdcpProf101tDiscard参数修改实验及DT测试验证,并结合KPI统计对比,对本次实验结果进行归纳总结如下:1、RTP丢包率提升明显:PdcpProf101tDiscard参数设置修改实验测试验证结果显示,随着参数设置增大RTP丢包率提升明显,相比现网设置RTP丢包率从1.15%(实验参数设置为100ms时),到0.59%(实验参数设置为750ms时),提升到0.4%(实验参数设置为infinity时);2、RTP抖动无明显变化:RTP抖动指标在PdcpProf101tDiscard参数实验前后无明显变化,参数设置为100ms时RTP抖动为16.35,参数设置为750ms时RTP 抖动为16.54,参数设置为infinity时RTP抖动为16.39,一直在16—17之间正常范围内波动;3、其他测试指标正常波动:参数实验前后其他测试指标受无线环境变化影响在正常范围内波动,无明显异常波动现象;4、KPI指标保持平稳:PdcpProf101tDiscard参数实验修改前后经统计各项KPI 指标均保持平稳,无明显异常波动情况。
5.2调整建议根据此次pdcpProf101tDiscard参数实验统计对比情况看,建议对该网络参数pdcpProf101tDiscard设置为750ms优化调整,这样既可以明显提升RTP丢包率测试指标,又对RTP抖动等测试指标及KPI指标无明显影响。