药剂学第十八章制剂新技术(第2节包合技术)

合集下载

药剂学第十八章制剂新技术第2节包合技术

药剂学第十八章制剂新技术第2节包合技术
• 如果将甲基、乙基、羟丙基、羟乙基等 基团引入到β-CD分子中与羟基进行烷基 化反应(例如形成羟丙基-β-CD),可 以破坏分子内氢键的形成,使β-CD的理 化性质特别是水溶性发生显著改变。
28.02.2021
药剂学
14
28.02.2021
β-环糊药精剂学 的衍生物
15
•衍生化反应的类型
①烷基化:如β-CD与硫酸二甲酯(或溴 甲烷)在40OC条件下生成甲基化衍生物: 二甲基-β-CD或三甲基-β-CD ;
28.02.2021
药剂学
37
(九)溶出度法
• 溶出度法不仅用于包合物的生成,也 可以证实或评价形成包合物的增溶效 果,其方法是通过绘制溶解度曲线进 行判断。
• 通过测定药物在不同浓度的环糊精溶
液中的溶解度,绘制溶解度曲线。以
药物浓度为纵坐标,环糊精浓度为横
坐标作相溶解度图。从曲线上判断是
否生成包合物。 28.02.2021
28.02.2021
药剂学
9
环糊精包封药物的立体结构
伯羟基
28.02.2021
药仲剂羟学基
10
• β-CD在室温下水中溶解度仅为1.85% (w/v),其水溶性比没有环合的低聚 糖同分异构体要低得多,其原因是: β-CD是晶体,其晶格能高,故水溶性差; β-CD的仲羟基形成分子内氢键,使其 与周围水分子形成氢键的可能性下降, 故水溶性差。
药剂学
6
二、包合材料
(一) 环糊精
• 环糊精(Cyclodextrin, CD)系淀 粉经酶解环合后得到的由6~12个葡 萄糖分子连接而成的环状低聚糖化 合物。
• 常见的环糊精是有6(或7、8)个葡
萄糖分子通过α-1,4苷键连接而成,

药剂学制剂新技术课件

药剂学制剂新技术课件

(三)X射线衍射法
射线衍射技术可以用于了解固体分散体 的分散性质。比较药物、载体、药物与 载体机械混合物和固体分散体的射线衍 射图谱,可确切了解药物的结晶性质及 结晶度大小。物理混合物的衍射图谱是 各组分衍射图谱的简单叠加,衍射峰位 置及强度无改变。药物在固体分散体中 以无定形状态存在,药物的结晶衍射峰 消失。
常用的载体材料有微晶纤维素、乳糖、 类、类等。
(六)双螺旋挤压法
将药物与载体材料置于双螺旋挤压机内, 经混合、捏制而成固体分散体,无需有 机溶剂,同时可用两种以上的载体材料, 制备温度可低于药物熔点和载体材料的 软化点,因此药物不易破坏,制得的固 体分散体稳定。
制备固体分散体的注意问题:
1.聚乙二醇类 2.聚维酮类 3.表面活性剂类 4.有机酸类 5.糖类与醇类 6. 纤维素衍生物
1.聚乙二醇类
具有良好的水溶性(1∶2~1∶3),亦能 溶于多种有机溶剂,可使某些药物以分子 状态分散,可阻止i药物聚集。最常用的 4000和6000。它们的熔点低(55~65℃), 毒性较小。化学性质稳定(但180℃以上 分解),能与多种药物配伍。药物为油类 时,宜用分子量更高的类作载体,如 12000或6000与20000的混合物作载体。
将药物与载体材料共溶于溶剂中,然后 喷雾或冷冻干燥,除尽溶剂即得。
溶剂-喷雾干燥法可连续生产,溶剂常用 C14的低级醇或其他混合物。
溶剂冷冻干燥法适用于易分解或氧化、 对热不稳定的药物。
(五)研磨法
将药物与较大比例的载体材料混合后, 强力持久地研磨一定时间,不需加溶剂 而借助机械力降低药物的粒度,或使药 物与载体材料以氢键相结合,形成固体 分散体。研磨时间的长短因药物而异。
2.聚丙烯酸树脂类

药物制剂新技术知识点归纳总结

药物制剂新技术知识点归纳总结

药物制剂新技术第一节包合技术一、包合技术:指一种分子被包合嵌于另一种分子的空穴结构内,形成包合物的技术。

主分子客分子能否稳形成及是否稳定:取决于主、客分子的立体结构和二者极性。

包合物的稳定性:取决于两组分间的范德化力。

是物理过程,不是化学过程。

二、包合材料:(一)环糊精 CD:β-CD 水中溶解度最小,毒性很低。

(二)环糊精衍生物:1、水溶性环糊精衍生物:甲基、羟丙基、葡萄糖衍生物。

G-β-CD 常用,使难溶性药物溶解度增大,促进药物吸收,还作注射剂包合材料。

2、疏水性环糊精衍物物:乙基-β-CD,降低水溶性药物的溶解性,达到缓释作用。

三、包合作用的特点:1、药物与环糊精组成的包合作用:通常是单分子包合物,2、摩尔比是1:1 。

3、包合时对药物的要求:原子数大于5(稠环小于5),4、相对分子质量100―400,5、溶解度小于10g/L,6、熔点低于 250℃。

无机药物大多不宜用CD 包合。

7、药物的极性与缔合作用影响包合作用:4、包合作用具竟争性四、常用包合技术:1、饱合水溶液法(重结晶法、共沉淀法)2、研磨法3、冷冻干燥法4、喷雾干燥法第二节固体分散技术一、固体分散技术:是固体分散在固体中的新技术,通常是一种难溶性药物以分子,胶态、微晶或无定型状态,分散在另一种水溶性、或难溶性、肠溶性材料中呈固体分散体系。

二、载体材料:吸收速率取决于溶出速率,溶出速率取决于载体材料的特性。

(一)、水溶性载体材料:1、聚乙二醇PEG:4000、60002、聚维酮PVP3、表面活性剂:Poloxamer1884、有机酸类5、糖类和醇类:半乳糖、甘露醇(二)难溶性载体材料:1、纤维素类:EC2、聚丙烯酸树酯类:Eudragit E、RL、RS3、其他:胆固醇等(三)肠溶性载体材料:1、纤维素类:CAP、HPMCP、CMEC(羧甲乙基纤维素)2、聚丙烯酸树酯类三、常用的固体分散技术:1、熔融法:关键是迅速冷却,适于对热稳定的药物。

药物制剂新技术详解演示文稿

药物制剂新技术详解演示文稿
合物。
《复方灵芝颗粒中白术挥发油-β-环糊精包合物的制备与表征》
1.白术油 2.白术油-β-CD包合物提取液 3.白术油-β-CD包合物乙醚洗脱 液
现在是28页\一共有67页\编辑于星期日
❖ 显微镜法 《尼群地平-β-环糊精包合物的制备与分析》
现在是29页\一共有67页\编辑于星期日
❖ 荧光光谱法
药物制剂新技术详 解演示文稿
现在是1页\一共有67页\编辑于星期日
(优选)药物制剂 新技术
现在是2页\一共有67页\编辑于星期日
药物剂型变革
▪ 第一代:是简单加工供口服与外用的膏丹丸散剂型 ▪ 第二代: 片剂、胶囊与气雾剂、注射剂 、透皮制剂:
药效监测 ▪ 第三代:缓、控释制剂:血药浓度检测 ▪ 第四代:靶向制剂:靶向做为检测指标 ▪ 第五代:反映时辰生物技术与生理节律同步的脉冲给药,
❖ 环糊精为碳水化合物,能被人体吸收、利用,进入机体后断链开环,形成直链低聚糖,参 予代谢,无积蓄作用,无毒。
现在是11页\一共有67页\编辑于星期日
三、β-环糊精包合的作用
1、增加药物的稳定性:防止其氧化、水解,减少挥发 2、增加药物的溶解度:鱼腥草素可增大 11.4倍 3、液体药物粉末化 4、减少刺激性,降低毒副作用,掩盖不适气味 5、调节释药速度 6、提高药物的生物利用度
根据所接受的反馈信息自动调节释放药物量的自调试给 药系统。
现在是3页\一共有67页\编辑于星期日
概述
剂型
新辅料
新技术
前处理新技术
制剂新技术
粉碎技术
提取浓缩技术
分离精制技术
现在是4页\一共有67页\编辑于星期日
干燥技术
制剂新技术
乳化技术
……

制剂新技术

制剂新技术

第十八章制剂新技术第一节固体分散技术一、概述固体分散体(solid dispersion)系指药物以分子、胶态、微晶等状态均匀分散在某一固态载体物质中所形成的分散体系。

将药物制成固体分散体所采用的制剂技术称为固体分散技术。

主要特点:1. 增加难溶性药物的溶解度和溶出速率,从而提高药物的生物利用度2. 控制药物释放;或控制药物于小肠释放3. 其次是利用载体的包蔽作用,可延缓药物的水解和氧化4. 掩盖药物的不良嗅味和刺激性;使液体药物固体化等。

主要缺点:药物分散状态的稳定性不高,久贮易产生老化现象。

二、载体材料固体分散体所用载体材料可分为水溶性载体材料、难溶性载体材料、肠溶性载体材料三大类。

(一)水溶性载体材料常用高分子聚合物、表面活性剂、有机酸以及糖类等。

1.聚乙二醇类最适宜用于固体分散体的分子量在1000到20000,熔点较低(55~65℃),毒性小。

化学性质稳定(但180℃以上分解),能与多种药物配伍。

不干扰药物的含量分析。

主要用于增加某些药物的溶出速率,提高药物的生物利用度(例子);也可PEG也可作为缓释固体分散体的载体材料(例子)。

溶出速度影响因素:主要受PEG分子量影响,一般随PEG分子量增大,药物溶出速度降低。

注意:药物为油类时,宜用分子量更高的PEG类作载体。

2.聚维酮类PVP对许多药物有较强的抑晶作用,作为载体材料具有普遍意义。

特点:用PVP制成固体分散体,其体外溶出度有明显提高,在体内起效快,生物利用度也有显著改善(例子)。

缺点:易吸湿,制成的固体分散物对湿的稳定性差,贮存过程中易吸湿而析出药物结晶(例子)。

3.表面活性剂类作为载体材料的表面活性剂大多含聚氧乙烯基,其特点是溶于水或有机溶剂,载药量大,在蒸发过程中可阻滞药物产生结晶,是较理想的速效载体材料。

常用的有泊洛沙姆188(poloxamer188),可大大提高溶出速率和生物利用度(例子)。

4.有机酸类枸橼酸、琥珀酸、酒石酸、胆酸、去氧胆酸等。

制剂新技术包合技术

制剂新技术包合技术

(三)客分子的极性
➢ 环糊精的空洞由碳-氢键和醚键构成的疏 水区,非极性脂溶性客分子能坚固地以疏 水键与主分子空洞中疏水键相互作用形成 包合物,但形成的包合物水溶性较小。
➢极性分子可与环糊精分子的羟基形成氢键, 所以只有嵌在环糊精的洞口亲水区,形成 的包合物水溶解度较大,另外可能还有分 子间的静电作用。总之包合作用有时是一 种力,而多数为几种力综合作用的结果。
• 经影响因素试验(如光照、高温、高湿度), 均比原药PMH稳定性提高;
• 经加速试验(37℃、RH75%),2个月时原药 外观、含量、降解产物均不合格,而包合 物3个月上述指标均合格,说明稳定性提高。
4.喷雾干燥法
• 适用于难溶性、疏水性药物,如地西泮与 βCYD用喷雾干燥法制得的包合物,环糊精 增加了地西泮的溶解度。
举例:
• 维A酸-βCYD包合物的制备: • 维A酸+βCYD按1:5摩尔比称量→将β-CYD
于50℃水浴中→用适量蒸馏水研成糊状。
• 维A酸用适量乙醚溶解+上述糊状液中→充 分研磨→挥去乙醚后糊状物已成半固体物 →将此物置于遮光的干燥器中进行减压干 燥数日→即得。
• 维A酸易受氧化,制成包合物可提高稳定性。
举例:
• 大蒜油-βCYD包合物的制备: • 按大蒜油和β-CYD投料比1:12称取大蒜油
→用少量乙醇稀释→在不断搅拌下→滴入 β→CYD饱和水溶液中→调节pH值约为5→ 在20℃搅拌5小时→所得混悬液冷藏放置→ 抽滤→真空干燥→即得白色粉末状包合物。
• 大蒜不良臭味基本上被遮盖。
2.研磨法
• 取β-CYD加入2~5倍量的水混合→研匀→ 加入药物(难溶性药物应先溶于有机溶剂中) →充分研磨至成糊状物→低温干燥后→再 用适宜的有机溶剂洗净→再干燥→即得。

药剂学-第16-18、20章制剂新技术

药剂学-第16-18、20章制剂新技术

第16-18、20章制剂新技术一、概念与名词解释1.固体分散体:2.包合物:3.纳米乳:4.微囊:5.微球:6.脂质体:7.β-环糊精:二、判断题(正确的填A,错误的填B)1.药物在固态溶液中是以分子状态分散的。

( )2.固体分散体的共沉淀物中的药物是以稳定晶型存在的。

( )3.在固体分散体的简单低共熔混合物中药物仅以较细微的晶体形式分散于载体材料中。

( )4.固体分散体都可以促进药物溶出。

( )5.固体分散体是药物以分子、胶态、微晶等均匀分散于另一种固态载体材料中所形成的分散体系。

( )6.固体分散体采用肠溶性载体,目的是增加难溶性药物的溶解度和溶出速率。

( ) 7.固体分散体利用载体材料的包蔽作用,可延缓药物的水解和氧化。

( )8.固体分散体能使液态药物粉末化。

( )9.固体分散体可掩盖药物的不良嗅味和刺激性。

( )10.难溶性药物与PEG 6000形成固体分散体后,药物的溶出加快。

( )11.某些载体材料有抑晶性,使药物以无定型状态分散于其中,可得共沉淀物。

( ) 12.药物为水溶性时,采用乙基纤维素为载体材料制备固体分散体,可使药物的溶出加快。

( )13.固体分散体的水溶性载体材料有PEG、PVP、外表活性剂类、聚丙烯酸树脂类等。

( ) 14.药物采用疏水性载体材料时,制成的固体分散体具缓释作用。

( )15.因为乙基纤维素不溶于水,所以不能用其制备固体分散体。

( )16.共沉淀物也称共蒸发物,是由药物与载体材料两者以一定比例所形成的非结晶性无定形物。

( )17.β—CD的水溶性较低,但引入羟丙基等基团可以破坏其分子氢键的形成,提高水溶性。

( )18.包合过程是化学反响。

( )19.在β-CD的空穴,非极性客分子更容易与疏水性空穴相互作用,因此疏水性药物、非解离型药物易被包合。

( )20.包合物系指一种分子被全部和局部包合于另一种分子的空穴结构,形成的特殊的络合物。

( )21.包合物具有缓释作用,故不能提高生物利用度。

16-药剂学-制剂新技术

16-药剂学-制剂新技术
1.纤维素 如乙基纤维素(EC) 形成氢键,较大粘度,不受pH影响 2.聚丙烯酸树脂类 胃液溶胀,肠液不溶,人体不吸收,无害 调节释药速率水溶性材料 PEG、PVP等 3.脂质类 胆固醇、β-谷甾醇、棕榈酸甘油酯、 胆固醇硬脂酸酯、 巴西棕榈蜡
(三)肠溶性载体材料
1.纤维素类 溶于肠液,适合酸不稳定药物 邻苯二甲酸醋酸纤维素(CAP)、 邻苯二甲酸羟丙甲纤维素(HPMCP) 2.聚丙烯酸树脂类 Eudragit L100 (国产Ⅱ号) Eudragit S100 (国产Ⅲ号) >pH6 >pH7
(一)溶解度及溶出速率 (二)热分析法 (三)X射线衍射法 (四)红外光谱法 (五)核磁共振谱法
固体分散体的稳定性
• 贮存不够稳定 变色、硬度变大、析出结晶、溶出度和生物利用度降低 • 贮藏条件 温度、湿度、时间 • • 优化制备工艺 载体材料 适合、复合载体、稳定剂
第二节 包合物制备技术
概述 包合材料 包合过程与药物释放 包合物的制备方法 包合物的验证
8 1297 0.+177.4° 232 棱柱状
β-环糊精在某些溶剂中的溶解度 (g/L)
温度(℃) 25 45
溶剂(ml) 水(ml) 甲 乙 丙 醇 醇 醇
0 1000 19 19 19 19 19 19 19 19
500 500 3.0 16.0 17.0 27.0 7.0 17.0 4.0 5.0
1000 0 <1.0 <1.0 <1.0 7.0 104 20.0 43.0 <1.0
0 1000 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0
500 500 12.0 41.0 53.0 81.0 21.0 44.0 15.0 13.0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

08.03.2021
整理ppt
3
③笼状包合物
• 是客分子进入由 几个主分子构成
的笼状晶格中而 成的包合物。
• 其空间完全闭合
且包接过程为非
化学结合,包合
物的形成主要取
决于主分子和客
分子的大小。
08.03.2021
整理ppt
4
④单分子包合物:
单分子包合物由单一的主分子和单一 的客分子形成包合物。例如环糊精(C D)常用为单一的主分子,它具有管状 的空洞。
+162.5° 185 棱柱状
整理ppt
+177.4° 232 棱柱状
11
ß-CD在不同温度的水中溶解度
温 度 20 40 60 80 100
(℃)
溶解度
(g/L) 18 37 80 183 256
08.03.2021
整理ppt
12
(二)环糊精衍生物
• 由于在β-CD 的圆筒两端有7个伯羟基和 14个仲羟基,其分子内(或分子间)的 氢键阻止水分子的水化,使β-CD水溶性 较小。
08.03.2021
整理ppt
17
(二)药物与环糊精的比例
• 包合物不仅在水和有机溶剂中能形成,而且 在固态中也能形成。
• 包合物以溶液态存在时,客分子在主分子的 空穴内;包合物以晶体存在时,客分子不一 定都在空穴内,也可以在晶格空隙中。
• 一般情况下,当主、客分子的摩尔比为1:1时, 会形成较稳定的单分子化合物。
⑤分子筛包合物或高分子包合物:
此类包合物主要有沸石、糊精、硅胶等。
原子排列成三面体配位体:形成笼状或筒状
空洞,包接客分子而形成高分子包合物。
08.03.2021
整理ppt
5
二、包合材料
(一) 环糊精
• 环糊精(Cyclodextrin, CD)系淀 粉经酶解环合后得到的由6~12个葡 萄糖分子连接而的环状低聚糖化 合物。
• 常见的环糊精是有6(或7、8)个葡
萄糖分子通过α-1,4苷键连接而成,
分别称为α-CD、β-CD、γ-CD。
08.03.2021
整理ppt
6
08.03.2021
ß-CD的整理p环pt 状构型
7
• CD的分子构型比较特殊,呈上窄下宽中
空的环筒状,分子中的伯羟基(6-OH) 位于环筒窄边处,仲羟基(2-,3-OH) 位于宽边处。
• 如果将甲基、乙基、羟丙基、羟乙基等 基团引入到β-CD分子中与羟基进行烷基 化反应(例如形成羟丙基-β-CD),可 以破坏分子内氢键的形成,使β-CD的理 化性质特别是水溶性发生显著改变。
08.03.2021
整理ppt
13
08.03.2021
β-环糊整精理ppt的衍生物
14
•衍生化反应的类型
第二节 包合技术
一、概述
• 包合物(Inclusion compound)是 一种分子被包藏在另一种分子的空 穴结构中而形成的复合物。
• 包合过程是物理过程而不是化学过 程,这种包合并不以化学键结合为 特征,属于一种非键型络合物。
08.03.2021
整理ppt
1
•具有包合作用的外层分子称为主分子 (host molecule),被包合到主分子空间 中的小分子物质,称为客分子(guest molecule或enclosed molecule)。
①烷基化:如β-CD与硫酸二甲酯(或溴 甲烷)在40OC条件下生成甲基化衍生物: 二甲基-β-CD或三甲基-β-CD ;
②羟烷基化:在碱性条件下,β-CD 与 环氧丙烷发生缩合反应生成无定形的、 水溶性的2-羟丙基-β-CD 。
③分支化支链β-CD 衍生化:在异淀粉
酶作用下,β-CD 与麦芽糖作用可生
破坏β-CD的晶格结构(使晶体变成易
溶于水的无定形结构); 减少仲羟基
的数目(如进行取代反应等),可以大
大提高β-CD的水溶性(例如β-CD衍生
物的水溶性较大)。 08.03.2021
整理ppt
10
各种环糊精的一般性质
项目
α -CD
β -CD
γ -CD
葡萄糖单体数
6
7
8
分子量
973
1135
1297
• 包合物的类型:
①管状包合物:是由一
种分子构成管状或筒形空
洞骨架,另一种分子填充
其中而成。尿素、环糊精、
硫脲、去氧胆酸等均能与
客分子形成管状包合物。
08.03.2021
整理ppt
2
②层状包合物
• 某些表面活性剂能形成层状的胶团,当药物 进入胶团时就构成了层状包合物。
• 例如月桂酸钾使乙苯增溶时,乙苯可存在于 表面活性剂亲油基的层间,形成层状包合物。 非离子型表面活性剂使维生素A棕榈酸酯增 溶,其结构也可认为是层状包合物。
• 环筒外面是亲水性的表面,内部则是一 个具有一定尺寸的手性疏水管腔,可以 依据空腔大小进行分子识别。
• CD对酸较不稳定,对碱、热和机械作用 都相当稳定,与某些有机溶剂共存时, 能形成复合物而沉淀。可利用CD在不同 溶剂中的溶解度不同而进行分离。
08.03.2021
整理ppt
8
环糊精包封药物的立体结构
分子空洞内径
0.45-0.6nm
0.7-0.8nm
0.85-1.0nm
空洞深度
0.7-0.8nm
0.7-0.8nm
0.7-0.8nm
空洞体积
17.6nm
34.6nm
51.0nm
[α ]25D(H 2O )
溶解度 ( g/L,25℃ ) 结晶性状(从 水中得到)
08.03.2021
+150.5° 145 针状
成6-O-α-麦芽糖基-β-CD。
08.03.2021
整理ppt
15
三、包合作用的影响因素
(一)药物极性的影响 (二)药物与环糊精的比例 (三)包合作用竞争性
08.03.2021
整理ppt
16
(一)药物极性的影响
在环糊精的空洞内,非 极性客分子更容易与疏水性 空洞相互作用,因此疏水性 药物、非解离型药物易被包 合。
伯羟基
08.03.2021
整仲理羟ppt基
9
• β-CD在室温下水中溶解度仅为1.85% (w/v),其水溶性比没有环合的低聚 糖同分异构体要低得多,其原因是: β-CD是晶体,其晶格能高,故水溶性差; β-CD的仲羟基形成分子内氢键,使其 与周围水分子形成氢键的可能性下降, 故水溶性差。
• 通过对β-CD分子进行化学结构修饰,
08.03.2021
整理ppt
18
(三)、包合作用的竞争性
• 包合物在水溶液中(或含有少量乙醇的水 溶液中)与客分子药物处于一种动态平衡 的状态:
CD + G KR CD·G
KD
式中:KR为结合速度常数,KD为解离速度常数。
从式中可知:环糊精CD的浓度越高,包合物CD·G的 生成量越大,最终客分子G几乎被完全包合(达到饱 和状态)。
相关文档
最新文档