直角坐标系中求三角形面积的方法

合集下载

平面直角坐标系中的面积计算专题

平面直角坐标系中的面积计算专题

平面直角坐标系中的面积计算知识点一:已知点的坐标求图形面积类型一:平面直角坐标系中三角形的面积①三角形有一边在坐标轴上例1:平面直角坐标系中,A(4,-4), B(1,0),C(6,0). 求△ABC 的面积. x yO A (4,-4)B (1,0)C (6,0)例2:平面直角坐标系中,A(0,3), B(0,-3),C(2,1). 求△ABC 的面积. x y123–1–2123–1–2–3OCB A②三角形有一边平行于坐标轴例3:平面直角坐标系中,A(-2,3), B(-2,-3),C(2,1). 求△ABC 的面积.xy –1–2–3123–1–2–3123OA (-2,3)B (-2,-3)C (2,1)③三角形没有一边平行于坐标轴变式1.保持A 、C 不动,改变点B 的位置:B (0,-3), 求△ABC 的面积. x y –1–2–3–4123–1–2–31234OA (-2,3)C (2,1)B x y –1–2–3–4123–1–2–31234O A (-2,3)C (2,1)B x y –1–2–3–4123–1–2–31234O A (-2,3)C (2,1)B练习:如图中,A 、B 两点的坐标分别为(2,3)、(4,1),求△ABO 的面积.类型二:平面直角坐标系中不规则多边形的面积例4:平面直角坐标系中,A(-3,-2),B(3,-2),C(1,3),D(-2,1),求四边形ABCD 的面积. xyO A (-3,-2)B (3,-2)C (1,3)D (-2,1)练习:如图,已知四边形ABCD 四个顶点的坐标分别是A (-5,2),B (1,5),C (5,-2),D (-4,-5).求四边形ABCD 的面积.知识点二:已知图形面积求点的坐标例5:(1)▲ABC 的两个顶点分别为A (2,3),B (-2,0),且▲ABC 的面积为9,若点C 在x 轴上,求点C 的坐标.(2)已知A (1,0),B (0,3),点P 在x 轴上,且▲PAB 的面积为6,求点P 的坐标.(3)已知O (0,0),B (3,2),点A 在坐标轴上,且6=∆OAB S ,求A 点的坐标.练习1.如图A (﹣4,0),B (6,0),C (2,4),D (﹣3,2).(1)求四边形ABCD 的面积;(2)在y 轴上找一点P ,使△APB 的面积等于四边形的一半.求P 点坐标.练习2.如图,已知A (﹣2,0),B (4,0),C (2,4),D (0,2)(1)求三角形ABC 的面积;(2)设P 为坐标轴上一点,若S △APC =S △ABC ,求P 点的坐标.练习3.如图,已知三点A (0,1),B (2,0),C (4,3)(1)求三角形ABC 的面积;(2)设点P 在坐标轴上,且三角形ABP 与三角形ABC 的面积相等,求点P 的坐标.。

人教版初一数学下册平面直角坐标系中求三角形的面积

人教版初一数学下册平面直角坐标系中求三角形的面积

在直角坐标系中求图形的面积图形的面积可以利用相应的面积公式求得,但是在平面直角坐标系内的求面积问题,往往不直接给出边或高之类的条件,而是给出一些点的坐标。

我们常常会遇到在平面直角坐标系中求三角形面积和一些不规则图形面积的问题,解题时我们要注意其中的解题方法和解题技巧。

现对这类题目的解法举例说明如下:一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y 轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C (-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD ×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.。

平面直角坐标系中三角形面积的求法

平面直角坐标系中三角形面积的求法

平面直角坐标系中三角形面积的求法大家好,今天我们来聊聊一个看似复杂但其实挺简单的数学问题:如何在平面直角坐标系中求三角形的面积。

听起来有点儿抽象?没关系,我们一步步来,保证让你觉得简单又有趣。

1. 理解坐标系中的三角形1.1 三角形的基本概念首先,啥是三角形呢?说白了,三角形就是由三条线段围成的形状。

这个形状在平面直角坐标系中,大家都知道坐标系嘛,就是有一条横轴和一条纵轴交汇的那种图。

三角形的三个角,两个角在坐标轴上,一个角在坐标轴的另一边。

1.2 坐标系中的点我们得知道三角形的三个点在坐标系中的位置。

这些点通常是这样的格式:(x_1, y_1),(x_2, y_2),(x_3, y_3)。

每个点的坐标就像是它在地图上的位置,告诉你它在“横向”和“纵向”的位置。

2. 计算三角形面积的方法2.1 使用坐标公式那么,如何计算这些点围成的三角形的面积呢?其实有个特别简单的公式,你只需要记住。

假设三角形的三个顶点分别是(x_1, y_1),(x_2, y_2),和(x_3, y_3)。

面积的公式是:[ text{面积} = frac{1}{2} left| x_1(y_2 y_3) + x_2(y_3 y_1) + x_3(y_1 y_2) right| ]。

听起来有点绕,其实不难!这个公式就像是一个“秘密武器”,帮助你轻松找到三角形的面积。

2.2 公式的由来这公式的由来其实跟几何学的基础知识有关。

它通过计算三角形的三个顶点之间的距离,间接地得出三角形的实际面积。

想象一下,我们是在一个“棋盘”上,用这个公式去找出“三角形”占据的“格子”的数量。

明白了吧?3. 举个例子3.1 实际计算我们来做个实际的例子吧。

假设你有一个三角形,它的三个顶点坐标分别是(1, 1),(4, 1),和(2, 5)。

按照刚才的公式,你可以代入这些数值来计算:[text{面积} = frac{1}{2} left| 1(1 5) + 4(5 1) + 2(1 1) right|。

坐标三角形面积公式

坐标三角形面积公式

坐标三角形面积公式坐标三角形面积公式是计算平面上任意三个点构成的三角形面积的公式。

在二维坐标系中,我们可以通过给定三个点的坐标,利用面积公式来计算三角形的面积。

在平面直角坐标系中,我们通常用两个坐标轴来表示一个点的位置。

坐标轴分为横轴和纵轴,分别表示x轴和y轴。

给定一个点的坐标,我们可以通过横坐标和纵坐标来确定点的位置。

假设我们有三个点A(x1, y1)、B(x2, y2)和C(x3, y3),我们可以通过这三个点来构成一个三角形ABC。

为了计算三角形的面积,我们可以使用坐标三角形面积公式。

坐标三角形面积公式如下:S = 1/2 * |(x1(y2-y3) + x2(y3-y1) + x3(y1-y2))|其中,S表示三角形的面积,x1、y1、x2、y2、x3和y3分别表示三个点的坐标。

通过这个公式,我们可以很方便地计算出三角形的面积。

首先,我们需要计算出每个点的坐标,然后将这些坐标代入公式中进行计算。

举个例子来说明。

假设我们有三个点A(1, 2)、B(3, 4)和C(5, 6),我们可以将这些坐标代入公式中计算三角形的面积。

我们计算每个点的坐标差值。

对于点A,x2-x3=1-5=-4,y3-y1=6-2=4;对于点B,x3-x1=5-1=4,y1-y2=2-4=-2;对于点C,x1-x2=1-3=-2,y2-y3=4-6=-2。

然后,将这些差值代入公式中进行计算。

公式为S = 1/2 * |(1(-2-(-2)) + 3(-2-4) + 5(4-(-2)))| = 1/2 * |(-4 + 14 + 28)| = 1/2 * |38| = 19。

所以,三个点A(1, 2)、B(3, 4)和C(5, 6)构成的三角形ABC的面积为19平方单位。

通过这个例子,我们可以看到坐标三角形面积公式的计算过程。

首先,我们需要计算出每个点的坐标差值,然后将这些差值代入公式中进行计算。

最后,我们得出了三角形的面积。

平面直角坐标系三角形面积万能公式

平面直角坐标系三角形面积万能公式

平面直角坐标系三角形面积万能公式在平面直角坐标系中,我们常常会遇到三角形这个家伙。

说实话,三角形就像个小明星,形状简单,却又能带来不少麻烦。

你知道吗?三角形的面积其实可以通过一个万能公式轻松搞定,那就是“面积等于底乘以高再除以二”。

简单吧?但是,咱们今天要聊的可不仅仅是公式本身,更是如何在实际生活中用好它。

想象一下,你和朋友在公园里画一个三角形,底边就是你们在草地上放的毯子,高度嘛,就是你们之间的距离。

想一想,这样一来,草地的面积就显现出来了,简直像打开了新世界的大门。

当你开始深入探讨这个公式时,哇,真是惊喜不断。

公式简单易懂,但实际运用却能让你刮目相看。

比如说,想象你在家里画画,画了个三角形的房子,底边是五米,高度是三米。

根据公式,面积就是五乘三再除以二,也就是七点五平方米。

嘿,这时候你可能会想,“这面积还不够我放一个沙发。

”没问题,咱们再想办法调整一下底和高。

人生就像调配三角形面积,灵活应对,总能找到满意的方案。

生活中,我们常常会遇到各种三角形的情况。

比如说,你在搭建一个花坛,想设计成一个三角形,这个时候就得考虑面积了。

用万能公式一算,哇,心中有数,做事也就心里有底。

这个时候,底和高就成了你设计的基石。

你可以随意发挥,改变底边的长度,调整高度,最终得到的面积总是让人满意的。

像是做饭,想做什么菜,得先知道材料够不够。

就这样,生活中的每一件事,都可以用这个简单的公式来解决,绝对是一剂良方。

碰到不规则的三角形也别慌。

可以把它拆分成几个规则的三角形,再分别计算它们的面积,最后加起来就是你想要的结果。

这就像解谜,分步进行,最后拼凑出完美的答案。

就像生活中遇到的困难,有时需要把问题拆解开,逐个击破,才能找到解决之道。

记得有次朋友说他家的阳台要改造,形状不规则,他一开始愁眉苦脸,后来我给他讲了拆分的方法,结果他兴奋得像小孩子一样,感觉找到了新大陆。

在学校里,老师也常常用这个公式来教学生。

三角形的面积是个基础知识,打好基础,才能后续学习更复杂的内容。

向量叉积求平面直角坐标系三角形面积

向量叉积求平面直角坐标系三角形面积

向量叉积求平面直角坐标系三角形面

在平面直角坐标系中,可以使用向量叉积来计算三角形的面积。

假设三角形的三个顶点分别是$(x_1,y_1)$、$(x_2,y_2)$、$(x_3,y_3)$,则可以将两个向量$\overrightarrow{AB}$和$\overrightarrow{AC}$表示为:
$\overrightarrow{AB}=(x_2-x_1,y_2-y_1)$,$\overrightarrow{AC}=(x_3-x_1,y_3-y_1)$
然后计算两个向量的叉积:
$\overrightarrow{AB}\times\overrightarrow{AC}=|(x_2-x_1)(y_3-y_1)-(y_2-y_1) (x_3-x_1)|$
这个叉积的结果就是三角形的面积的两倍。

因此,三角形的面积可以表示为:
$S=\dfrac{1}{2}|\overrightarrow{AB}\times\overrightarrow{AC}|=\dfrac{1}{2}| (x_2-x_1)(y_3-y_1)-(y_2-y_1)(x_3-x_1)|$
这个公式可以用于计算任意平面上的三角形面积,不仅限于直角坐标系。

需要注意的是,如果三角形的三个顶点共线,那么它的面积为0。

直角坐标系中三角形面积的计算

直角坐标系中三角形面积的计算

直角坐标系中三角形面积的计算
直角坐标系中三角形面积的计算方法很简单,只需知道三角形的三个顶点的坐标,就可以通过向量叉积求出面积。

具体步骤如下:
1. 假设三角形的三个顶点分别为A(x1,y1),B(x2,y2),C(x3,y3)。

2. 计算向量AB和向量AC的坐标,即AB=(x2-x1,y2-y1),
AC=(x3-x1,y3-y1)。

3. 求出向量AB和向量AC的叉积,即AB×
AC=(x2-x1)*(y3-y1)-(y2-y1)*(x3-x1)。

4. 取向量AB和向量AC的叉积的绝对值,再除以2,就是三角
形的面积。

公式为:S=|AB×AC|/2。

需要注意的是,如果向量AB和向量AC的叉积为负数,说明三角形是逆时针方向的,此时需要取绝对值。

以上就是直角坐标系中三角形面积的计算方法,简单易懂。

- 1 -。

已知三角形三顶点坐标求三角形面积

已知三角形三顶点坐标求三角形面积

已知三角形三顶点坐标求三角形面积三角形是初中数学中最基础的图形之一,它由三条边和三个顶点组成。

在平面直角坐标系中,我们可以通过已知三角形三个顶点的坐标来求解三角形的面积。

我们需要确定三角形的三个顶点的坐标。

假设三角形的三个顶点分别为A(x1, y1),B(x2, y2),C(x3, y3)。

接下来,我们可以利用向量的方法来求解三角形的面积。

我们可以将向量AB和向量AC表示为:AB = (x2 - x1, y2 - y1)AC = (x3 - x1, y3 - y1)然后,我们可以通过向量的叉积来求解三角形的面积。

向量的叉积公式为:AB × AC = |AB| × |AC| × sinθ其中,|AB|和|AC|分别表示向量AB和向量AC的模长,θ表示向量AB和向量AC之间的夹角。

由于我们已知向量AB和向量AC的坐标,因此可以通过向量的叉积公式来求解三角形的面积。

具体计算过程如下:AB × AC = (x2 - x1, y2 - y1) × (x3 - x1, y3 - y1)= (x2 - x1) × (y3 - y1) - (y2 - y1) × (x3 - x1)因此,三角形的面积为:S = 1/2 × |AB × AC| = 1/2 × |(x2 - x1) × (y3 - y1) - (y2 - y1) × (x3 - x1)|通过这个公式,我们可以很方便地求解已知三角形三个顶点坐标的面积。

需要注意的是,如果三角形的面积为负数,则表示三个点不在同一条直线上,否则三个点在同一条直线上。

通过向量的叉积公式,我们可以很方便地求解已知三角形三个顶点坐标的面积。

这个方法不仅简单易懂,而且计算精度高,是求解三角形面积的常用方法之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

面积问题
直角坐标系中求三角形面积的方法:
1.如图:已知直线AB:y=-2x+6与x轴、y轴相较于A点、B点;
(1)求△AOB的面积;
(2)已知D点的横坐标为1、D点的纵坐标为为1,求△COD的面积;
(3)已知直线l:y=x-2与AB相交于点E,与y轴交于点F,求两直线与y轴围成的面积;
2.如图在平面直角坐标系xOy中,函数y= (x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).
(1)求一次函数的解析式;
(2)设一次函数y=kx﹣k的图象与y轴交于点B,
若点P是x轴上一点,且满足△PAB的面积是4,
直接写出P点的坐标.
3.如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.
(1)求该抛物线的解析式;
(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;
(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y 轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.
①求S与m的函数关系式;
②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.
4.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm 的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.。

相关文档
最新文档