4.2平方根2教案
2022年 教学教材《平方根2》参考优秀教案

平方根〔2〕教学设计一学生起点分析学生在以前的学习中就认识了一种运算“乘方〞,并能熟练计算任何一个数的平方知道正数的平方是正数,负数的平方是正数,0的平方是0 在七年级上册第四章?实数?的学习中又认识了算术平方根的概念和表示方法,已能求非负数的算术平方根那么这一课时进一步学习平方根本节也为后面学习“立方根〞做根底二教学任务分析本节安排了两个课时完成第一课时是了解数的算术平方根的概念,会用根号表示一个数的算术平方根在具体的例子中抽象出概念,开展学生的抽象概括能力本节课是第二课时,继续学习平方根的概念及其运用并对“平方根〞和“算术平方根〞,“平方〞和“开平方〞的概念做辨析,使学生在“引导---探索---类比----发现〞中开展学习数学的能力三学习目标知识目标1了解平方根、开平方的概念2明确算术平方根与平方根的区别和联系3进一步明确平方与开平方是互逆的运算关系能力目标1经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和稳固所学知识的应用能力2培养学生求同与求异的思维,通过比拟提高思考问题、辨析问题的能力情感目标1在学习中互相帮助、交流、合作、培养团队的精神2在学习的过程中,培养学生严谨的科学态度四教学重难点教学重点:1了解平方根、开平方的概念2了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根3了解平方根与算术平方根的区别与联系教学难点:1.平方根与算术平方根的区别和联系2.负数没有平方根,即负数不能进行平方根的运算五教学方法引导、探究、类比相结合六课前准备t和fah七教学过程设计本节课设计了六个教学环节:第一环节:复习旧知引入新知;第二环节:形成概念,辨析概念;第三环节:例题和稳固练习;第四环节:课堂小结;第五环节:思维拓展;第六环节:布置作业第一环节:复习旧知引入新知一复习1什么叫算术平方根3的平方等于9,那么9的算术平方根就是____3______的平方等于,那么的算术平方根就是______________展厅的地面为正方形,其面积49平方米,那么边长___7_____米2到目前为止,我们已学过哪些运算这些运算之间的关系如何?乘方有没有逆运算平方与算术平方根之间的关系?折叠着的正方形ABCD面积为1,那么边长为__1___将它扩展,面积变为原来的2倍,那么它的边长为______;假设面积变为原来的3倍,那么边长为_________;假设面积变为原来的n倍,那么边长为________二复习引入问题:平方等于9,,49的数还有吗?意图:这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根〞的求法使学生能明白“平方〞和“算术平方根〞的关系,情景引入,增加动画效果效果:借助多媒体吸引学生的注意力,激发学生的学习兴趣第二环节: 新课学习一探究新知填空:3=9-3=9 =9 0=0=不存在=-4=二形成概念1一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根而把正的平方根叫算术平方根表达式为:假设=a,那么叫做a的平方根记作:例如:±4=16,那么4和-4都是16的平方根;即16的平方根是±4; 4是16的算术平方根三探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系〔四〕概念辨析平方根与算术平方根的联系与区别:联系:1包含关系:平方根包含算术平方根,算术平方根是平方根的一种2只有非负数才有平方根和算术平方根3 0的平方根是0,算术平方根也是0区别:1个数不同:一个正数有两个平方根,但只有一个算术平方根2表示法不同:平方根表示为,而算术平方根表示为意图:形成“平方根〞的概念在列举一些具体数据的感性认识根底上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念“平方根〞与“算术平方根〞的区别与联系,使之与上一节课紧密联系效果:由于遵循了从具体到抽象的过程,注重学生原有认知根底的回忆,并和原有的概念进行了比拟与辨析,因此,学生对这一抽象的概念掌握得比拟牢靠第三环节例题和新知稳固一例题示范例3 求以下各数的平方根:164;2;3 ;4;5 111解:,2解:3解:4 解:5 解:意图:这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达能熟练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数效果:通过对例题的详解,学生能准确地书写表达,标准平方根的书写格式,掌握正确的符号化语言二思考提升,,,三稳固练习1 以下说法正确的选项是①②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是82以下说法不正确的选项是A0的平方根是0 B的平方根是C非负数的平方根是互为相反数D一个正数的算术平方根一定大于这个数的相反数3 一个自然数的算术平方根是a,那么该自然数的下一个自然数的算术平方根是A a1BC a21 D4为何值,有意义?答:因为,所以意图:围绕本节课的重点知识平方根作适当的练习,在不同的变式练习中加深对平方根意义的理解效果:学生根本能水利解决这些问题,并利用探索的规律进行标准的表达第四环节课堂小结内容:引导学生总结本课时的知识、方法意图:让学生对所学的知识进行梳理,使之思路清晰,既稳固了有关知识,又培养了学生良好的学习习惯效果:在老师的引导下学生自己总结本节课的知识、方法,如:平方根的概念:假设,那么叫a的平方根,平方根的个数:正数有2个平方根,0的平方根是0,负数没有平方根平方与开方之间的关系;求平方根的方法:求一个数的平方根就是转化寻找哪个数平方等于这个数第五环节提高训练内容:1的小数局部为,的小数局部为,求的值2实数,满足①假设,为的两边,求第三边的取值范围;②假设,为的两边,第三边等于5,求的面积意图:安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题可供老师根据教学的实际情况灵活处理第六环节作业布置习题八、教学设计反思本节课是七年级上册第四章?平方根?的第二课时主要知识是平方根的学习和运用教材是教师提供最根本的教学素材,教师完全可以根据学生的实际情况进行适当调整1注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很必要的所以在学习平方根的概念时,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的经验不符对此,在平方根的引入时,可多提一些具体的问题如“9的算术平方根是3,也就是说,3的平方是9还有其他的数,它的平方也是9吗?〞等等,旨在引起学生的思考,让学生从具体的例子中抽象出初步的平方根的概念再让学生去讨论:一个正数有几个平方根?0有几个平方根?负数呢?引导学生更深刻地理解平方根的概念,然后通过具体的求平方根的练习,稳固新学的概念2鼓励学生进行探究和交流本节课为学生提供了有趣而富有数学含义的问题,让学生进行充分的探索和交流如:把正方形的面积不断的扩大为2倍、3倍、n倍,来引导学生充分进行交流、讨论与探索等数学活动,从中感受学习平方根的必要性3设计之中多处运用类比的方法,使学生清楚新旧知识的区别和联系类比概念:“平方根〞和“算术平方根〞的区别和联系,“平方〞和“开平方〞运算4根据学生实际,灵活使用教材教材上只安排了一道例题和几个想一想,为了让学生对新知稳固,我增加了局部练习题,围绕“平方根〞这一知识点进行各种题型的变式练习当然,选题要有层次,有梯度老师们在进行教学时可以根据学生的实际情况作适当的取舍。
《平方根2》教案新部编本

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《平方根2》教案教学目标知识与技能:会用计算器求算术平方根;了解无限不循环小数的特点;会用算术平方根的知识解决实际问题.过程与方法: 通过折纸认识第一个无理数2,并通过估计它的大小认识无限不循环小数的特点.用计算器计算算术平方根,使学生了解利用计算器可以求出任意一个正数的算术平方根,再通过一些特殊的例子找出一些数的算术平方根的规律,最后让学生感受算术平方根在实际生活中的应用.情感态度与价值观: 通过探究2的大小,培养学生的估算意识,了解两个方向无限逼近的数学思想,并且锻炼学生克服困难的意志,建立自信心,提高学习热情.教学重点①认识无限不循环小数的特点,会估算一些数的算术平方根.②会用算术平方根的知识解决实际问题.教学难点:认识无限不循环小数的特点,会估算一些数的算术平方根.教学过程:一、通过实验引入:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?如图,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形.你知道这个大正方形的边长是多少吗?设大正方形的边长为x ,则22=x ,由算术平方根的意义可知2=x ,所以大正方形的边长为2.二、讨论2的大小:由上面的实验我们认识了2,它的大小是多少呢?它所表示的数有什么特征呢?下面我们讨论2的大小.因为221124==,,21<2<22,所以1<2<2.因为96.14.12=,25.25.12=,所以4.1<2<5.1.因为9881.141.12=,0164.242.12=,所以41.1<2<42.1因为999396.1414.12=,002225.2415.12=,所以414.1<2<415.1……如此进行下去,我们发现它的小数位数无限,且小数部分不循环,像这样的数我们成为无限不循环小数.2=41421356.1……注:这种估算体现了两个方向向中间无限逼近的数学思想,学生第一次接触,不好理解,教师在讲解时速度要放慢,可能需要讲两遍.2=41421356.1……,是个无限不循环小数,但是很抽象,没有办法全部表示出来它的大小,类似这样的数还有很多,比如7,5,3等,圆周率π也是一个无限不循环小数.三、用计算器求算术平方根:大多数计算器都有“”键,用它可以求出一个有理数的算术平方根或近似值.用计算器求下列各式的值:3136)1(; 2)2((精确到)001.0解:(1)依次按键=3136,显示:56.所以563136= (2)依次按键2=,显示:414213562.1,这是一个近似值.所以.414.12≈注:不同品牌的计算器,按键的顺序可能有所不同.四、探索规律:(1)利用计算器计算,并将计算结果填在表中,你发现了什么规律?300,30000的近似值.你能根据3的值求出30的值吗?学生通过计算器可求出(1)的答案,依次是:250,1.79,25,91.7,5.2,791.0,25.0.从运算结果可以发现,被开方数扩大或缩小100倍时,它的算术平方根就扩大或缩小10倍.由732.13≈0.173217.32173.2≈=≈,由3的值不能求出30的值,因为规律是被开方数扩大或缩小100倍时,它的算术平方根才扩大或缩小10倍,而3到30扩大的是10倍,所以不能由此规律求出.此题学生可独立完成.五、实际应用:例1、小丽想用一块面积为2400cm 的正方形纸片,沿着边的方向裁出一块面积为2300cm的长方形纸片,使它的长与宽之比为3:2,不知道能否裁出来,正在发愁,小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能否用这块纸片裁出符合要求的纸片吗?分析:学生一般认为一定能用一块面积大的纸片裁出一块面积小的纸片.通过计算和讲解纠正这种错误的认识.解:设长方形纸片的长为3cm x ,宽为2cm x .根据边长与面积的关系可得:30023=⋅x x ,30062=x ,502=x ,50=x∴长方形纸片的长为.因为50﹥49,所以50﹥7,从而503﹥21即长方形纸片的长应该大于21cm ,而已知正方形纸片的边长只有20cm ,这样长方形纸片的长将大于正方形纸片的边长.答:不能同意小明的说法.小丽不能用这块正方形纸片裁出符合要求的长方形纸片.六、随堂练习:1.用计算器求下列各式的值:(1)1369 (2)2036.101 (3)5 (精确到01.0)2、估计大小:(1)140与12 (2)215-与5.0 3、已知414.12≈,求02.0,0002.0,200,20000的值.七、课堂小结1、被开方数增大或缩小时,其相应的算术平方根也相应地增大或缩小,因此我们可以利用夹值的方法来求出算术平方根的近似值;2、利用计算器可以求出任意正数的算术平方根的近似值;3、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?4、怎样的数是无限不循环小数?。
数学:七年级上4.2平方根(第1课时)教案(鲁教版五四制)

1.小组合作学习:图中的三角形都是直角三角形
(1)填空
(2)x, y, z, w中哪些是有理数?哪些是无理数?你能表示它们吗?
2.算术平方根的概念:一般地,如果一个正数 的平方等于 ,即 ,那么,这个正数 就叫做 的算术平方根,记为“ ”,读作“根号 ”.特别地,我们规定0的算术平方根是0.这样的话,一个非负数的算术平方根就可以表示为 .
3、(- )2的算术平方根是_________;
4、 的化简结果是()
A.2B.-2C.2或-2D.4
5、9的算术平方根是()
A.±3 B.3 C.± D.
6、下列式子中,正确的是( )
A. B.- =-0.6C. =13D. =±6
7、一个数的算术平方根为a,比这个数大2的数是()
A.a+2B. -2C. +2 D.a2+2
自主训练
1、求下列各数的算术平方根:
(1)900;(2)1;(3) (4)14 .
2、自由下落物体的高度h(米)与下落时间t(秒)的关系为 有一铁球从19.6米的建筑物上自由下落,到达地在需要多长时间?
3、求下列各数的算术平方根
36, ,17,0.81, ,
达标检测:
1、 的算术平方根是_________;2、9-2的算术平方根是_________;
其中,是有理数的是_____________,是无理数的是_______________.在上面的有理数中,分数有______________,整数有______________.
2、已知:在数- ,- ,π,3.1416, ,0,42,(-1)2n,-1. 424224222…中,
(1)写出所有有理数;(2)写出所有无理数;
平方根(2)教案

平方根(2)教案学习目标:1、在实际问题中,感受算术平方根存在的意义,理解算术平方根的概念,算术平方根具有双重非负性2、会用计算器求一个数的算术平方根;利用计算器探究被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律;学习重点:理解算术平方根的概念学习难点:算术平方根具有双重非负性学习过程:一、学习准备1、阅读课本第3页,由题意得出方程x2= ,那么X= ,这种地砖一块的边长为 m2、正数a有2个平方根,其中正数a的正的平方根,也叫做a的算术平方根。
例如,4的平方根是,叫做4的算术平方根,记作 =2, 2的平方根是“ ”,叫做2的算术平方根,3、(1)16的算术平方根的平方根是什么? 5的算术平方根是什么?(2)0的算术平方根是什么? 0的算术平方根有几个?(3)2、-5、-6有算术平方根吗?为什么?4、按课本第4页例题1格式求下列各数的算术平方根:(1)625(2)0. 81;(3)6;(4) (5) (6)二、合作探究:1、阅读课本第5页利用计算器求算术平方根的方法,利用计算器求下列各式的值。
(1) (2) (3)2、利用计算器求下列各数的算术平方根a 20190 200 2 0.02 0.0002通过观察算术平方根,归纳被开方数与算术平方根之间小数点的变化规律3、在中,表示一个数,表示一个数,算术平方根具有练习:若|a-5|+ =0,则的平方根是三、学习体会:本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?四、自我测试:1、判断下列说法是否正确:①5是25的算术平方根;( )②-6是的算术平方根; ( ) ③ 0的算术平方根是0;( ) ④ 0.01是0.1的算术平方根;( )⑤一个正方形的边长就是这个正方形的面积的算术平方根. ( )2、若 =2.291, =7.246,那么 =( )A.22.91B. 72.46C.229.1D.724.63、下列各式哪些有意义,哪些没有意义?4、求下列各数的算术平方根①121 ②2.25 ③ ④(-3)25、求下列各式的值① ② ③ ④思维拓展:1、一个数的算术平方根等于它本身,这个数是。
鲁教版五四学制:2024-2025年七年级第一学期上册数学4.2平方根(2)学案和答案

2024--2025学年度七年级数学上册学案4.2平方根(2)【学习目标】1.了解平方根、开平方的概念,理解平方根的性质;2.了解平方根与算术平方根的区别与联系,会求一个数的平方根,进一步明确平方与开平方是互逆的运算关系.【自主学习】1.平方根的定义: 如果一个数x 的平方等于a ,即____________,那么这个数____就叫做 的平方根,记为“__________”,读作“________________”.2.平方根的性质: 一个正数有_____个平方根.0只有_______平方根,它是_______;负数_______平方根. 注意:平方根等于本身的数是(1)a a =2==⎩⎨⎧-a a 00<≥a a (2)()a a =2(0≥a ) 3.开平方的定义:求一个数a 的________的运算,叫做开平方,其中a 叫做________.4.平方根与算术平方根的联系与区别联系:(1)具有包含关系: 包含 .(2)存在条件相同:平方根和算术平方根都是只有非负数才有.(3)0的平方根是 ,算术平方根是 .区别:(1)个数不同:一个正数有 平方根,而一个正数的算术平方根 个.(2)表示法不同:正数a 的平方根表示为 ,算术平方根表示为 .(3)取值范围不同:正数平方根一正一负,互为相反数;正数算术平方根只有一个.【典型例题】知识点一 求一个数的平方根1.实数9的平方根为( )A .3 B .3- C .3± D .3±2.下列各式中,正确的是( )A.√25=±5B. (−√4)2=16C. √(−2)2=−2D.±√25=±5知识点二 平方根的性质3.下列结论正确的是( )A .()22-的平方根是2-B .()2π4-的算术平方根是4π-C .一个数的算术平方根一定是正数D .算术平方根等于本身的数是1 4.如果某数的平方根是和,那么这个数是( )A.5B.-5C.169D.-169【巩固训练】1.下列式子错误的是( )A .0.090.3±±B 0.250.5=±C .12111-=-D 911645 2.下列等式成立的是( )A .b a b a +=+2)(B .b a b a -=-2)( C .a a =2 D .24a a = 3.若,则的值是( ) A. 2 B. C. 5 D. 4.5.已知192-的整数部分是m ,小数部分是n ,则m = ,n = .6.求下列各数的平方根(1)1.21;(2)0.01;(3)279;(4)(-13)2;(5)-(-4)37.求满足下列未知数的 (1)(2) (3)8.已知的平方根是±3,的算术平方根为2,求与的值;9.已知a ,b 满足等式()21303a b ++-=,20212020a b=4.2平方根(2)【自主学习】1. 2x =a x a ±a正负根号a2. 两 1 0 没有 03. 平方根 被开方数4. 平方根 算术平方根 0 0如果一个数x 的平方等于a ,那么这个数;如果一个正数x 的平方等于a ,那么这个数两 1 ±a a【典型例题】1. B2.D3.C【巩固训练】1. (1)√ (2)√(3)× (4)√2. 6±3. 3; 414. C5.(1)95x ±= (2)2-4x 或=(3)2325-或 6.813、35、0.1、1.1±±±±±、7.a=-1,x=9 8.32±;6±9.x=2,y=±5,原式=33。
最新湘教版八年级数学上册《平方根2》教学设计(精品教案)

最新湘教版八年级数学上册《平方根2》教学设计(精品教案)课题:3.1.2平方根(2)学习目标1、巩固理解一个非负数平方根、算术平方根的概念和性质;2、区别平方根、算术平方根的表示方法。
掌握一个非负数的平方根存在的条件。
学习重点:平方根、算术平方根的概念和性质;学习难点:平方根、算术平方根的区别。
平方根存在的条件。
学习过程:一、知识回顾(出示ppt课件)一般地,如果有一个数r,使得r2=a,那么我们把r叫做a的一个平方根。
我们把a的正平方根叫做a的算术平方根,规定:0的算术平方根是0.a的算术平方根记作:a(a≥0)。
符号a与-a与±a的意义分别是什么?平方根有什么性质?一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。
二、探究思考(出示ppt课件)1、算术平方根有什么性质?算术平方根具有双重非负性:被开方数必须是非负数算术平方根是非负数2、平方根和算术平方根有何区别与联系?区别:(1)定义不同;(2)表示方法不同;(3)个数及取值不同;联系:(1)具有包含关系;(2)存在条件相同;(3)0的平方根、算术平方根均为0三、讲练结合(出示ppt课件)师生活动:下面各题学生讨论交流得出结果,教师出示课件纠正;1、判断下面说法是否正确:(1)0 的平方根是0;()(2)1 的平方根是1;()(3)–1 的平方根是– 1; ()(4)(–1) 2的平方根是– 1. ()(5)16的平方根是±4. ()2、下列各数没有平方根的()A. 64B. (-2) 5C. 0D. (-3) 43、下列各式没有平方根的()A. 4x2+1B. (x-y)2C. -a2-12D.x2+2x+34 、若使3-a有平方根,则a的取值范围是( )A. 一切有理数;B. a ≠3;C. a ≥3;D. a ≤35、下列式子正确的是()A. - 3.6-=-0.6;B.2(13)-=-13;C. 36=±6; D. -2(5)-=-5;6.分别求下列各数的平方根和算术平方根;(分组有学生回答,师生共同纠正)(1)0.49;(2)1625;(3)(-7)2;(4)729 7.计算:(1)±16 ;(2)3625 ;(3)3625 ;(4)49 -1;(5)491-;提醒学生注意两点:(1)a 与±a 的意义;(2)平方根的书写格式。
人教版数学七年级下册-《平方根2》教案

平方根2教学目标知识与技能:会用计算器求算术平方根;了解无限不循环小数的特点;会用算术平方根的知识解决实际问题.过程与方法: 通过折纸认识第一个无理数2,并通过估计它的大小认识无限不循环小数的特点.用计算器计算算术平方根,使学生了解利用计算器可以求出任意一个正数的算术平方根,再通过一些特殊的例子找出一些数的算术平方根的规律,最后让学生感受算术平方根在实际生活中的应用.情感态度与价值观: 通过探究2的大小,培养学生的估算意识,了解两个方向无限逼近的数学思想,并且锻炼学生克服困难的意志,建立自信心,提高学习热情.教学重点①认识无限不循环小数的特点,会估算一些数的算术平方根.②会用算术平方根的知识解决实际问题.教学难点:认识无限不循环小数的特点,会估算一些数的算术平方根.教学过程:一、通过实验引入:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?如图,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形.你知道这个大正方形的边长是多少吗?设大正方形的边长为x ,则22=x ,由算术平方根的意义可知2=x ,所以大正方形的边长为2.二、讨论2的大小:由上面的实验我们认识了2,它的大小是多少呢?它所表示的数有什么特征呢?下面我们讨论2的大小.因为221124==,,21<2<22,所以1<2<2.因为96.14.12=,25.25.12=,所以4.1<2<5.1.因为9881.141.12=,0164.242.12=,所以41.1<2<42.1因为999396.1414.12=,002225.2415.12=,所以414.1<2<415.1……如此进行下去,我们发现它的小数位数无限,且小数部分不循环,像这样的数我们成为无限不循环小数.2=41421356.1……注:这种估算体现了两个方向向中间无限逼近的数学思想,学生第一次接触,不好理解,教师在讲解时速度要放慢,可能需要讲两遍.2=41421356.1……,是个无限不循环小数,但是很抽象,没有办法全部表示出来它的大小,类似这样的数还有很多,比如7,5,3等,圆周率π也是一个无限不循环小数.三、用计算器求算术平方根: 大多数计算器都有“”键,用它可以求出一个有理数的算术平方根或近似值.用计算器求下列各式的值:3136)1(; 2)2((精确到)001.0解:(1)依次按键=3136,显示:56.所以563136= (2)依次按键2=,显示:414213562.1,这是一个近似值.所以.414.12≈注:不同品牌的计算器,按键的顺序可能有所不同.四、探索规律:(1)利用计算器计算,并将计算结果填在表中,你发现了什么规律?300,30000的近似值.你能根据3的值求出30的值吗?学生通过计算器可求出(1)的答案,依次是:250,1.79,25,91.7,5.2,791.0,25.0.从运算结果可以发现,被开方数扩大或缩小100倍时,它的算术平方根就扩大或缩小10倍.由732.13≈0.173217.32173.2≈=≈,由3的值不能求出30的值,因为规律是被开方数扩大或缩小100倍时,它的算术平方根才扩大或缩小10倍,而3到30扩大的是10倍,所以不能由此规律求出.此题学生可独立完成.五、实际应用:例1、小丽想用一块面积为2400cm 的正方形纸片,沿着边的方向裁出一块面积为2300cm的长方形纸片,使它的长与宽之比为3:2,不知道能否裁出来,正在发愁,小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能否用这块纸片裁出符合要求的纸片吗?分析:学生一般认为一定能用一块面积大的纸片裁出一块面积小的纸片.通过计算和讲解纠正这种错误的认识.解:设长方形纸片的长为3cm x ,宽为2cm x .根据边长与面积的关系可得:30023=⋅x x ,30062=x ,502=x ,50=x∴长方形纸片的长为.因为50﹥49,所以50﹥7,从而503﹥21即长方形纸片的长应该大于21cm ,而已知正方形纸片的边长只有20cm ,这样长方形纸片的长将大于正方形纸片的边长.答:不能同意小明的说法.小丽不能用这块正方形纸片裁出符合要求的长方形纸片.六、随堂练习:1.用计算器求下列各式的值:(1)1369 (2)2036.101 (3)5 (精确到01.0)2、估计大小:(1)140与12 (2)215-与5.0 3、已知414.12≈,求02.0,0002.0,200,20000的值.七、课堂小结1、被开方数增大或缩小时,其相应的算术平方根也相应地增大或缩小,因此我们可以利用夹值的方法来求出算术平方根的近似值;2、利用计算器可以求出任意正数的算术平方根的近似值;3、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?4、怎样的数是无限不循环小数?。
初中数学_《平方根》教学设计学情分析教材分析课后反思

泰山博文中学学生课堂学习设计学科数学 年级四制初二 设计人 备课组长:课题: 4.2平方根(2) 课型:新授课 一、 学习目标1、了解数的平方根的概念,会表示一个数的平方根.2、进一步了解开方与乘方是互逆运算,会利用这个互逆运算求某些非负数的平方根.3、弄清算术平方根与平方根的区别和联系.二、学习重难点重点:弄清平方根的概念,会求某些非负数的平方根难点:负数没有平方根,即负数不能进行开平方运算的原因.三、 自学指导(一) 复习引入求下列各数的算术平方根;0 1 9 62 0.09 2.25 (-5)2(二)探究新知1.定义:一般地,如果 的平方等于a ,即x 2=a (a 0)那么这个数叫做a 的 (也叫做a 的 ). 2. 表达式为:若x 2=a ,那么x 叫做a 的平方根. 记作:【议一议】(1) 一个正数有几个平方根? (2) 0有几个平方根? (3) 负数呢?3.性质:一个正数有 平方根,这两个平方根 ;0只有 平方根,它是 ; 没有平方根. 知识点二:开平方求一个数a 的 的运算,叫做开平方,其中a 叫做被开方数. 注意:开平方与乘方是互为逆运算.1625四、典型例题例1、求下列个数的平方根:(1)64 (2)49121(3)0.0004 (4)()225- (5) 11 (6)4-6【变式训练】(1(2(3例2、【两个重要公式】1、20≥=当a2={()2222??(2)?(3)?aa 等于多少等于多少等于多少对于正数等于多少说出算术平方根和平方根的区别和联系___________________________________________________________ ___________________________________________________________ ____________五、对应训练1.下列式子中没有意义的是().A.B C D2.下列说法中正确的有().①5是25的平方根;②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的算术平方根是8.A.2个B.3个C.4个D.5个3.下列各式正确的是()A.-5 B C-3 D4a有().A.一个B.两个C.无数D.没有5的平方根是______的平方根等于±2,则a=____.6.已知(-x)2=25,则x=_____,则x=____.7=1.2,则x=______,则x=______.8.若一个正数的平方根是2a-1和-a+2,求a的值.9.已知m满足关系式16m2-25=0,求4m-7的值六、当堂检测:1.下列说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根一定大于这个数的相反数2. 已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是().(A) a+1 (B)1a + (C) a 2+1 (21a + 3.8116的平方根是____________,(21-)2的算术平方根是____________.4.(-1)2的算术平方根是____________,16的平方根是____________. 5.一个数的算术平方根是它本身,这个数是______________.6.252-242的平方根是__________,0.04的负的平方根是____________. 7.若2-a +|b -3|=0,则a +b -5=____________8.求适合下列各式中的x 的值:(1)x 2-81=0 (2)3(x -1)2=3639.x 取何值时,下列各式有意义?(1x -; (22x - (322x +.七、拓展提升.已知22167(2)|4|m n m m -++=0n m 的值.学情分析1、学生已掌握一些完全平方数,能说出一些完全平方数是哪些有理数的平方,同时对乘方运算也有一定的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教 后 感 悟 一个正数有两个平方根,学生由于认知的原因出现了理解上的困难,一节课出现了好几次丢掉 正负号的情况。以后的教学中要解决这个问题,一个多多通过具体的例子让学生进行理解,并且特 别强调了这两个平方根是互为相反数的。强调平方根的符号是正负根号。对于规律的题目学生还不 会灵活运用,还需多加训练。
教 学 案
七年级数学
编号
28
备课人 王宁宁
评价等级
1、如果一个正数的一个平方跟是 a,则它的另一个平方根是_______。 2、求下列各数的平方根: 1) 81
2
2)
25 144
3) 0.0009
2 4) (—15)
5) 13
2、拓展练习
2 求下列各式的值:1) (4)
2) 104
达成共识: 在学生展示和总结的基础上, 师生共同总结出平方根的性质并板 书。 超链接 1 介绍平方根的定义及 6) ( 16 ) 写法 超链接 2 是总结平方根的性质 超链接 3 是介绍开平方的定义 超链接 4 是运用判断对错的题目检 查学生对上述概念性质的掌握程度 (三)合作探究: 小组展示,展示的是思路和方 法。其它小组补充质疑、评价。 (四)巩固练习:先自主完成,再 小组交流。梳理小组问题,准备展 示。小组提出疑惑,其他小组帮助 解决。 (五) 总结梳理: 采用方法 超链接回扣目标目的是让学生对照 本节课的目标回顾所学知识,整体 上把握,形成知识框架,梳理数学 思想和方法,养成归纳总结的好习 惯。 (注:在学生谈完收获后,教师 最好将本节课的知识及数学思想、 方法、规律、易错、易混点等超链 接在教学目标上) (六)课堂学习评价: 课堂观察员总结本节课小组和 个人的表现,表扬先进,鼓励全体 学生积极参与。 四、达标检测 10 分钟时间,独立完成。以小 组为单位收齐,教师批阅。
一、复习导入: 上节课我们学习了算术平方根 的概念, 性质.知道若一个正数 x 的 2 平方等于 a,即 x =a.则 x 叫 a 的算 术平方根, 记作 x= a , 而且 a 也
2
是非负数,比如正数 2 =4,则 2 叫 4 的算术平方根,4 叫 2 的平方,但 2 是(-2) =4,则-2 叫 4 的什么根 呢?下面我们就来讨论这个问题. 1、了解开平方与乘方是互逆运算。 二、目标认定方法: 2、会利用互逆运算关系求某些非负数的算术平方根和平方根 课堂上教师指定一学生朗读。 3、极度热情,全力以赴,感受数学来源于生活,应用于生活的思想。 (或齐读,要读出气势;也或让学 二、学习过程 生根据超前学习自己认定目标,教 (一)自主学习:认真阅读课本 92-93 页,回答课本中提出的问题, 师补充。 ) 并完成以下问题: 三、学习过程: 1、如果一个数 x 的平方根等于 a,即__,那么__就叫做 a 的平方根。 (一)自主学习: 要求超链接是展示自主学习的 记为“___” ,读作“__” 要求,让学生根据要求进行学习。 在学生交流讨论其间,老师关 2、一个正数有_____个平方根。0 只有_______平方根,它是_______。 注每个学生,每个小组的状态,积 极程度,及时鼓励表扬,并深入各 负数_______平方根 小组之间进行指导,根据情况确定 展示小组及展示内容。 3、求一个数 a 的_______的运算,叫做开平方,其中 a 叫做_______ (二)小组展示: (二)合作探究 展示内容:自主学习部分 在学生展示期间,老师要注意 2 【探究 1】1) (4) 2) 104 非展示学生的状态,及时调动,对 展示、 点评质疑的学生要及时评价, 【探究 2】1) ( 7.2 )2 2)( a )2 并随时注意生成性的目标的达成, 我的疑惑 及时点拨解疑。 预设问题: (三)训练巩固学生只是知道整数有两个平方 根,但是再求一个数的算术平方根 1、基础练习: 时,会丢掉一前学习安排: 1、知识链接:算数平方根的定义 2、自主阅读课本 P92—P93 内容,红笔标注疑难点、重点。 3、根据导纲的自主学习的要求,完成自主学习与合作探究部分,梳 理知识、规律、方法,记录自己不能解决或发现的有价值问题。然后 小组内解决个性问题,解决不了的共性问题和有价值问题由组长记录 在问题卡上。 课堂教学: 一一、学习目标
教 学 案
课题名称 教学重点 教学难点 课前准备 4.2 平方根 平方根的定义、性质及其应用 平方根的定义
七年级数学
编号
28
备课人 王宁宁
评价等级
课时 安排
共 2 课时 第 2 课时
授课班级 授课时间
初二 7、7 班 11、13
晚自习下发导学提纲,学生根据导纲进行超前学习,并填写自主学习问题卡,老师收集问题 并整理,每组选一份导纲第二天早上交给老师,老师授课前批阅