四年级奥数第四讲数讲义学问题教案与例题

合集下载

四年级-奥数-讲义-349学子-教案库-第4讲—和倍与差倍问题

四年级-奥数-讲义-349学子-教案库-第4讲—和倍与差倍问题

第4讲和倍与差倍问题教学目标1.学会分析题意并且熟练的利用线段图法能够分析和倍与差倍问题2.掌握寻找和倍差倍的方法解决问题.-知识点说明(1)和倍问题和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题.解答此类应用题时要根据题目中所给的条件和问题,画出线段图,使数量关系一目了然,从而找出解题规律,正确迅速地列式解答。

和倍问题的特点是已知两个数的和与大数是小数的几倍,要求两个数,一般是把较小数看作1倍数,大数就是几倍数,这样就可知总和相当于小数的几倍了,可求出小数,再求大数.和倍问题的数量关系式是:和÷(倍数+1)=小数小数×倍数=大数或和一小数=大数如果要求两个数的差,要先求1份数:l份数×(倍数-1)=两数差.解决和倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系。

(2)差倍问题差倍问题就是已知大小两数的差,以及大小两数的倍数关系,求大小两数的问题.差倍问题的特点与和倍问题类似。

解答差倍问题的关键是要确定两个数量的差及相对应的倍数差,一般情况下,在题目中不直接给出,需要经过调整和计算才能得到。

解题思路:首先要在题目中找到1倍量,然后画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量差倍问题的基本关系式:差÷(倍数-1)=1倍数(较小数)1倍数×几倍=几倍数(较大数)或较小数+差=较大数解决差倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系.模块一、和倍问题例题44例题33例题22例题11例题精讲师、徒两人共加工105个零件,师傅加工的个数比徒弟的3倍还多5个,师傅和徒弟各加工零件多少个? 实验小学三、四年级的同学们一共制作了318件航模,四年级同学制作的航模件数是三年级的2倍,三、四年级的同学各制作了多少件航模? 某镇上有东西两个公交车站,东站有客车84辆,西站有客车56辆,每天从东站到西站有7辆车,从西站到东站有11辆车,几天后,东站车辆是西站的4倍? (第五届小数报数学竞赛初赛)六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另—个人的2倍,则丙手中卡片上的数是________.WORD 完整版----可编辑----教育资料分享例题99例88例题77例题66例题55(2008第四届“IMC 国际数学邀请赛”(新加坡)四年级复赛)甲、乙、丙三个小朋友共有73块巧克力,如果丙吃掉3块,那么乙和丙的巧克力就一样多;如果乙给甲2块巧克力,那么甲的巧克力就是乙的2倍,丙原有 块巧克力. 爸爸和冬冬一起搬砖,原计划爸爸搬其中的一些,冬冬搬剩余的砖头.父子二人发现,如果爸爸帮冬冬搬10块,那么爸爸所搬的砖头数是冬冬的5倍;如果冬冬帮爸爸搬10块,那么爸爸所搬的砖头数是冬冬的2倍.请问:原计划爸爸搬多少块砖,冬冬搬多少块砖? 一家汽车销售店有若干部福特汽车和丰田汽车等待销售。

四年级下册数学试题-奥数专题讲练:第四讲 组合(例题解析版)全国通用

四年级下册数学试题-奥数专题讲练:第四讲 组合(例题解析版)全国通用

第四讲组合日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.例如某客轮航行于天津、青岛、大连三个城市之间.那么,船票共有几种价格(往返票价相同)?注意到由天津到青岛的票价与从青岛到天津的票价是一样的,所以问题实际上就是计算从三个城市中取两个城市,有多少种不同的取法,即这时只与考虑的两个城市有关而与两个城市的顺序无关.由枚举法知,共有下面的三种票价:天津←→青岛青岛←→大连大连←→天津我们把研究对象(如天津、青岛、大连)看作元素,那么上面的问题就是从3个元素中取出2个,组成一组的问题,我们把每一组叫做一个组合,把所有的组合的个数叫做组合数,上面的问题就是要求组合数.一般地,从n个不同元素中取出m个(m≤n)元素组成一组不计较组内各元素的次序,叫做从n个不同元素中取出m个元素的一个组合.由组合的定义可以看出,两个组合是否相同,只与这两个组合中的元素有关,而与取到这些元素的先后顺序无关.只有当两个组合中的元素不完全相同时,它们才是不同的组合.从n个不同元素中取出m个元素(m≤n)的所有组合的个数,叫做从n个不同元素中取出m个不同元素的组合数.记作C mn.如上面的例子,就是要计算从3个城市中取2个城市的组合数C23,由枚举法得出的结论知:C23=3.那么它是怎样计算出来的呢?从第三讲开头的例子,即准备天津、青岛、大连三个城市之间的船票的问题发现,这个问题实际上可以这样分两步完成:第一步是从三个城市中选两个城市,是一个组合问题,由组合数公式,有取C23法.第二步是将取出的两个城市进行排列,由全排列公式,有P23种排法,所以,由乘法原理得到P23=C23×P23.故有:C23=P23÷P22=(3×2)÷2=3.一般地,求从n个不同元素中取出m个元素排成一列的排列数Pmn可以分两步求得:第一步:从n个不同元素中取出m个元素组成一组,共有C mn种方法;第二步:将每一个组合中的m个元素进行全排列,共有P mm种排法.故由乘法原理得到:P mm =C mn•P mm种因此这就是组合数公式.例1 计算:①C26,C46;②C27,C57.注意到上面的结果中,有C26= C46,C27= C57.一般地,组合数有下面的重要性质:C m n=C n-m n(m≤n)这个公式是很容易理解的,它的直观意义是:C m n表示从n个元素中取出m 个元素组成一组的所有分组方法. C n-m n表示从n个元素中取出(n—m)个元素组成一组的所有分组方法.显然,从n个元素中选出m个元素的分组方法恰是从n个元素中选m个元素剩下的(n-m)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即C35=C25.规定C n n=1, C0n=1.例2 计算:①C198200;②C5556;③C98100-2C100100.例3 从分别写有1、3、5、7、9的五张卡片中任取两张,作成一道两个一位数的乘法题,问:①有多少个不同的乘积?②有多少个不同的乘法算式?分析①中,要考虑有多少个不同乘积.由于只要从5张卡片中取两张,就可以得到一个乘积,所以,有多少个乘积只与所取的卡片有关,而与卡片取出的顺序无关,所以这是一个组合问题.②中,要考虑有多少个不同的乘法算式,它不仅与两张卡片上的数字有关,而且与取到两张卡片的顺序有关,所以这是一个排列问题.解:①由组合数公式,共有个不同的乘积.②由排列数公式,共有P25=5×4=20种不同的乘法算式.例4 在一个圆周上有10个点,以这些点为端点或顶点,可以画出多少不同的①直线段,②三角形,③四边形?分析由于10个点全在圆周上,所以这10个点没有三点共线,故只要在10个点中取2个点,就可以画出一条线段;在10个点中取3个点,就可以画出一个三角形;在10个点中取4个点,就可以画出一个四边形,三个问题都是组合问题.解:由组合数公式.例5 如下图,问:①下左图中,共有多少条线段?②下右图中,共有多少个角?分析①中,在线段AB上共有7个点(包括端点A、B).注意到,只要在这七个点中选出两个点,就有一条以这两个点为端点的线段,所以,这是一个组合问题,而C27表示从7个点中取两个不同点的所有取法,每种取法可以确定一条线段,所以共有C27条线段.②中,从O点出发的射线一共有11条,它们是OA, OP1,OP2,OP3,…,OP9,OB.注意到每两条射线可以形成一个角,所以,只要看从11条射线中取两条射线有多少种取法,就有多少个角.显然,是组合问题,共有C211种不同的取法,所以,可组成C211个角.解:①由组合数公式知,共有条不同的线段;②由组合数公式知,共有例6 某校举行排球单循环赛,有12个队参加.问:共需要进行多少场比赛?分析因为比赛是单循环制的,所以,12个队中的每两个队都要进行一场比赛,并且比赛的场次只与两个队的选取有关而与两个队选出的顺序无关.所以,这是一个在12个队中取2个队的组合问题.解:由组合数公式知,共需进行场比赛.例7 某班要在42名同学中选出3名同学去参加夏令营,问共有多少种选法?如果在42人中选3人站成一排,有多少种站法?分析要在42人中选3人去参加夏令营,那么,所有的选法只与选出的同学有关,而与三名同学被选出的顺序无关.所以,应用组合数公式,共有C342种不同的选法.要在42人中选出3人站成一排,那么,所有的站法不仅与选出的同学有关,而且与三名同学被选出的顺序有关.所以,应用排列数公式,共有P342种不同的站法.解:由组合数公式,共有种不同的选法;由排列数公式,共有P342=42×41×40=68880种不同的站法.习题四1.计算:①C315;②C19982000;③C34×C28;④P28-C68.2.从分别写有1、2、3、4、5、6、7、8的八张卡片中任取两张作成一道两个一位数的加法题.问:①有多少种不同的和?②有多少个不同的加法算式?3.某班毕业生中有10名同学相见了,他们互相都握了一次手,问这次聚会大家一共握了多少次手?4.在圆周上有12个点.①过每两个点可以画一条直线,一共可以画出多少条直线?②过每三个点可以画一个三角形,一共可以画出多少个三角形?5.如右图,图上一共有六个点,且六个点中任意三个点不共线,问:①从这六个点中任意选两点可以连成一条线段,这些点一共可以连成多少条线段?②从这六个点中任意选两点可以作一条射线,这些点一共可以作成多少条射线?(射线是一端固定,经另一点可以无限延长的.)。

高斯小学奥数四年级上册含答案第04讲_字母竖式

高斯小学奥数四年级上册含答案第04讲_字母竖式
代表6.请问:“I”代表的数字是多少?
例题2
在下图的减法竖式中, 不同的汉字代表不同的 数字,相同的汉字代表相同的数字. 那么每个 汉字各代表什么数字?
炮兵兵炮
兵马兵
「分析」观察百位,相同的数字差为0,那么“马”可 以是0吗?究竟是怎么回事呢?
马兵马
练习2
下面竖式中,每个字母代表一个数字.a,s,t
第四讲 字母竖式
竖式问题中常用的突破口有:首位、末位、位数、进位及重复出现的汉字或字母.
一、尾数分析
1×2、×4、×6、×8(有两个答案) ,如:□×__2=__4,□有2、7两个答案;
2×1、×3、×7、×9(有一个答案) ,如:□×__3=__8,□只有6一个答案;
3×5,偶数→0、奇数→5;
4×0,乘积个位为0;
回头我们再来看一件有趣的事情.在我国古代的甲骨文中,数学的“数”,它的右边表 示一只右手,左边则是一根打了许多绳结的木棍: ―― “数”者,图结绳而记之也.所以, 数学研究所的门口,最好用木棍打几个绳结作标“记”,连招牌都不用挂了.
作业
1.在下面的加法竖式中, 相同的汉字代表相同的数字, 不同的汉字代表不同的数字, 请问:我爱数学表示的四位数是多少?
是多少吗?“江”和“峡”又有什么特点呢?
课堂内外
结绳记数
结绳记数这种方法, 不但在远古时候使用, 而且一直在某些民族中沿用下来. 宋朝人在 一本书中说:“鞑靼无文字,每调发军马,即结草为约,使人传达,急于星火.”这是用结 草来调发军马,传达要调的人数呢!其他如藏族、彝族等,虽都有文字,但在一般不识字的 人中间都还长期使用这种方法.中央民族大学就收藏着一副高山族的结绳,由两条绳组成: 每条上有两个结, 再把两条绳结在一起. 有趣的是,不但我们东方有过结绳, 西方也结过绳. 看 样子, 咱们这个星球早就像个地球村了, 只不过那时还没有电报电话. 传说古波斯王有一次 打仗,命令手下兵马守一座桥,要守60天.为了让将士们不少守一天也不多守一天,波斯 王用一根长长的皮条,把上面系了60个扣.他对守桥的官兵们说:“我走后你们一天解一 个扣,什么时候解完了,你们就可以回家了.”

《小学奥数》小学四年级奥数讲义之精讲精练第4讲 应用题(一)

《小学奥数》小学四年级奥数讲义之精讲精练第4讲 应用题(一)

第4讲应用题(一)一、知识要点解答应用题时,必须认真审题,理解题意,深入细致地分析题目中数量间的关系,通过对条件进行比较、转化、重新组合等多种手段,找到解题的突破口,从而使问题得以顺利解决。

二、精讲精练【例题1】某玩具厂把630件玩具分别装在5个塑料箱和6个纸箱里,1个塑料箱与3个纸箱装的玩具同样多。

每个塑料箱和纸箱各装多少件玩具?练习1:(1)百货商店运来300双球鞋分别装在2个木箱和6个纸箱里。

如果两个纸箱同一个木箱装的球鞋同样多,每个木箱和每个纸箱各装多少双球鞋?(2)新华小学买了2张桌子和5把椅子,共付款195元。

已知每张桌子的价钱是每把椅子的4倍,每张桌子多少元?【例题2】一桶油,连桶重180千克,用去一半油后,连桶还有100千克。

问:油和桶各重多少千克?练习2:(1)一筐梨,连筐重38千克,吃去一半后,连筐还有20千克。

问:梨和筐各重多少千克?(2)一筐苹果,连筐共重35千克,先拿一半送给幼儿园小朋友,再拿剩下的一半送给一年级小朋友,余下的苹果连筐重11千克。

这筐苹果重多少千克?【例题3】有5盒茶叶,如果从每盒中取出200克,那么5盒剩下的茶叶正好和原来4盒茶叶的重量相等。

原来每盒茶叶有多少克?练习3:(1)有6筐梨子,每筐梨子个数相等,如果从每筐中拿出40个,6筐梨子剩下的个数总和正好和原来两筐的个数相等。

原来每筐有多少个?(2)在5个木箱中放着同样多的橘子。

如果从每个木箱中拿出60个橘子,那么5个木箱中剩下的橘子的个数的总和等于原来两个木箱里橘子个数的和。

原来每个木箱中有多少个橘子?【例题4】一个木器厂要生产一批课桌。

原计划每天生产60张,实际每天比原计划多生产4张,结果提前一天完成任务。

原计划要生产多少张课桌?练习4:(1)电视机厂接到一批生产任务,计划每天生产90台,可以按期完成。

实际每天多生产5台,结果提前1天完成任务。

这批电视机共有多少台?(2)小明看一本故事书,计划每天看12页,实际每天多看8页,结果提前2天看完。

四年级下册数学讲义-第4讲差倍问题(含答案、奥数板块)全国通用

四年级下册数学讲义-第4讲差倍问题(含答案、奥数板块)全国通用

差倍问题一、【名师解析】解答差倍问题时,先要求出与两个数的差对应的倍数差。

在一般问题下,它们往往不会直接告诉我们,这就需要我们根据题目的具体特点将它们求出。

当题中出现三个或三个以上的数量时,一般把题中有关数量转化为与标准量之间倍数关系对应的数量。

解答差倍应用题的基本数量关系是:差宁(倍数—1)二小数小数X倍数二大数或:小数+差二大数二、【例题精讲】【例1】光明小学开展冬季体育比赛,参加跳绳比赛的人数是踺子人数的3倍, 比踢踺子的多36人。

参加跳绳和踢踺子比赛的各有多少人?练习:城南小学三年级的人数是一年级人数的2倍,三年级的人数比一年级多130人。

三年级和一年级各有多少人?【例2】仓库里存放大米和面粉两种粮食,面粉比大米多3900千克,面粉的千克数比大米的2倍还多100千克。

仓库有大米和面粉各多少千克?练习:三年级学生参加课外活动,做游戏的人数比打球人数的3倍多2人,已知做游戏的比打球的多38人,打球和做游戏的各有多少人?【例3】育红小学买了一些足球、排球和篮球,已知足球比排球多7只,排球比篮球多11只,足球的只数是篮球的3倍。

足球、排球和篮球各买了多少只?练习:玩具厂二月份比一月份多生产玩具2000个,三月份比二月份多生产3000 个,三月份生产的玩具个数是一月份的2倍。

每个月各生产多少个?【例4】商店运来一批白糖和红糖,红糖的重量是白糖的3倍,卖出红糖380千克,白糖110千克后,红糖和白糖重量相等。

商店原有红糖和白糖各多少千克?练习:甲、乙两个仓库各存一批面粉,甲仓库所存的面粉的袋是乙仓库的3倍, 从甲仓库运走720千克,从乙仓库运走120千克后,两个仓库所剩的面粉相等。

两个仓库原来各有面粉多少千克?【例5】甲、乙两个书架原有图书本数相等,如果从甲书架取出2本,从乙书架取出60本后,甲书架的本数是乙书架的3倍。

原来两个书架各有图书多少本?练习:甲、乙两人的存款相等,甲取出60元,乙存入20元后,乙的存款是甲的3倍。

高斯小学奥数四年级下册含答案第04讲_格点图形面积计算

高斯小学奥数四年级下册含答案第04讲_格点图形面积计算

第四讲格点图形面积计算在平面几何知识中,面积计算是最重要的组成部分之一.我们已经学过了长方形、正方形、平行四边形、三角形和梯形面积公式,你还记得这些公式吗?这一讲我们将学习格点图形的面积.用线段连结格点围成的封闭图形称之为格点图形.虽然我们已经学习了基本直线形的面积公式,然而大多数的格点图形都无法直接计算面积,需要我们通过这节课的探索学习去找到方法.常见的格点有正方形格点和三角形格点.例题1图中每个最小正方形的面积都是1平方厘米,那么三个阴影图形的面积分别是多少平方厘米?「分析」这几个多边形都不规则,我们能不能把它们切成很多规则的小块,一块一块地求面积呢?或者给它们添补一些规则的小块,使得它们变成规则可求的大图形.练习1图中相邻两格点间的距离均为1厘米,那么阴影图形的面积分别是多少平方厘米?通过例1中的第1小题我们学会了将大块不规则图形“分割”成许多规则的图形,这种方法称为“分割法”;但是不一定每个图形都很容易分割,第2小题我们学会了把不好算的图形“添补”成规则的大图形,计算时用大图形的面积减去空白部分的面积,这种方法称为“添补法”.分割法,正所谓“大事化小”,把不规则的大图形化为规则的小图形.添补法则正好相反,是“以小见大”,把不规则图形周围添上规则的小图形,使总面积便于计算.使用割、补法的时候,一般应该从图形的顶点出发,尽量沿着格线划分,以便与小方格的面积找到联系或者利用垂直等性质.接下来我们用分割、添补的方法计算一下三角形格点图形的面积.例题2下图是一个三角形点阵,其中能连出的最小等边三角形的面积为1平方厘米.那么这五个图形的面积分别为多少平方厘米?「分析」前三个图是可以直接计算的,④、⑤是无法直接计算的,试着用分割、添补的方法解决吧!我们发现:如果一个三角形的两边都沿三角形格线方向,并且分别是最短线段的m 倍和n 倍,那么这个三角形的面积就是最小等边三角形面积的m n 倍.练习2下图是一个三角形点阵,其中能连出的最小等边三角形的面积为1平方厘米.那么这四个图形的面积分别为多少平方厘米?要计算格点图形的面积,我们只需要应用合适的方法,数一下要求的图形占了几个单位面积即可.当单位面积不为1时,我们就要格外小心了,千万不能在数完后再乘单位面积!对于复杂的格点图形,使用割补法一定能计算面积.但是割补法有时显得有些繁琐,有没有更简单明了的方法呢?那么我们接下来看一个简单快捷的方法.例如,我们要计算如下图的格点多边形的面积(假设最小的正方形面积是1).我们可以用割补的方法求出图形的面积,现在还有另一种方法,从格点数入手.围成阴影部分的边线,经过了一些格点.这些边界上的格点叫做边界格点,一共有12个;格点图形还完全盖住了一些格点,这些图形内部的格点叫做内部格点,一共有1个. 一般的,在最小正方形面积为1的正方形网格中,我们有:这样,按公式计算:122116÷+-=,我们就得出图中阴影部分的面积了.例题3 如图,相邻两格点间的距离均为1厘米,求阴影部分的面积?「分析」尝试着用格点图形面积公式计算一下把!先数数边界格点、内部格点分别有多少个呢?练习3如图,每一个最小正方形的面积都是2,阴影部分的面积是多少?类似地,在最小正三角形面积为1的三角形网格中,三角形格点图形也有面积计算公式:仔细比较这两个公式,可以发现:三角形格点的公式正好是正方形格点公式的2倍.大家想一下,为什么是这样呢?例题4如图,每个最小等边三角形的面积都是1平方厘米.阴影部分的面积是多少平方厘米?「分析」尝试着用格点图形面积公式计算一下把!先数数边界格点、内部格点分别有多少个呢?练习4如图,每个最小等边三角形的面积都是1平方厘米,阴影部分的面积是多少平方厘米?例题5如图,每一个最小正方形的面积都是3平方厘米.阴影部分的面积是多少平方厘米?「分析」试着比较分割法、添补法、公式法,这三个方法哪个更合适呢?例题6(1)左图中每个最小正三角形的面积是2平方厘米.阴影部分面积是多少平方厘米?(2)右图中每个最小正三角形的面积是4平方厘米.阴影部分面积是多少平方厘米?「分析」试着比较分割法、添补法、公式法,这三个方法哪个更合适呢?对于大部分格点图形而言,分割法和添补法都可以用来求面积.对于特殊的格点图形,如果不易分割,可以试试添补;如果不易添补,可以试试分割.如果用分割法和添补法都不易解决,那么格点公式就派上用场了!在使用格点公式时,有以下几点需要注意:(1)注意是正方形格点还是三角形格点;(2)按照顺序来数边界格点和内部格点;(3)用格点公式计算出来的不是面积,而是最小的正方形或正三角形的面积的倍数.看似这一讲的题目不是很难,怎么保证计算的准确性呢?如果你用分割法计算面积,不妨再用添补法验算一下.如果你用割补法计算面积,不妨再用格点公式算一算.用不同方法得到的都是同样的结果,基本上就不会出错了.课堂内外几何的起源古埃及人聚居在尼罗河附近,以在河边的农田耕作为生.可是尼罗河每隔一段时间会泛滥,河水涌上岸,把河边的农田淹没,冲毁农田的边界.所以,每次河水泛滥后,埃及人都要重新划分农田的范围和界限.埃及人在划分土地时,发现很多不同形状的农田,都可以分割为几块较细小的三角形农田,例:1块长方形农田2块大小相同的三角形农田1块梯形农田3块三角形农田这些不同形状的农田,其实就是不同的几何图形;把农田分割为几块较细小的农田,即是把几何图形分割.原来古埃及人是研究几何图形的先锋呢!作业1. 如图,每相邻两个格点的距离都是1,那么两个阴影图形的面积分别是________、________.2. 下图中三角形点阵所能连出的最小正三角形面积为1,图中两个图形的面积分别是________、________.3. 如图,最小正三角形的面积是4平方厘米,那么阴影部分的面积是________平方厘米.4. 右图中,每个最小正方形面积为2,则图中阴影部分的面积是________.5. 下图三角形点阵所能连出的最小正三角形面积为2,图形的面积是_________.第四讲 格点图形面积计算1. 例题1答案:7平方厘米;5平方厘米;11平方厘米详解:如图所示,用分割法、添补法.三个图形的面积分别是:4111127⨯+⨯+⨯=平方厘米; 4⨯⨯÷32⨯⨯÷2. 例题2答案:6;12;4;7;9详解:①:326⨯=平方厘米;②:4312⨯=平方厘米;③:224⨯=平方厘米;3. 例题3答案:6.5平方厘米 详解:内部格点:3个,边界格点:9个.面积=3921 6.5+÷-=平方厘米.4. 例题4答案:34平方厘米详解:内部格点:7个;边界格点:22个.面积:7222234⨯+-=平方厘米.5.例题5答案:19.5平方厘米;31.5平方厘米④: ⑤: 121212+17⨯+⨯+⨯= 或:441313137⨯-⨯-⨯-⨯= 2339⨯+= 或:441212139⨯-⨯-⨯-⨯=详解:可以分割、添补,也可以用公式法:(1)内部格点:4个;边界格点:7个.面积:()7241319.5÷+-⨯=平方厘米;(2)内部格点:8个;边界格点:7个.面积:()7281331.5÷+-⨯=平方厘米.6. 例题6答案:28平方厘米;56平方厘米详解:可以分割、添补,也可以用公式法:(1)内部格点:4个;边界格点:8个.面积:()4282228⨯+-⨯=平方厘米;(2)内部格点:3个;边界格点:10个.面积:()32102456⨯+-⨯=平方厘米.7. 练习1答案:3平方厘米;10平方厘米详解:如图,分别用分割法、添补法.8. 练习2答案:12;20;5;18 详解:①:3412⨯=平方厘米; ②:直接数,每层4个,共5层,4520⨯=9. 练习3答案:13 简答:内部格点:1个,边界格点:13个.面积=()11321213+÷-⨯=.10. 练习4答案:17平方厘米简答:内部格点:1个;边界格点:17个.面积:1217217⨯+-=平方厘米. ③: ④:1112125⨯+⨯+⨯= 122312818⨯+⨯+⨯+=11.作业1答案:6;6.5简答:可用分割或添补法完成.12.作业2答案:7;12简答:使用割补法分别计算.13.作业3答案:56简答:大正三角形的面积是254100⨯=平方厘米,利用添补法可得.14.作业4答案:29简答:综合利用分割法与添补法.也可以用正方形格点图形面积公式计算.注意每个最小正方形面积是2.15.作业5答案:44简答:综合利用分割法与添补法.也可以用三角形格点图形面积公式计算.注意每个最小正三角形面积是2.。

北京华罗庚学校四年级奥数补习教案 第四讲 等差数列及其应用

第四讲等差数列及其应用许多同学都知道这样一个故事:大数学家高斯在很小的时候,就利用巧妙的算法迅速计算出从1到100这100个自然数的总和.大家在佩服赞叹之余,有没有仔细想一想,高斯为什么算得快呢?当然,小高斯的聪明和善于观察是不必说了,往深处想,最基本的原因却是这100个数及其排列的方法本身具有极强的规律性——每项都比它前面的一项大1,即它们构成了差相等的数列,而这种数列有极简便的求和方法.通过这一讲的学习,我们将不仅掌握有关这种数列求和的方法,而且学会利用这种数列来解决许多有趣的问题.一、等差数列什么叫等差数列呢?我们先来看几个例子:①l,2,3,4,5,6,7,8,9,…②1,3,5,7,9,11,13.③ 2,4,6,8,10,12,14…④ 3,6,9,12,15,18,21.⑤100,95,90,85,80,75,70.⑥20,18,16,14,12,10,8.这六个数列有一个共同的特点,即相邻两项的差是一个固定的数,像这样的数列就称为等差数列.其中这个固定的数就称为公差,一般用字母d表示,如:数列①中,d=2-1=3-2=4-3= (1)数列②中,d=3-1=5-3=…=13-11=2;数列⑤中,d=100-95=95-90=…=75-70=5;数列⑥中,d=20-18=18-16=…=10-8=2.例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22, (98)②1,2,1,2,3,4,5,6;③ 1,2,4,8,16,32,64;④ 9,8,7,6,5,4,3,2;⑤3,3,3,3,3,3,3,3;⑥1,0,1,0,l,0,1,0;解:①是,公差d=4.②不是,因为数列的第3项减去第2项不等于数列的第2项减去第1项.③不是,因为4-2≠2-1.④是,公差d=l.⑤是,公差d=0.⑥不是,因为第1项减去第2项不等于第2项减去第3项.一般地说,如果一个数列是等差数列,那么这个数列的每一项或者都不小于前面的项,或者每一项都大于前面的项,上述例1的数列⑥中,第1项大于第2项,第2项却又小于第3项,所以,显然不符合等差数列的定义.为了叙述和书写的方便,通常,我们把数列的第1项记为a1,第2项记为a2,…,第n项记为an,an。

四年级下册数学讲义奥数导引 第4讲:抽屉原理一

一、 抽屉原理I :把一些苹果随意放入若干个抽屉,如果苹果个数多于抽屉个数,那么一定能找到一个抽屉,里面至少有2个苹果.二、 抽屉原理II :把m 个苹果放入n 个抽屉(m 大于n ),结果有两种可能:如果m n ÷没有余数,那么就一定有抽屉至少放了“m n ÷”个苹果.如果m n ÷有余数,那么就一定有抽屉至少放了“m n ÷的商再加1”个苹果.三、 抽屉原理的基本思想就是最不利原则.所谓最不利原则,概括的讲,就是通过满足“最坏”的情况,来保证满足所有的情况.四、 某些时候,“抽屉”不太明显,需要构造抽屉来解决问题.知识精讲第四讲抽屉原理一例题解析【例1】 体育馆里有足球,篮球和排球3种球.一个班的50名学生去借球,每人最少借1个,最多可以借2个.请问:最少有多少名学生借到球的数量和种类完全一样?【例2】 把31个桃子分给若干只猴子,每只猴子分得的桃子不超过3个,那么至少有几只猴子得到的桃子一样多?【例3】 有37个数,每个数为0或1.要求:当把这些数以任意的方式排列在圆周上时,总能找到6个1连排在一起.问:其中最少有多少个数是1?【例4】 有一个大口袋,里面装着许多球,每个球上写着一个数字.其中写0的有1个,写1的有2个,写2的有3个,……,写9的有10个.如果闭着眼睛从袋中取球,那么至少要取出多少个球,才能保证取出的球中必有3个,它们上面的数字恰好组成678?(考虑“9”倒过来看是“6”)【例5】一个袋子中有三种不同颜色的球共20个,其中红球7个,黄球5个,绿球8个.现在墨莫闭着眼睛从中取球,要保证有一种颜色的球不少于4个,则至少要取出多少个球才能满足要求?如果还要保证另一种颜色的球不少于3个,则至少要取出多少个球?【例6】50个苹果分给8个小朋友,那么分到苹果最多的小朋友至少分到多少个?如果1号小朋友最多给2个,2号最多给4个,3号最多给6个,……,8号最多给16个,那么得到苹果最多的小朋友至少分到多少个?【例7】888名学生站成一个圆圈,如果任意连续32人中,至多有9名男生,那么男生的人数最多有多少人?【例8】新春佳节,商场举办抽奖活动.抽奖箱中有五种不同颜色的奖券,分别有32,30,28,26,24张.每次可以抽出任意多张,但每抽出一张就要付2元钱.奖励方式如下:用15张同色的奖券换一架相同颜色的飞机模型,用11张同色的奖券换一架相同颜色的坦克模型,用4张同色的奖券换一架相同颜色的摩托车模型.请问:至少要付多少钱,才能保证可以换到三种模型,且三种模型之间颜色互不相同?。

四年级上学期 同步奥数 第四讲 简单的差倍问题

第四讲简单的差倍问题一、基础夯实1、图书馆中有故事书1080本,是科技书的3倍,你知道科技书有多少本?2、甲、乙两人共有150张画片,甲的张数比乙的2倍多30张,两人各有几张画片?3、在一个减法算式里,被减数、减数与差的和等于120,而差是减数的3 倍,问被减数、减数、差各是多少?二、新知解答1、王师傅一天生产的零件比他的徒弟一天生产的零件多128个,且是徒弟的3倍。

师徒二人一天各生产多少个零件?2、小林今年9岁,他爸爸今年35岁。

小林多少岁时,他爸爸的年龄正好是他的3倍?3、小芳课外书的本数是小强课外书本数的3倍。

如果小芳借给小强10本书,小强和小芳的课外书本数就课外书相等。

小芳和小强各有多少本?4、甲仓库存大米500袋,乙仓库存大米200袋,现从两个仓库里运走同样袋数的大米,结果甲仓库剩下大米正好是乙仓库剩下大米的3倍。

问从两个仓库里和运走多少袋大米?三、实战演练1、大仓库存粮比小仓库存粮多254吨。

又知大仓库存粮是小仓库存粮的3倍。

大、小仓库各存粮多少吨?2、一养鸡场,公鸡比母鸡少369只,母鸡是公鸡的4倍。

公鸡、母鸡各多少只?3、一篮苹果比一篮桔子重40千克,苹果重量是桔子的5倍,苹果、桔子各有多少千克?4、小明今年9岁,父亲39岁,再过多少年父亲的年龄正好是小明的2倍?5、一个车间,女工比男工少35人,男女工各调出17人后,男工人数是女工人数的2倍。

原来有男工、女工各有多少?6、有两缸金鱼,如果从甲缸中取出25条放入乙缸,两缸内的金鱼数相等。

已知原来甲缸的金鱼数是乙缸的6倍,甲缸原有金鱼多少条?7、两筐重量相等的苹果,甲筐卖出7千克,乙筐卖出19千克以后,甲筐余下的千克数是乙筐的3倍,两筐苹果和有多少千克?8、某车间男工人数是女工人数的两倍,若调走18个男工,那么女工人数正好是等于男工人数。

这个车间的女工菜多少人?9、育红小学原来参加室外活动的人数比室内的人数多480人,现在把室内活动的50人改为室外活动,这样室外活动的人数正好是室内人数的5倍,参加室内、室外活动的共有多少人?四、挑战新高1、已知大小两个数的差是 5.49,将较大数的小数点向左移动一位,就等于较小数。

四年级奥数第4讲_抽屉原理

第四讲抽屉原理(一)我们在四年级已经学过抽屉原理,并能够解答一些简单的抽屉原理问题。

这两讲先复习一下抽屉原理的概念,然后结合一些较复杂的抽屉原理问题,讨论如何构造抽屉。

抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。

理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。

(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。

(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。

(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。

例1 五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。

已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。

问:至少有几名学生的成绩相同?分析与解:关键是构造合适的抽屉。

既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。

除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。

例2 夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。

规定每人必须参加一项或两项活动。

那么至少有几名营员参加的活动项目完全相同?分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。

营员数已经有了,现在的问题是应当搞清有多少个抽屉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1 有一本书共200页,给这本书编页码, 一共要用多少个数字呢?
例2 印刷厂给一本书编页码,共用了243个数 字,那么这本书共有多少页?
易水寒江雪敬奉 T四年级奥数第四讲数学问题教案与例题
例1 小马虎在计算两个数相加时,把一个加 数的百位的7错写成3,另一个加数的十位的4 错写成1,这样算得的和是334,那么正确的 和应该是多少呢?
例2 小叮当在做减法时,粗心大意,把被 减数个位上的3看成了8,把十位上的7看成 了2,这样得到的差是256,那么正确的差 应该是多少?
相关文档
最新文档